Skip to main content

Microglia: Neuroprotective and Neurodestructive Properties

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

In the central nervous system, resident macrophages, microglia, and perivascular macrophages perform similar functions to peripheral macrophages yet display highly specialized features. They maintain some phenotypic characteristics and lineage-related properties common to their cells of origin and their rapid response in areas of neuronal death led to the contention that microglia serve as brain macrophages. While microglia are often considered the immune cell of the brain, they also show distinct features that make them unique from other tissue macrophages. They are maintained in a relatively quiescent and monitoring state by regulatory factors released by neurons and astrocytes. Via contact-dependent and receptor-dependent signaling, microglia rapidly respond to various events in the brain in an effort to return the microenvironment to homeostasis, to assist in refining the neural network during development and with repair, and to remove excess and aberrant proteins. Depending on the nature of the response and the physiological function of the microglia, a release of immune-related signaling factors can accompany a morphological change. It was initially thought that the immune-related response of microglia mirrors that of peripheral macrophages and considered to be adverse to the nervous system. However, further evaluation of these cells suggests that overall their responses are ones critical to the maintenance and function of the nervous system. This chapter will serve to set the framework for evaluating the microglia within the context of data available on their varied functions within the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

AMPA:

Alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid

ApoE:

Apolipoprotein

ATP:

Adenosine triphosphate

42 :

Amyloid-beta 42

BBB:

Blood–brain barrier

Ca2+ :

Calcium

CNS:

Central nervous system

COX:

Cyclooxygenase

CR:

Complement receptor

CSF:

Colony-stimulating factor

CX3CL1:

Fractalkine

DAMPs:

Danger-associated molecular patterns

Fc:

Fragment, crystallizable region

HO-1:

Heme oxygenase-1

HSP:

Heat shock protein

IFN:

Interferon

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

LPS:

Lipopolysaccharide

mGluR:

Metabotropic glutamate receptor

MHC:

Major histocompatibility complex

MMP:

Matrix metalloproteinase

MPP+:

1-methyl-4-phenylpyridinium

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NF-κB:

Nuclear factor kappa B

NLRs:

NOD-like receptors

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NOX2:

NADPH oxidase

P2:

Purinergic

PAMPs:

Pathogen-associated molecular patterns

PD:

Parkinson’s disease

PRRs:

Pattern recognition receptors

RAGE:

Receptor for advanced glycation end products

RNS:

Nitric oxide-dependent reactive nitrogen species

ROS:

Reactive oxygen species

SN:

Substantia nigra

TGF:

Transforming growth factor

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

TREM-2:

Triggering receptor expressed on myeloid cells-2

References

  • Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W., & Rossi, F. M. (2007). Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nature Neuroscience, 10(12), 1538–1543.

    CAS  PubMed  Google Scholar 

  • Akira, S., Uematsu, S., & Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell, 124(4), 783–801.

    CAS  PubMed  Google Scholar 

  • Babcock, A. A., Wirenfeldt, M., Holm, T., Nielsen, H. H., Dissing-Olesen, L., Toft-Hansen, H., Millward, J. M., Landmann, R., Rivest, S., Finsen, B., & Owens, T. (2006). Toll-like receptor 2 signaling in response to brain injury: An innate bridge to neuroinflammation. Journal of Neuroscience, 26(49), 12826–12837.

    CAS  PubMed  Google Scholar 

  • Barger, S. W. (2004). An unconventional hypothesis of oxidation in Alzheimer’s disease: Intersections with excitotoxicity. Frontiers in Bioscience, 9, 3286–3295.

    CAS  PubMed  Google Scholar 

  • Barger, S. W., Goodwin, M. E., Porter, M. M., & Beggs, M. L. (2007). Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation. Journal of Neurochemistry, 101(5), 1205–1213.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barnett, M. H., Parratt, J. D., Pollard, J. D., & Prineas, J. W. (2009). MS: Is it one disease? International MS journal//MS Forum, 16(2), 57–65.

    CAS  Google Scholar 

  • Betmouni, S., Perry, V. H., & Gordon, J. L. (1996). Evidence for an early inflammatory response in the central nervous system of mice with scrapie. Neuroscience, 74(1), 1–5.

    CAS  PubMed  Google Scholar 

  • Biber, K., Neumann, H., Inoue, K., & Boddeke, H. W. (2007). Neuronal ‘On’ and ‘Off’ signals control microglia. Trends in Neurosciences, 30(11), 596–602.

    CAS  PubMed  Google Scholar 

  • Bon, C. L., & Garthwaite, J. (2003). On the role of nitric oxide in hippocampal long-term potentiation. Journal of Neuroscience, 23(5), 1941–1948.

    CAS  PubMed  Google Scholar 

  • Bowman, C. C., Rasley, A., Tranguch, S. L., & Marriott, I. (2003). Cultured astrocytes express toll-like receptors for bacterial products. Glia, 43(3), 281–291.

    PubMed  Google Scholar 

  • Brochard, V., Combadiere, B., Prigent, A., Laouar, Y., Perrin, A., Beray-Berthat, V., Bonduelle, O., Alvarez-Fischer, D., Callebert, J., Launay, J. M., Duyckaerts, C., Flavell, R. A., Hirsch, E. C., & Hunot, S. (2009). Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. The Journal of Clinical Investigation, 119(1), 182–192.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Butovsky, O., Talpalar, A. E., Ben-Yaakov, K., & Schwartz, M. (2005). Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Molecular and Cellular Neurosciences, 29(3), 381–393.

    CAS  PubMed  Google Scholar 

  • Byrnes, K. R., Loane, D. J., & Faden, A. I. (2009). Metabotropic glutamate receptors as targets for multipotential treatment of neurological disorders. Neurotherapeutics, 6(1), 94–107.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calabrese, V., Mancuso, C., Calvani, M., Rizzarelli, E., Butterfield, D. A., & Stella, A. M. (2007). Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nature Reviews Neuroscience, 8(10), 766–775.

    CAS  PubMed  Google Scholar 

  • Cardona, A. E., Pioro, E. P., Sasse, M. E., Kostenko, V., Cardona, S. M., Dijkstra, I. M., Huang, D., Kidd, G., Dombrowski, S., Dutta, R., Lee, J. C., Cook, D. N., Jung, S., Lira, S. A., Littman, D. R., & Ransohoff, R. M. (2006). Control of microglial neurotoxicity by the fractalkine receptor. Nature Neuroscience, 9(7), 917–924.

    CAS  PubMed  Google Scholar 

  • Carson, M. J., Doose, J. M., Melchior, B., Schmid, C. D., & Ploix, C. C. (2006). CNS immune privilege: Hiding in plain sight. Immunological Reviews, 213, 48–65.

    PubMed Central  PubMed  Google Scholar 

  • Caso, J. R., Pradillo, J. M., Hurtado, O., Leza, J. C., Moro, M. A., & Lizasoain, I. (2008). Toll-like receptor 4 is involved in subacute stress-induced neuroinflammation and in the worsening of experimental stroke. Stroke, 39(4), 1314–1320.

    CAS  PubMed  Google Scholar 

  • Chakrabarty, P., Jansen-West, K., Beccard, A., Ceballos-Diaz, C., Levites, Y., Verbeeck, C., Zubair, A. C., Dickson, D., Golde, T. E., & Das, P. (2010). Massive gliosis induced by interleukin-6 suppresses Abeta deposition in vivo: Evidence against inflammation as a driving force for amyloid deposition. The FASEB Journal, 24(2), 548–559.

    CAS  PubMed Central  Google Scholar 

  • Choi, S. H., Lee, D. Y., Ryu, J. K., Kim, J., Joe, E. H., & Jin, B. K. (2003). Thrombin induces nigral dopaminergic neurodegeneration in vivo by altering expression of death-related proteins. Neurobiology of Disease, 14(2), 181–193.

    CAS  PubMed  Google Scholar 

  • Chung, Y. C., Kim, S. R., & Jin, B. K. (2010). Paroxetine prevents loss of nigrostriatal dopaminergic neurons by inhibiting brain inflammation and oxidative stress in an experimental model of Parkinson’s disease. Journal of Immunology, 185(2), 1230–1237.

    CAS  Google Scholar 

  • Colton, C., Wilt, S., Gilbert, D., Chernyshev, O., Snell, J., & Dubois-Dalcq, M. (1996). Species differences in the generation of reactive oxygen species by microglia. Molecular and Chemical Neuropathology, 28(1–3), 15–20.

    CAS  PubMed  Google Scholar 

  • Colton, C. A., Jia, M., Li, M. X., & Gilbert, D. L. (1994). K+ modulation of microglial superoxide production: Involvement of voltage-gated Ca2+ channels. American Journal of Physiology, 266(6 Pt 1), C1650–C1655.

    CAS  PubMed  Google Scholar 

  • Colton, C. A., & Wilcock, D. M. (2010). Assessing activation states in microglia. CNS & Neurological Disorders Drug Targets, 9(2), 174–191.

    CAS  Google Scholar 

  • Coyle, P. K. (2011). Dissecting the immune component of neurologic disorders: A grand challenge for the 21st century. Frontiers in Neurology, 2, 37.

    PubMed Central  PubMed  Google Scholar 

  • Cuadros, M. A., & Navascues, J. (1998). The origin and differentiation of microglial cells during development. Progress in Neurobiology, 56(2), 173–189.

    CAS  PubMed  Google Scholar 

  • D’Andrea, M. R., Cole, G. M., & Ard, M. D. (2004). The microglial phagocytic role with specific plaque types in the Alzheimer disease brain. Neurobiology of Aging, 25(5), 675–683.

    PubMed  Google Scholar 

  • D’Antoni, S., Berretta, A., Bonaccorso, C. M., Bruno, V., Aronica, E., Nicoletti, F., & Catania, M. V. (2008). Metabotropic glutamate receptors in glial cells. Neurochemical Research, 33(12), 2436–2443.

    PubMed  Google Scholar 

  • Davalos, D., Grutzendler, J., Yang, G., Kim, J. V., Zuo, Y., Jung, S., Littman, D. R., Dustin, M. L., & Gan, W. B. (2005). ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience, 8(6), 752–758.

    CAS  PubMed  Google Scholar 

  • Davoust, N., Vuaillat, C., Androdias, G., & Nataf, S. (2008). From bone marrow to microglia: Barriers and avenues. Trends in Immunology, 29(5), 227–234.

    CAS  PubMed  Google Scholar 

  • Dilger, R. N., & Johnson, R. W. (2008). Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. Journal of Leukocyte Biology, 84(4), 932–939.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eugenin, E. A., Eckardt, D., Theis, M., Willecke, K., Bennett, M. V., & Saez, J. C. (2001). Microglia at brain stab wounds express connexin 43 and in vitro form functional gap junctions after treatment with interferon-gamma and tumor necrosis factor-alpha. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 4190–4195.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fan, R., DeFilippis, K., & Van Nostrand, W. E. (2007). Induction of complement proteins in a mouse model for cerebral microvascular A beta deposition. Journal of Neuroinflammation, 4, 22.

    PubMed Central  PubMed  Google Scholar 

  • Farina, C., Krumbholz, M., Giese, T., Hartmann, G., Aloisi, F., & Meinl, E. (2005). Preferential expression and function of Toll-like receptor 3 in human astrocytes. Journal of Neuroimmunology, 159(1–2), 12–19.

    CAS  PubMed  Google Scholar 

  • Floden, A. M., & Combs, C. K. (2011). Microglia demonstrate age-dependent interaction with amyloid-beta fibrils. Journal of Alzheimer's Disease, 25(2), 279–293.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fonseca, M. I., Zhou, J., Botto, M., & Tenner, A. J. (2004). Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer’s disease. Journal of Neuroscience, 24(29), 6457–6465.

    CAS  PubMed  Google Scholar 

  • Fordyce, C. B., Jagasia, R., Zhu, X., & Schlichter, L. C. (2005). Microglia Kv1.3 channels contribute to their ability to kill neurons. Journal of Neuroscience, 25(31), 7139–7149.

    CAS  PubMed  Google Scholar 

  • Ginhoux, F., Greter, M., Leboeuf, M., Nandi, S., See, P., Gokhan, S., Mehler, M. F., Conway, S. J., Ng, L. G., Stanley, E. R., Samokhvalov, I. M., & Merad, M. (2010). Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science, 330(6005), 841–845.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glezer, I., Lapointe, A., & Rivest, S. (2006). Innate immunity triggers oligodendrocyte progenitor reactivity and confines damages to brain injuries. The FASEB Journal, 20(6), 750–752.

    CAS  Google Scholar 

  • Glezer, I., Simard, A. R., & Rivest, S. (2007). Neuroprotective role of the innate immune system by microglia. Neuroscience, 147(4), 867–883.

    CAS  PubMed  Google Scholar 

  • Gordon, S., & Martinez, F. O. (2010). Alternative activation of macrophages: Mechanism and functions. Immunity, 32(5), 593–604.

    CAS  PubMed  Google Scholar 

  • Graber, D. J., Park, P. J., Hickey, W. F., & Harris, B. T. (2011). Synthetic triterpenoid CDDO derivatives modulate cytoprotective or immunological properties in astrocytes, neurons, and microglia. Journal of Neuroimmune Pharmacology, 6(1), 107–120.

    PubMed  Google Scholar 

  • Graeber, M. B., & Kreutzberg, G. W. (1988). Delayed astrocyte reaction following facial nerve axotomy. Journal of Neurocytology, 17(2), 209–220.

    CAS  PubMed  Google Scholar 

  • Graeber, M. B., & Streit, W. J. (2010). Microglia: Biology and pathology. Acta Neuropathologica, 119(1), 89–105.

    PubMed  Google Scholar 

  • Graeber, M. B., Streit, W. J., & Kreutzberg, G. W. (1990). The third glial cell type, the microglia: Cellular markers of activation in situ. Acta Histochemica. Supplementband, 38, 157–160.

    CAS  PubMed  Google Scholar 

  • Grathwohl, S. A., Kalin, R. E., Bolmont, T., Prokop, S., Winkelmann, G., Kaeser, S. A., Odenthal, J., Radde, R., Eldh, T., Gandy, S., Aguzzi, A., Staufenbiel, M., Mathews, P. M., Wolburg, H., Heppner, F. L., & Jucker, M. (2009). Formation and maintenance of Alzheimer’s disease beta-amyloid plaques in the absence of microglia. Nature Neuroscience, 12(11), 1361–1363.

    CAS  PubMed  Google Scholar 

  • Guix, F. X., Uribesalgo, I., Coma, M., & Munoz, F. J. (2005). The physiology and pathophysiology of nitric oxide in the brain. Progress in Neurobiology, 76(2), 126–152.

    CAS  PubMed  Google Scholar 

  • Halle, A., Hornung, V., Petzold, G. C., Stewart, C. R., Monks, B. G., Reinheckel, T., Fitzgerald, K. A., Latz, E., Moore, K. J., & Golenbock, D. T. (2008). The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nature Immunology, 9(8), 857–865.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanisch, U. K., & Kettenmann, H. (2007). Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience, 10(11), 1387–1394.

    CAS  PubMed  Google Scholar 

  • Harry, G. J., d’Hellencourt, C. L., Bruccoleri, A., & Schmechel, D. (2000). Age-dependent cytokine responses: Trimethyltin hippocampal injury in wild-type, APOE knockout, and APOE4 mice. Brain, Behavior, and Immunity, 14(4), 288–304.

    CAS  PubMed  Google Scholar 

  • Harry, G. J., d’Hellencourt, C. L., McPherson, C. A., Funk, J. A., Aoyama, M., & Wine, R. N. (2008). Tumor necrosis factor p55 and p75 receptors are involved in chemical-induced apoptosis of dentate granule neurons. Journal of Neurochemistry, 106(1), 281–298.

    CAS  PubMed  Google Scholar 

  • Hoek, R. M., Ruuls, S. R., Murphy, C. A., Wright, G. J., Goddard, R., Zurawski, S. M., Blom, B., Homola, M. E., Streit, W. J., Brown, M. H., Barclay, A. N., & Sedgwick, J. D. (2000). Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science, 290(5497), 1768–1771.

    CAS  PubMed  Google Scholar 

  • Hume, D. A., Perry, V. H., & Gordon, S. (1983). Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: Phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. The Journal of Cell Biology, 97(1), 253–257.

    CAS  PubMed  Google Scholar 

  • Infanger, S. W., Sharma, R. V., & Davisson, R. L. (2006). NADPH oxidases of the brain: Distribution, regulation, and function. Antioxidants & Redox Signaling, 8(9–10), 1583–1596.

    CAS  Google Scholar 

  • Jack, C. S., Arbour, N., Manusow, J., Montgrain, V., Blain, M., McCrea, E., Shapiro, A., & Antel, J. P. (2005). TLR signaling tailors innate immune responses in human microglia and astrocytes. Journal of Immunology, 175(7), 4320–4330.

    CAS  Google Scholar 

  • Jekabsone, A., Mander, P. K., Tickler, A., Sharpe, M., & Brown, G. C. (2006). Fibrillar beta-amyloid peptide Abeta1−40 activates microglial proliferation via stimulating TNF-alpha release and H2O2 derived from NADPH oxidase: A cell culture study. Journal of Neuroinflammation, 3, 24.

    PubMed Central  PubMed  Google Scholar 

  • Jensen, M. B., Hegelund, I. V., Poulsen, F. R., Owens, T., Zimmer, J., & Finsen, B. (1999). Microglial reactivity correlates to the density and the myelination of the anterogradely degenerating axons and terminals following perforant path denervation of the mouse fascia dentata. Neuroscience, 93(2), 507–518.

    CAS  PubMed  Google Scholar 

  • Jimenez, S., Baglietto-Vargas, D., Caballero, C., Moreno-Gonzalez, I., Torres, M., Sanchez-Varo, R., Ruano, D., Vizuete, M., Gutierrez, A., & Vitorica, J. (2008). Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer’s disease: Age-dependent switch in the microglial phenotype from alternative to classic. Journal of Neuroscience, 28(45), 11650–11661.

    CAS  PubMed  Google Scholar 

  • Kaur, C., & Ling, E. A. (1991). Study of the transformation of amoeboid microglial cells into microglia labelled with the isolectin Griffonia simplicifolia in postnatal rats. Acta Anatomica (Basel), 142(2), 118–125.

    CAS  Google Scholar 

  • Kettenmann, H., Banati, R., & Walz, W. (1993). Electrophysiological behavior of microglia. Glia, 7(1), 93–101.

    CAS  PubMed  Google Scholar 

  • Khanna, R., Roy, L., Zhu, X., & Schlichter, L. C. (2001). K+ channels and the microglial respiratory burst. American Journal of Physiology. Cell Physiology, 280(4), C796–C806.

    CAS  PubMed  Google Scholar 

  • Kielian, T., Mayes, P., & Kielian, M. (2002). Characterization of microglial responses to Staphylococcus aureus: Effects on cytokine, costimulatory molecule, and Toll-like receptor expression. Journal of Neuroimmunology, 130(1–2), 86–99.

    CAS  PubMed  Google Scholar 

  • Kilic, U., Kilic, E., Matter, C. M., Bassetti, C. L., & Hermann, D. M. (2008). TLR-4 deficiency protects against focal cerebral ischemia and axotomy-induced neurodegeneration. Neurobiology of Disease, 31(1), 33–40.

    CAS  PubMed  Google Scholar 

  • Koizumi, S., Shigemoto-Mogami, Y., Nasu-Tada, K., Shinozaki, Y., Ohsawa, K., Tsuda, M., Joshi, B. V., Jacobson, K. A., Kohsaka, S., & Inoue, K. (2007). UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature, 446(7139), 1091–1095.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lambeth, J. D. (2004). NOX enzymes and the biology of reactive oxygen. Nature Reviews Immunology, 4(3), 181–189.

    CAS  PubMed  Google Scholar 

  • Landreth, G. E., & Reed-Geaghan, E. G. (2009). Toll-like receptors in Alzheimer’s disease. Current Topics in Microbiology and Immunology, 336, 137–153.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Langosch, J. M., Gebicke-Haerter, P. J., Norenberg, W., & Illes, P. (1994). Characterization and transduction mechanisms of purinoceptors in activated rat microglia. British Journal of Pharmacology, 113(1), 29–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lassmann, H., Zimprich, F., Vass, K., & Hickey, W. F. (1991). Microglial cells are a component of the perivascular glia limitans. Journal of Neuroscience Research, 28(2), 236–243.

    CAS  PubMed  Google Scholar 

  • Lawson, L. J., Perry, V. H., Dri, P., & Gordon, S. (1990). Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience, 39(1), 151–170.

    CAS  PubMed  Google Scholar 

  • Lee, S., & Suk, K. (2007). Heme oxygenase-1 mediates cytoprotective effects of immunostimulation in microglia. Biochemical Pharmacology, 74(5), 723–729.

    CAS  PubMed  Google Scholar 

  • Lehnardt, S., Lehmann, S., Kaul, D., Tschimmel, K., Hoffmann, O., Cho, S., Krueger, C., Nitsch, R., Meisel, A., & Weber, J. R. (2007). Toll-like receptor 2 mediates CNS injury in focal cerebral ischemia. Journal of Neuroimmunology, 190(1–2), 28–33.

    CAS  PubMed  Google Scholar 

  • Lehnardt, S., Massillon, L., Follett, P., Jensen, F. E., Ratan, R., Rosenberg, P. A., Volpe, J. J., & Vartanian, T. (2003). Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8514–8519.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lehnardt, S., Schott, E., Trimbuch, T., Laubisch, D., Krueger, C., Wulczyn, G., Nitsch, R., & Weber, J. R. (2008). A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. Journal of Neuroscience, 28(10), 2320–2331.

    CAS  PubMed  Google Scholar 

  • Letiembre, M., Hao, W., Liu, Y., Walter, S., Mihaljevic, I., Rivest, S., Hartmann, T., & Fassbender, K. (2007). Innate immune receptor expression in normal brain aging. Neuroscience, 146(1), 248–254.

    CAS  PubMed  Google Scholar 

  • Lipton, S. A., Gu, Z., & Nakamura, T. (2007). Inflammatory mediators leading to protein misfolding and uncompetitive/fast off-rate drug therapy for neurodegenerative disorders. International Review of Neurobiology, 82, 1–27.

    CAS  PubMed  Google Scholar 

  • Lo, D., Feng, L., Li, L., Carson, M. J., Crowley, M., Pauza, M., Nguyen, A., & Reilly, C. R. (1999). Integrating innate and adaptive immunity in the whole animal. Immunological Reviews, 169, 225–239.

    CAS  PubMed  Google Scholar 

  • Mander, P., & Brown, G. C. (2005). Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: A dual-key mechanism of inflammatory neurodegeneration. Journal of Neuroinflammation, 2, 20.

    PubMed Central  PubMed  Google Scholar 

  • Mander, P. K., Jekabsone, A., & Brown, G. C. (2006). Microglia proliferation is regulated by hydrogen peroxide from NADPH oxidase. Journal of Immunology, 176(2), 1046–1052.

    CAS  Google Scholar 

  • Marin-Padilla, M. (1985). Early vascularization of the embryonic cerebral cortex: Golgi and electron microscopic studies. The Journal of Comparative Neurology, 241(2), 237–249.

    CAS  PubMed  Google Scholar 

  • Martinez, F. O., Sica, A., Mantovani, A., & Locati, M. (2008). Macrophage activation and polarization. Frontiers in Bioscience, 13, 453–461.

    CAS  PubMed  Google Scholar 

  • McGeer, E. G., & McGeer, P. L. (2003). Inflammatory processes in Alzheimer’s disease. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 27(5), 741–749.

    CAS  Google Scholar 

  • McMullan, S. M., Phanavanh, B., Li, G. G., & Barger, S. W. (2012). Metabotropic glutamate receptors inhibit microglial glutamate release. ASN NEURO, 4(5):art:e00094.doi:10.1042/AN20120044

    Google Scholar 

  • McPherson, C. A., Kraft, A. D., & Harry, G. J. (2011). Injury-induced neurogenesis: Consideration of resident microglia as supportive of neural progenitor cells. Neurotoxicity Research, 19(2), 341–352.

    PubMed Central  PubMed  Google Scholar 

  • Michelucci, A., Heurtaux, T., Grandbarbe, L., Morga, E., & Heuschling, P. (2009). Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-beta. Journal of Neuroimmunology, 210(1–2), 3–12.

    CAS  PubMed  Google Scholar 

  • Miller, R. L., James-Kracke, M., Sun, G. Y., & Sun, A. Y. (2009). Oxidative and inflammatory pathways in Parkinson’s disease. Neurochemical Research, 34(1), 55–65.

    CAS  PubMed  Google Scholar 

  • Miyanishi, M., Tada, K., Koike, M., Uchiyama, Y., Kitamura, T., & Nagata, S. (2007). Identification of Tim4 as a phosphatidylserine receptor. Nature, 450(7168), 435–439.

    CAS  PubMed  Google Scholar 

  • Morris, L., Graham, C. F., & Gordon, S. (1991). Macrophages in haemopoietic and other tissues of the developing mouse detected by the monoclonal antibody F4/80. Development, 112(2), 517–526.

    CAS  PubMed  Google Scholar 

  • Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nature Reviews Immunology, 8(12), 958–969.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nawashiro, H., Tasaki, K., Ruetzler, C. A., & Hallenbeck, J. M. (1997). TNF-alpha pretreatment induces protective effects against focal cerebral ischemia in mice. Journal of Cerebral Blood Flow and Metabolism, 17(5), 483–490.

    CAS  PubMed  Google Scholar 

  • Neeper, M., Schmidt, A. M., Brett, J., Yan, S. D., Wang, F., Pan, Y. C., Elliston, K., Stern, D., & Shaw, A. (1992). Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. Journal of Biological Chemistry, 267(21), 14998–15004.

    CAS  PubMed  Google Scholar 

  • Nelson, P. T., Soma, L. A., & Lavi, E. (2002). Microglia in diseases of the central nervous system. Annals of Medicine, 34(7–8), 491–500.

    CAS  PubMed  Google Scholar 

  • Neumann, H. (2001). Control of glial immune function by neurons. Glia, 36(2), 191–199.

    CAS  PubMed  Google Scholar 

  • Neumann, H., & Takahashi, K. (2007). Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. Journal of Neuroimmunology, 184(1–2), 92–99.

    CAS  PubMed  Google Scholar 

  • Nimmerjahn, A., Kirchhoff, F., & Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 308(5726), 1314–1318.

    CAS  PubMed  Google Scholar 

  • Noda, M., Nakanishi, H., Nabekura, J., & Akaike, N. (2000). AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. Journal of Neuroscience, 20(1), 251–258.

    CAS  PubMed  Google Scholar 

  • Olah, M., Biber, K., Vinet, J., & Boddeke, H. W. (2011). Microglia phenotype diversity. CNS & Neurological Disorders Drug Targets, 10(1), 108–118.

    CAS  Google Scholar 

  • Pais, T. F., Figueiredo, C., Peixoto, R., Braz, M. H., & Chatterjee, S. (2008). Necrotic neurons enhance microglial neurotoxicity through induction of glutaminase by a MyD88-dependent pathway. Journal of Neuroinflammation, 5, 43.

    PubMed Central  PubMed  Google Scholar 

  • Parvathenani, L. K., Tertyshnikova, S., Greco, C. R., Roberts, S. B., Robertson, B., & Posmantur, R. (2003). P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. Journal of Biological Chemistry, 278(15), 13309–13317.

    CAS  PubMed  Google Scholar 

  • Perry, V. H., Cunningham, C., & Boche, D. (2002). Atypical inflammation in the central nervous system in prion disease. Current Opinion in Neurology, 15(3), 349–354.

    PubMed  Google Scholar 

  • Perry, V. H., & Gordon, S. (1987). Modulation of CD4 antigen on macrophages and microglia in rat brain. The Journal of Experimental Medicine, 166(4), 1138–1143.

    CAS  PubMed  Google Scholar 

  • Pinteaux-Jones, F., Sevastou, I. G., Fry, V. A., Heales, S., Baker, D., & Pocock, J. M. (2008). Myelin-induced microglial neurotoxicity can be controlled by microglial metabotropic glutamate receptors. Journal of Neurochemistry, 106(1), 442–454.

    CAS  PubMed  Google Scholar 

  • Pocock, J. M., & Kettenmann, H. (2007). Neurotransmitter receptors on microglia. Trends in Neurosciences, 30(10), 527–535.

    CAS  PubMed  Google Scholar 

  • Ponomarev, E. D., Shriver, L. P., & Dittel, B. N. (2006). CD40 expression by microglial cells is required for their completion of a two-step activation process during central nervous system autoimmune inflammation. Journal of Immunology, 176(3), 1402–1410.

    CAS  Google Scholar 

  • Qin, L., Liu, Y., Wang, T., Wei, S. J., Block, M. L., Wilson, B., Liu, B., & Hong, J. S. (2004). NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. Journal of Biological Chemistry, 279(2), 1415–1421.

    CAS  PubMed  Google Scholar 

  • Ravichandran, K. S. (2003). “Recruitment signals” from apoptotic cells: Invitation to a quiet meal. Cell, 113(7), 817–820.

    CAS  PubMed  Google Scholar 

  • Reed-Geaghan, E. G., Savage, J. C., Hise, A. G., & Landreth, G. E. (2009). CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. Journal of Neuroscience, 29(38), 11982–11992.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rymo, S. F., Gerhardt, H., Wolfhagen Sand, F., Lang, R., Uv, A., & Betsholtz, C. (2011). A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures. PloS One, 6(1), e15846.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saijo, K., Winner, B., Carson, C. T., Collier, J. G., Boyer, L., Rosenfeld, M. G., Gage, F. H., & Glass, C. K. (2009). A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell, 137(1), 47–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanders, V. M., & Jones, K. J. (2006). Role of immunity in recovery from a peripheral nerve injury. Journal of Neuroimmune Pharmacology, 1(1), 11–19.

    PubMed  Google Scholar 

  • Savill, J., Dransfield, I., Gregory, C., & Haslett, C. (2002). A blast from the past: Clearance of apoptotic cells regulates immune responses. Nature Reviews Immunology, 2(12), 965–975.

    CAS  PubMed  Google Scholar 

  • Savill, J., Gregory, C., & Haslett, C. (2003). Cell biology. Eat me or die. Science, 302(5650), 1516–1517.

    CAS  PubMed  Google Scholar 

  • Schilling, T., & Eder, C. (2010). Stimulus-dependent requirement of ion channels for microglial NADPH oxidase-mediated production of reactive oxygen species. Journal of Neuroimmunology, 225(1–2), 190–194.

    CAS  PubMed  Google Scholar 

  • Schmidt, A. M., Vianna, M., Gerlach, M., Brett, J., Ryan, J., Kao, J., Esposito, C., Hegarty, H., Hurley, W., Clauss, M., Wang, F., Pan, Y.-C. E., Tsang, T. C., & Stern, D. (1992). Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. Journal of Biological Chemistry, 267(21), 14987–14997.

    CAS  PubMed  Google Scholar 

  • Schmid, C. D., Sautkulis, L. N., Danielson, P. E., Cooper, J., Hasel, K. W., Hilbush, B. S., Sutcliffe, J. G., & Carson, M. J. (2002). Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia. Journal of Neurochemistry, 83(6), 1309–1320.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwartz, M., & Kipnis, J. (2011). A conceptual revolution in the relationships between the brain and immunity. Brain, Behavior, and Immunity, 25(5), 817–819.

    PubMed Central  PubMed  Google Scholar 

  • Shaked, I., Porat, Z., Gersner, R., Kipnis, J., & Schwartz, M. (2004). Early activation of microglia as antigen-presenting cells correlates with T cell-mediated protection and repair of the injured central nervous system. Journal of Neuroimmunology, 146(1–2), 84–93.

    CAS  PubMed  Google Scholar 

  • Shaked, I., Tchoresh, D., Gersner, R., Meiri, G., Mordechai, S., Xiao, X., Hart, R. P., & Schwartz, M. (2005). Protective autoimmunity: Interferon-gamma enables microglia to remove glutamate without evoking inflammatory mediators. Journal of Neurochemistry, 92(5), 997–1009.

    CAS  PubMed  Google Scholar 

  • Sheng, J. G., Mrak, R. E., & Griffin, W. S. (1998). Enlarged and phagocytic, but not primed, interleukin-1 alpha-immunoreactive microglia increase with age in normal human brain. Acta Neuropathologica, 95(3), 229–234.

    CAS  PubMed  Google Scholar 

  • Siffrin, V., Brandt, A. U., Herz, J., & Zipp, F. (2007). New insights into adaptive immunity in chronic neuroinflammation. Advances in Immunology, 96, 1–40.

    CAS  PubMed  Google Scholar 

  • Simard, A. R., Soulet, D., Gowing, G., Julien, J. P., & Rivest, S. (2006). Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron, 49(4), 489–502.

    CAS  PubMed  Google Scholar 

  • Siskova, Z., Page, A., O’Connor, V., & Perry, V. H. (2009). Degenerating synaptic boutons in prion disease: Microglia activation without synaptic stripping. American Journal of Pathology, 175(4), 1610–1621.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stadelmann, C. (2011). Multiple sclerosis as a neurodegenerative disease: Pathology, mechanisms and therapeutic implications. Current Opinion in Neurology, 24(3), 224–229.

    CAS  PubMed  Google Scholar 

  • Stout, R. D., Jiang, C., Matta, B., Tietzel, I., Watkins, S. K., & Suttles, J. (2005). Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. Journal of Immunology, 175(1), 342–349.

    CAS  Google Scholar 

  • Streit, W. J. (2006). Microglial senescence: Does the brain’s immune system have an expiration date? Trends in Neurosciences, 29(9), 506–510.

    CAS  PubMed  Google Scholar 

  • Streit, W. J., Conde, J. R., Fendrick, S. E., Flanary, B. E., & Mariani, C. L. (2005). Role of microglia in the central nervous system’s immune response. Neurological Research, 27(7), 685–691.

    PubMed  Google Scholar 

  • Streit, W. J., & Xue, Q. S. (2012). Alzheimer’s disease, neuroprotection, and CNS immunosenescence. Frontiers in Pharmacology, 3, 138.

    PubMed Central  PubMed  Google Scholar 

  • Sumimoto, H., Ueno, N., Yamasaki, T., Taura, M., & Takeya, R. (2004). Molecular mechanism underlying activation of superoxide-producing NADPH oxidases: Roles for their regulatory proteins. Japanese Journal of Infectious Disease, 57(5), S24–S25.

    Google Scholar 

  • Syapin, P. J. (2008). Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. British Journal of Pharmacology, 155(5), 623–640.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi, K., Rochford, C. D., & Neumann, H. (2005). Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. The Journal of Experimental Medicine, 201(4), 647–657.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takeuchi, O., & Akira, S. (2001). Toll-like receptors; their physiological role and signal transduction system. International Immunopharmacology, 1(4), 625–635.

    CAS  PubMed  Google Scholar 

  • Tartaglia, L. A., & Goeddel, D. V. (1992). Two TNF receptors. Immunology Today, 13(5), 151–153.

    CAS  PubMed  Google Scholar 

  • Taupin, P. (2010). A dual activity of ROS and oxidative stress on adult neurogenesis and Alzheimer’s disease. Central Nervous System Agents in Medicinal Chemistry, 10(1), 16–21.

    CAS  PubMed  Google Scholar 

  • Tichauer, J., Saud, K., & von Bernhardi, R. (2007). Modulation by astrocytes of microglial cell-mediated neuroinflammation: Effect on the activation of microglial signaling pathways. Neuroimmunomodulation, 14(3–4), 168–174.

    CAS  PubMed  Google Scholar 

  • Tieu, K., Ischiropoulos, H., & Przedborski, S. (2003). Nitric oxide and reactive oxygen species in Parkinson’s disease. IUBMB Life, 55(6), 329–335.

    CAS  PubMed  Google Scholar 

  • Visintin, A., Mazzoni, A., Spitzer, J. H., Wyllie, D. H., Dower, S. K., & Segal, D. M. (2001). Regulation of Toll-like receptors in human monocytes and dendritic cells. Journal of Immunology, 166(1), 249–255.

    CAS  Google Scholar 

  • Walter, S., Letiembre, M., Liu, Y., Heine, H., Penke, B., Hao, W., Bode, B., Manietta, N., Walter, J., Schulz-Schuffer, W., & Fassbender, K. (2007). Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cellular Physiology and Biochemistry, 20(6), 947–956.

    CAS  PubMed  Google Scholar 

  • Westerman, M. A., Cooper-Blacketer, D., Mariash, A., Kotilinek, L., Kawarabayashi, T., Younkin, L. H., Carlson, G. A., Younkin, S. G., & Ashe, K. H. (2002). The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer’s disease. Journal of Neuroscience, 22(5), 1858–1867.

    CAS  PubMed  Google Scholar 

  • Wyss-Coray, T., Yan, F., Lin, A. H., Lambris, J. D., Alexander, J. J., Quigg, R. J., & Masliah, E. (2002). Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice. Proceedings of the National Academy of Sciences of the United States of America, 99(16), 10837–10842.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang, L., Lindholm, K., Konishi, Y., Li, R., & Shen, Y. (2002). Target depletion of distinct tumor necrosis factor receptor subtypes reveals hippocampal neuron death and survival through different signal transduction pathways. Journal of Neuroscience, 22(8), 3025–3032.

    CAS  PubMed  Google Scholar 

  • Yong, V. W., & Rivest, S. (2009). Taking advantage of the systemic immune system to cure brain diseases. Neuron, 64(1), 55–60.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Division of Intramural Research and the National Toxicology Program Laboratory, National Institute of Environmental Health Sciences (NIEHS), and National Institutes of Health (NIH). Statements, opinions, or conclusions contained therein do not necessarily represent those of NIEHS, NIH, or the United States government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Jean Harry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Harry, G.J., McPherson, C.A. (2014). Microglia: Neuroprotective and Neurodestructive Properties. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_55

Download citation

Publish with us

Policies and ethics