Skip to main content

Neurotrophin Signaling in Cancer

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Neurotrophins are growth factors that play a major role in neuron survival, proliferation, differentiation, and apoptosis. There are four neurotrophins, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5) which function by interacting with Trk (tropomyosin-related kinase) tyrosine kinase receptors, TrkA, TrkB, TrkC, or p75NTR receptor. Binding of neurotrophins with their cognate Trk receptors activates Ras/mitogen-activated protein kinase (MAPK) pathway, Phosphatidylinositol-3 kinase (PI3K)/Akt pathway, and Phospholipase C-γ (PLC-γ) pathway which are involved in cell survival, proliferation, differentiation, and apoptosis. Activation of the pan-neurotrophin receptor, p75NTR, leads to JNK pathway activation that induces cell apoptosis or activates a NF-κB cell survival pathway. Although neurotrophins were originally found to act on neurons, studies indicate they also have activities in nonneuronal cells. Trk activation or mutation occurs in tumors of neuronal origin, like neuroblastoma and medulloblastoma, as well as in nonneuronal tumors like thyroid, breast, lung, and prostate cancer. In neuroblastoma, expression of TrkA occurs in tumors that are biologically favorable and prone to spontaneous regression or differentiation which may be due to the absence or presence of its ligand (NGF) in the microenvironment. Expression of TrkB and/or its ligand BDNF in neuroblastoma tumors is often associated with chemo-resistance, metastasis, and a poor prognosis. In breast cancer, overexpression of TrkA promotes cell growth, migration and invasion in vitro or tumor growth, metastasis, and angiogenesis. Based on these studies, small molecule inhibitors targeting Trk receptors or downstream targets in their signaling pathways have been developed. The Trk selective inhibitor CEP-701 (Cephalon) or the Akt inhibitor perifosine are both in phase 1 and 2 clinical trials. The effects of these small molecule inhibitors, alone or in combination with chemotherapeutic drugs, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BDNF:

Brain-derived neurotrophic factor

ERK:

Extracellular signal-regulated kinase

Grb2:

Growth factor receptor-bound protein 2

HGF:

Hepatocyte growth factor

JNK:

c-Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinases

MEK:

MAP kinase kinase

mTOR:

Mammalian target of rapamycin

NGF:

Nerve growth factor

NSCLC:

Non-small cell lung cancer

NT-3:

Neurotrophin 3

NT-4/5:

Neurotrophin 4/5

P75NTR:

P75 neurotrophin receptor

PI3K:

Phosphatidylinositol-3 kinase

PLC-γ:

Phospholipase C-γ

PTB domain:

Phosphotyrosine-binding domain

SCLC:

Small cell lung cancer

Shc:

Src-homology collagen protein

SOS:

Son of sevenless

Trk:

Tropomyosin-related kinase

References

  • Acheson, A., Conover, J. C., Fandl, J. P., DeChiara, T. M., Russell, M., Thadani, A., Squinto, S. P., Yancopoulos, G. D., & Lindsay, R. M. (1995). A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature, 374, 450–453.

    Article  CAS  PubMed  Google Scholar 

  • Adriaenssens, E., Vanhecke, E., Saule, P., Mougel, A., Page, A., Romon, R., Nurcombe, V., Le Bourhis, X., & Hondermarck, H. (2008). Nerve growth factor is a potential therapeutic target in breast cancer. Cancer Research, 68, 346–351.

    Article  CAS  PubMed  Google Scholar 

  • Akil, H., Perraud, A., Melin, C., Jauberteau, M. O., & Mathonnet, M. (2011). Fine-tuning roles of endogenous brain-derived neurotrophic factor, TrkB and sortilin in colorectal cancer cell survival. PLoS One, 6, e25097.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arevalo, J. C., & Wu, S. H. (2006). Neurotrophin signaling: Many exciting surprises! Cellular and Molecular Life Sciences, 63, 1523–1537.

    Article  CAS  PubMed  Google Scholar 

  • Benedetti, M., Levi, A., & Chao, M. V. (1993). Differential expression of nerve growth factor receptors leads to altered binding affinity and neurotrophin responsiveness. Proceedings of the National Academy of Sciences of the United States of America, 90, 7859–7863.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Binder, D. K., & Scharfman, H. E. (2004). Brain-derived neurotrophic factor. Growth Factors, 22, 123–131.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blasco-Gutierrez, M. J., Jose-Crespo, I. J., Zozaya-Alvarez, E., Ramos-Sanchez, R., & Garcia-Atares, N. (2007). TrkC: A new predictive marker in breast cancer? Cancer Investigation, 25, 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Bouzas-Rodriguez, J., Cabrera, J. R., Delloye-Bourgeois, C., Ichim, G., Delcros, J. G., Raquin, M. A., Rousseau, R., Combaret, V., Benard, J., Tauszig-Delamasure, S., et al. (2010). Neurotrophin-3 production promotes human neuroblastoma cell survival by inhibiting TrkC-induced apoptosis. Journal of Clinical Investigation, 120, 850–858.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brodeur, G. M., Minturn, J. E., Ho, R., Simpson, A. M., Iyer, R., Varela, C. R., Light, J. E., Kolla, V., & Evans, A. E. (2009). Trk receptor expression and inhibition in neuroblastomas. Clinical Cancer Research, 15, 3244–3250.

    Article  CAS  PubMed  Google Scholar 

  • Brunetto de Farias, C., Rosemberg, D. B., Heinen, T. E., Koehler-Santos, P., Abujamra, A. L., Kapczinski, F., Brunetto, A. L., Ashton-Prolla, P., Meurer, L., Reis Bogo, M., et al. (2010). BDNF/TrkB content and interaction with gastrin-releasing peptide receptor blockade in colorectal cancer. Oncology, 79, 430–439.

    Article  CAS  PubMed  Google Scholar 

  • Butte, M. J. (2001). Neurotrophic factor structures reveal clues to evolution, binding, specificity, and receptor activation. Cellular and Molecular Life Sciences, 58, 1003–1013.

    Article  CAS  PubMed  Google Scholar 

  • Camoratto, A. M., Jani, J. P., Angeles, T. S., Maroney, A. C., Sanders, C. Y., Murakata, C., Neff, N. T., Vaught, J. L., Isaacs, J. T., & Dionne, C. A. (1997). CEP-751 inhibits TRK receptor tyrosine kinase activity in vitro exhibits anti-tumor activity. International Journal of Cancer, 72, 673–679.

    Article  CAS  Google Scholar 

  • Chan, E., Mulkerin, D., Rothenberg, M., Holen, K. D., Lockhart, A. C., Thomas, J., & Berlin, J. (2008). A phase I trial of CEP-701 + gemcitabine in patients with advanced adenocarcinoma of the pancreas. Investigational New Drugs, 26, 241–247.

    Article  CAS  PubMed  Google Scholar 

  • Chao, M. V., Bothwell, M. A., Ross, A. H., Koprowski, H., Lanahan, A. A., Buck, C. R., & Sehgal, A. (1986). Gene transfer and molecular cloning of the human NGF receptor. Science, 232, 518–521.

    Article  CAS  PubMed  Google Scholar 

  • Clary, D. O., & Reichardt, L. F. (1994). An alternatively spliced form of the nerve growth factor receptor TrkA confers an enhanced response to neurotrophin 3. Proceedings of the National Academy of Sciences of the United States of America, 91, 11133–11137.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davidson, B., Reich, R., Lazarovici, P., Ann Florenes, V., Nielsen, S., & Nesland, J. M. (2004). Altered expression and activation of the nerve growth factor receptors TrkA and p75 provide the first evidence of tumor progression to effusion in breast carcinoma. Breast Cancer Research and Treatment, 83, 119–128.

    Article  CAS  PubMed  Google Scholar 

  • Descamps, S., Toillon, R. A., Adriaenssens, E., Pawlowski, V., Cool, S. M., Nurcombe, V., Le Bourhis, X., Boilly, B., Peyrat, J. P., & Hondermarck, H. (2001). Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways. Journal of Biological Chemistry, 276, 17864–17870.

    Article  CAS  PubMed  Google Scholar 

  • Djakiew, D. (2000). Dysregulated expression of growth factors and their receptors in the development of prostate cancer. Prostate, 42, 150–160.

    Article  CAS  PubMed  Google Scholar 

  • Eggert, A., Grotzer, M. A., Ikegaki, N., Liu, X. G., Evans, A. E., & Brodeur, G. M. (2002). Expression of the neurotrophin receptor TrkA down-regulates expression and function of angiogenic stimulators in SH-SY5Y neuroblastoma cells. Cancer Research, 62, 1802–1808.

    CAS  PubMed  Google Scholar 

  • Evans, A. E., Kisselbach, K. D., Yamashiro, D. J., Ikegaki, N., Camoratto, A. M., Dionne, C. A., & Brodeur, G. M. (1999). Antitumor activity of CEP-751 (KT-6587) on human neuroblastoma and medulloblastoma xenografts. Clinical Cancer Research, 5, 3594–3602.

    CAS  PubMed  Google Scholar 

  • Evans, A. E., Kisselbach, K. D., Liu, X., Eggert, A., Ikegaki, N., Camoratto, A. M., Dionne, C., & Brodeur, G. M. (2001). Effect of CEP-751 (KT-6587) on neuroblastoma xenografts expressing TrkB. Medical and Pediatric Oncology, 36, 181–184.

    Article  CAS  PubMed  Google Scholar 

  • Geiger, T. R., Song, J. Y., Rosado, A., & Peeper, D. S. (2011). Functional characterization of human cancer-derived TRKB mutations. PLoS One, 6, e16871.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • George, D. J., Dionne, C. A., Jani, J., Angeles, T., Murakata, C., Lamb, J., & Isaacs, J. T. (1999). Sustained in vivo regression of Dunning H rat prostate cancers treated with combinations of androgen ablation and Trk tyrosine kinase inhibitors, CEP-751 (KT-6587) or CEP-701 (KT-5555). Cancer Research, 59, 2395–2401.

    CAS  PubMed  Google Scholar 

  • Gills, J. J., & Dennis, P. A. (2009). Perifosine: Update on a novel Akt inhibitor. Current Oncology Reports, 11, 102–110.

    Article  CAS  PubMed  Google Scholar 

  • Gotz, R., Koster, R., Winkler, C., Raulf, F., Lottspeich, F., Schartl, M., & Thoenen, H. (1994). Neurotrophin-6 is a new member of the nerve growth factor family. Nature, 372, 266–269.

    Article  CAS  PubMed  Google Scholar 

  • Harada, T., Yatabe, Y., Takeshita, M., Koga, T., Yano, T., Wang, Y., & Giaccone, G. (2011). Role and relevance of TrkB mutations and expression in non-small cell lung cancer. Clinical Cancer Research, 17, 2638–2645.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harel, L., Costa, B., Tcherpakov, M., Zapatka, M., Oberthuer, A., Hansford, L. M., Vojvodic, M., Levy, Z., Chen, Z. Y., Lee, F. S., et al. (2009). CCM2 mediates death signaling by the TrkA receptor tyrosine kinase. Neuron, 63, 585–591.

    Article  CAS  PubMed  Google Scholar 

  • Hempstead, B. L., Martin-Zanca, D., Kaplan, D. R., Parada, L. F., & Chao, M. V. (1991). High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature, 350, 678–683.

    Article  CAS  PubMed  Google Scholar 

  • Jaboin, J., Kim, C. J., Kaplan, D. R., & Thiele, C. J. (2002). Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3’-kinase pathway. Cancer Research, 62, 6756–6763.

    CAS  PubMed  Google Scholar 

  • Kaplan, D. R., & Miller, F. D. (2000). Neurotrophin signal transduction in the nervous system. Current Opinion in Neurobiology, 10, 381–391.

    Article  CAS  PubMed  Google Scholar 

  • Karin, M., & Lin, A. (2002). NF-kappaB at the crossroads of life and death. Nature Immunology, 3, 221–227.

    Article  CAS  PubMed  Google Scholar 

  • Klein, R., Parada, L. F., Coulier, F., & Barbacid, M. (1989). trkB, a novel tyrosine protein kinase receptor expressed during mouse neural development. EMBO Journal, 8, 3701–3709.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein, R., Nanduri, V., Jing, S. A., Lamballe, F., Tapley, P., Bryant, S., Cordon-Cardo, C., Jones, K. R., Reichardt, L. F., & Barbacid, M. (1991). The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell, 66, 395–403.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koizumi, H., Morita, M., Mikami, S., Shibayama, E., & Uchikoshi, T. (1998). Immunohistochemical analysis of TrkA neurotrophin receptor expression in human non-neuronal carcinomas. Pathology International, 48, 93–101.

    Article  CAS  PubMed  Google Scholar 

  • Krygier, S., & Djakiew, D. (2002). Neurotrophin receptor p75(NTR) suppresses growth and nerve growth factor-mediated metastasis of human prostate cancer cells. International Journal of Cancer, 98, 1–7.

    Article  CAS  Google Scholar 

  • Lagadec, C., Meignan, S., Adriaenssens, E., Foveau, B., Vanhecke, E., Romon, R., Toillon, R. A., Oxombre, B., Hondermarck, H., & Le Bourhis, X. (2009). TrkA overexpression enhances growth and metastasis of breast cancer cells. Oncogene, 28, 1960–1970.

    Article  CAS  PubMed  Google Scholar 

  • Lamballe, F., Klein, R., & Barbacid, M. (1991). trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell, 66, 967–979.

    Article  CAS  PubMed  Google Scholar 

  • Lee, R., Kermani, P., Teng, K. K., & Hempstead, B. L. (2001). Regulation of cell survival by secreted proneurotrophins. Science, 294, 1945–1948.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Jaboin, J., Dennis, P. A., & Thiele, C. J. (2005). Genetic and pharmacologic identification of Akt as a mediator of brain-derived neurotrophic factor/TrkB rescue of neuroblastoma cells from chemotherapy-induced cell death. Cancer Research, 65, 2070–2075.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Tan, F., & Thiele, C. J. (2007a). Inactivation of glycogen synthase kinase-3beta contributes to brain-derived neutrophic factor/TrkB-induced resistance to chemotherapy in neuroblastoma cells. Molecular Cancer Therapeutics, 6, 3113–3121.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Zhang, J., Liu, Z., Woo, C. W., & Thiele, C. J. (2007b). Downregulation of Bim by brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from paclitaxel but not etoposide or cisplatin-induced cell death. Cell Death and Differentiation, 14, 318–326.

    Article  PubMed  Google Scholar 

  • Li, Z., Oh, D. Y., Nakamura, K., & Thiele, C. J. (2011). Perifosine-induced inhibition of Akt attenuates brain-derived neurotrophic factor/TrkB-induced chemoresistance in neuroblastoma in vivo. Cancer, 117, 5412–5422.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lucarelli, E., Kaplan, D., & Thiele, C. J. (1997). Activation of trk-A but not trk-B signal transduction pathway inhibits growth of neuroblastoma cells. European Journal of Cancer, 33, 2068–2070.

    Article  CAS  PubMed  Google Scholar 

  • MacGrogan, D., Saint-Andre, J. P., & Dicou, E. (1992). Expression of nerve growth factor and nerve growth factor receptor genes in human tissues and in prostatic adenocarcinoma cell lines. Journal of Neurochemistry, 59, 1381–1391.

    Article  CAS  PubMed  Google Scholar 

  • Mahadeo, D., Kaplan, L., Chao, M. V., & Hempstead, B. L. (1994). High affinity nerve growth factor binding displays a faster rate of association than p140trk binding. Implications for multi-subunit polypeptide receptors. J Biol Chem, 269, 6884–6891.

    CAS  PubMed  Google Scholar 

  • Marshall, J. L., Kindler, H., Deeken, J., Bhargava, P., Vogelzang, N. J., Rizvi, N., Luhtala, T., Boylan, S., Dordal, M., Robertson, P., et al. (2005). Phase I trial of orally administered CEP-701, a novel neurotrophin receptor-linked tyrosine kinase inhibitor. Investigational New Drugs, 23, 31–37.

    Article  CAS  PubMed  Google Scholar 

  • Miknyoczki, S. J., Dionne, C. A., Klein-Szanto, A. J., & Ruggeri, B. A. (1999). The novel Trk receptor tyrosine kinase inhibitor CEP-701 (KT-5555) exhibits antitumor efficacy against human pancreatic carcinoma (Panc1) xenograft growth and in vivo invasiveness. Annals of the New York Academy of Sciences, 880, 252–262.

    Article  CAS  PubMed  Google Scholar 

  • Minturn, J. E., Evans, A. E., Villablanca, J. G., Yanik, G. A., Park, J. R., Shusterman, S., Groshen, S., Hellriegel, E. T., Bensen-Kennedy, D., Matthay, K. K., et al. (2011). Phase I trial of lestaurtinib for children with refractory neuroblastoma: A new approaches to neuroblastoma therapy consortium study. Cancer Chemotherapy and Pharmacology, 68, 1057–1065.

    Article  CAS  PubMed  Google Scholar 

  • Muragaki, Y., Chou, T. T., Kaplan, D. R., Trojanowski, J. Q., & Lee, V. M. (1997). Nerve growth factor induces apoptosis in human medulloblastoma cell lines that express TrkA receptors. Journal of Neuroscience, 17, 530–542.

    CAS  PubMed  Google Scholar 

  • Nakagawara, A. (1998a). Molecular basis of spontaneous regression of neuroblastoma: Role of neurotrophic signals and genetic abnormalities. Human Cell, 11, 115–124.

    CAS  PubMed  Google Scholar 

  • Nakagawara, A. (1998b). The NGF story and neuroblastoma. Medical and Pediatric Oncology, 31, 113–115.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawara, A., Arima-Nakagawara, M., Scavarda, N. J., Azar, C. G., Cantor, A. B., & Brodeur, G. M. (1993). Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. New England Journal of Medicine, 328, 847–854.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawara, A., Azar, C. G., Scavarda, N. J., & Brodeur, G. M. (1994). Expression and function of TRK-B and BDNF in human neuroblastomas. Molecular Cell Biology, 14, 759–767.

    CAS  Google Scholar 

  • Nakamura, K., Martin, K. C., Jackson, J. K., Beppu, K., Woo, C. W., & Thiele, C. J. (2006). Brain-derived neurotrophic factor activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1alpha in neuroblastoma cells. Cancer Research, 66, 4249–4255.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, K., Tan, F., Li, Z., & Thiele, C. J. (2011). NGF activation of TrkA induces vascular endothelial growth factor expression via induction of hypoxia-inducible factor-1alpha. Molecular and Cellular Neuroscience, 46, 498–506.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nikoletopoulou, V., Lickert, H., Frade, J. M., Rencurel, C., Giallonardo, P., Zhang, L., Bibel, M., & Barde, Y. A. (2010). Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature, 467, 59–63.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, A. S., Fainzilber, M., Falck, P., & Ibanez, C. F. (1998). Neurotrophin-7: A novel member of the neurotrophin family from the zebrafish. FEBS Letters, 424, 285–290.

    Article  CAS  PubMed  Google Scholar 

  • Nykjaer, A., Lee, R., Teng, K. K., Jansen, P., Madsen, P., Nielsen, M. S., Jacobsen, C., Kliemannel, M., Schwarz, E., Willnow, T. E., et al. (2004). Sortilin is essential for proNGF-induced neuronal cell death. Nature, 427, 843–848.

    Article  CAS  PubMed  Google Scholar 

  • Pahl, H. L. (1999). Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 18, 6853–6866.

    Article  CAS  PubMed  Google Scholar 

  • Patani, N., Jiang, W. G., & Mokbel, K. (2011). Brain-derived neurotrophic factor expression predicts adverse pathological & clinical outcomes in human breast cancer. Cancer Cell International, 11, 23.

    Article  PubMed Central  PubMed  Google Scholar 

  • Radeke, M. J., Misko, T. P., Hsu, C., Herzenberg, L. A., & Shooter, E. M. (1987). Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature, 325, 593–597.

    Article  CAS  PubMed  Google Scholar 

  • Reichardt, L. F. (2006). Neurotrophin-regulated signalling pathways. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 361, 1545–1564.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ricci, A., Greco, S., Mariotta, S., Felici, L., Bronzetti, E., Cavazzana, A., Cardillo, G., Amenta, F., Bisetti, A., & Barbolini, G. (2001). Neurotrophins and neurotrophin receptors in human lung cancer. American Journal of Respiratory Cell and Molecular Biology, 25, 439–446.

    Article  CAS  PubMed  Google Scholar 

  • Ryden, M., Sehgal, R., Dominici, C., Schilling, F. H., Ibanez, C. F., & Kogner, P. (1996). Expression of mRNA for the neurotrophin receptor trkC in neuroblastomas with favourable tumour stage and good prognosis. British Journal of Cancer, 74, 773–779.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scala, S., Wosikowski, K., Giannakakou, P., Valle, P., Biedler, J. L., Spengler, B. A., Lucarelli, E., Bates, S. E., & Thiele, C. J. (1996). Brain-derived neurotrophic factor protects neuroblastoma cells from vinblastine toxicity. Cancer Research, 56, 3737–3742.

    CAS  PubMed  Google Scholar 

  • Segal, R. A., Goumnerova, L. C., Kwon, Y. K., Stiles, C. D., & Pomeroy, S. L. (1994). Expression of the neurotrophin receptor TrkC is linked to a favorable outcome in medulloblastoma. Proceedings of the National Academy of Sciences of the United States of America, 91, 12867–12871.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Snider, W. D. (1994). Functions of the neurotrophins during nervous system development: What the knockouts are teaching us. Cell, 77, 627–638.

    Article  PubMed  Google Scholar 

  • Sofroniew, M. V., Howe, C. L., & Mobley, W. C. (2001). Nerve growth factor signaling, neuroprotection, and neural repair. Annual Review of Neuroscience, 24, 1217–1281.

    Article  CAS  PubMed  Google Scholar 

  • Straub, J. A., Sholler, G. L., & Nishi, R. (2007). Embryonic sympathoblasts transiently express TrkB in vivo and proliferate in response to brain-derived neurotrophic factor in vitro. BMC Developmental Biology, 7, 10.

    Article  PubMed Central  PubMed  Google Scholar 

  • Strohmaier, C., Carter, B. D., Urfer, R., Barde, Y. A., & Dechant, G. (1996). A splice variant of the neurotrophin receptor trkB with increased specificity for brain-derived neurotrophic factor. EMBO Journal, 15, 3332–3337.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki, T., Bogenmann, E., Shimada, H., Stram, D., & Seeger, R. C. (1993). Lack of high-affinity nerve growth factor receptors in aggressive neuroblastomas. Journal of the National Cancer Institute, 85, 377–384.

    Article  CAS  PubMed  Google Scholar 

  • Svensson, T., Ryden, M., Schilling, F. H., Dominici, C., Sehgal, R., Ibanez, C. F., & Kogner, P. (1997). Coexpression of mRNA for the full-length neurotrophin receptor trk-C and trk-A in favourable neuroblastoma. European Journal of Cancer, 33, 2058–2063.

    Article  CAS  PubMed  Google Scholar 

  • Tacconelli, A., Farina, A. R., Cappabianca, L., Desantis, G., Tessitore, A., Vetuschi, A., Sferra, R., Rucci, N., Argenti, B., Screpanti, I., et al. (2004). TrkA alternative splicing: A regulated tumor-promoting switch in human neuroblastoma. Cancer Cell, 6, 347–360.

    Article  CAS  PubMed  Google Scholar 

  • Tauszig-Delamasure, S., Yu, L. Y., Cabrera, J. R., Bouzas-Rodriguez, J., Mermet-Bouvier, C., Guix, C., Bordeaux, M. C., Arumae, U., & Mehlen, P. (2007). The TrkC receptor induces apoptosis when the dependence receptor notion meets the neurotrophin paradigm. Proceedings of the National Academy of Sciences of the United States of America, 104, 13361–13366.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teng, H. K., Teng, K. K., Lee, R., Wright, S., Tevar, S., Almeida, R. D., Kermani, P., Torkin, R., Chen, Z. Y., Lee, F. S., et al. (2005). ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. Journal of Neuroscience, 25, 5455–5463.

    Article  CAS  PubMed  Google Scholar 

  • Thiele, C. J., Li, Z., & McKee, A. E. (2009). On Trk–the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clinical Cancer Research, 15, 5962–5967.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Valenzuela, D. M., Maisonpierre, P. C., Glass, D. J., Rojas, E., Nunez, L., Kong, Y., Gies, D. R., Stitt, T. N., Ip, N. Y., & Yancopoulos, G. D. (1993). Alternative forms of rat TrkC with different functional capabilities. Neuron, 10, 963–974.

    Article  CAS  PubMed  Google Scholar 

  • Vanhecke, E., Adriaenssens, E., Verbeke, S., Meignan, S., Germain, E., Berteaux, N., Nurcombe, V., Le Bourhis, X., & Hondermarck, H. (2011). Brain-derived neurotrophic factor and neurotrophin-4/5 are expressed in breast cancer and can be targeted to inhibit tumor cell survival. Clinical Cancer Research, 17, 1741–1752.

    Article  CAS  PubMed  Google Scholar 

  • Wang, T., Lamb, M. L., Scott, D. A., Wang, H., Block, M. H., Lyne, P. D., Lee, J. W., Davies, A. M., Zhang, H. J., Zhu, Y., et al. (2008). Identification of 4-aminopyrazolylpyrimidines as potent inhibitors of Trk kinases. Journal of Medicinal Chemistry, 51, 4672–4684.

    Article  CAS  PubMed  Google Scholar 

  • Wiesmann, C., & de Vos, A. M. (2001). Nerve growth factor: Structure and function. Cellular and Molecular Life Sciences, 58, 748–759.

    Article  CAS  PubMed  Google Scholar 

  • Yamashiro, D. J., Nakagawara, A., Ikegaki, N., Liu, X. G., & Brodeur, G. M. (1996). Expression of TrkC in favorable human neuroblastomas. Oncogene, 12, 37–41.

    CAS  PubMed  Google Scholar 

  • Yan, H., & Chao, M. V. (1991). Disruption of cysteine-rich repeats of the p75 nerve growth factor receptor leads to loss of ligand binding. Journal of Biological Chemistry, 266, 12099–12104.

    CAS  PubMed  Google Scholar 

  • Yu, Y., Zhang, S., Wang, X., Yang, Z., & Ou, G. (2010). Overexpression of TrkB promotes the progression of colon cancer. APMIS, 118, 188–195.

    Article  CAS  PubMed  Google Scholar 

  • Zage, P. E., Graham, T. C., Zeng, L., Fang, W., Pien, C., Thress, K., Omer, C., Brown, J. L., & Zweidler-McKay, P. A. (2011). The selective Trk inhibitor AZ623 inhibits brain-derived neurotrophic factor-mediated neuroblastoma cell proliferation and signaling and is synergistic with topotecan. Cancer, 117, 1321–1391.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S., Guo, D., Luo, W., Zhang, Q., Zhang, Y., Li, C., Lu, Y., Cui, Z., & Qiu, X. (2010). TrkB is highly expressed in NSCLC and mediates BDNF-induced the activation of Pyk2 signaling and the invasion of A549 cells. BMC Cancer, 10, 43.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zupan, A. A., Osborne, P. A., Smith, C. E., Siegel, N. R., Leimgruber, R. M., & Johnson, E. M., Jr. (1989). Identification, purification, and characterization of truncated forms of the human nerve growth factor receptor. Journal of Biological Chemistry, 264, 11714–11720.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Tan, F., Thiele, C.J., Li, Z. (2014). Neurotrophin Signaling in Cancer. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_49

Download citation

Publish with us

Policies and ethics