Skip to main content

Neurotrophic Factors and Ethanol Neurotoxicity

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Neurotrophins are essential for the growth, differentiation, and survival of neurons during development and in the adult. Considerable data have accumulated over the last few decades implicating classical neurotrophins, Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF), and Neurotrophins 3 and 4 (NT-3/4), in many aspects of ethanol addiction, neurotoxicity, and repair after ethanol withdrawal. Genetic screens in Drosophila have identified novel neurotrophic factors and signaling intermediates involved in acute tolerance and pharmacodynamic adaptation to prolonged exposure in rodent. Ethanol modulates neurotrophic factor expression in vivo in a time- and region-specific fashion. Ethanol inhibits neurotrophin signaling acutely in vivo and in vitro in many brain regions. Conversely, acute and chronic ethanol exposure can upregulate neurotrophin-associated signaling pathways, particularly in brain nuclei associated with anxiety and addiction. Cell death induced by high concentrations of ethanol can be mitigated by exogenous neurotrophins indicating that neurotrophin induction in vivo may also be neuroprotective but ultimately fails over time. Neurotrophin levels in serum and plasma of patients with alcohol use disorders are dynamic and may serve as a surrogate for central nervous system levels. The kinetics suggest that increased levels during withdrawal may be involved in repair, but these analysis are complicated by genetic polymorphisms and the blood component analyzed, particularly with BDNF which is polymorphic in human populations and also produced by platelets. Neurotrophins are intricately involved in pharmacodynamic compensation with prolonged ethanol exposure, addiction-related plasticity, and neurotoxicity, but considerable work remains to be performed and replicated. Recent pharmacological advances targeting neurotrophins and neurotrophin signaling may ultimately be useful for treating ethanol-induced neurodegeneration and aberrant plasticity associated with addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alcohol dependence

ALK:

Anaplastic lymphoma kinase

ARND:

Alcohol-related neurodevelopmental disorders

BAC:

Blood alcohol concentration

BDNF:

Brain-derived neurotrophic factor

BFCN:

Basal forebrain cholinergic nuclei

cAMP:

3′-5′ cyclic adenosine monophosphate

ChAT:

Choline acyltransferase

E:

Embryonic

ERK:

Extracellular signal regulated kinase

FAS:

Fetal alcohol syndrome

GABA:

Gamma amino butyric acid

GDNF:

Glial-derived neurotrophic factor

GENSAT:

Genetic nervous system Atlas

ICV:

Intracerebroventricular

IGF:

Insulin-like growth factor

JNK:

Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinase

MSN:

Medium spiny neuron

NAc:

Nucleus accumbens

NGF:

Nerve growth factor

NMDA:

N-Methyl d-aspartate

NT:

Neurotrophin

PACAP:

Pituitary adenylate cyclase activating peptide

PI3K:

Phosphatidyl inositol 3-OH-kinase

PKA:

Protein kinase A

PKC:

Protein kinase C

PN:

Postnatal

RACK:

Receptor for activated C kinase

Trk:

Tropomyosin-related protein kinase

VTA:

Ventral tegmental area

References

  • Acquaah-Mensah, G. K., Leslie, S. W., & Kehrer, J. P. (2001). Acute exposure of cerebellar granule neurons to ethanol suppresses stress-activated protein kinase-1 and concomitantly induces AP-1. Toxicology and Applied Pharmacology, 175, 10–18.

    CAS  PubMed  Google Scholar 

  • Adams, B. A., Gray, S. L., Isaac, E. R., Bianco, A. C., Vidal-Puig, A. J., & Sherwood, N. M. (2008). Feeding and metabolism in mice lacking pituitary adenylate cyclase-activating polypeptide. Endocrinology, 149(4), 1571–1580.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aid, T., Kazantseva, A., Piirsoo, M., Palm, K., & Timmusk, T. (2007). Mouse and rat BDNF gene structure and expression revisited. Journal of Neuroscience Research, 85, 525–535.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akbarian, S., Rios, M., Liu, R. J., Gold, S. J., Fong, H. F., Zeiler, S., et al. (2002). Brain-derived neurotrophic factor is essential for opiate-induced plasticity of noradrenergic neurons. The Journal of Neuroscience, 22, 4153–4162.

    CAS  PubMed  Google Scholar 

  • Aloe, L., Bracci-Laudiero, L., & Tirassa, P. (1993). The effect of chronic ethanol intake on brain NGF level and on NGF-target tissues of adult mice. Drug and Alcohol Dependence, 31(2), 159–167.

    CAS  PubMed  Google Scholar 

  • Aloe, L., Tuveri, M. A., Guerra, G., Pinna, L., Tirassa, P., Micera, A., & Alleva, E. (1996). Changes in human plasma nerve growth factor level after chronic alcohol consumption and withdrawal. Alcohol Clinical and Experimental Research, 20(3), 462–465.

    CAS  Google Scholar 

  • Altar, C. A., Burton, L. E., Bennett, G. L., & Dugich-Djordjevic, M. (1991). Recombinant human nerve growth factor is biologically active and labels novel high-affinity binding sites in rat brain. Proceedings of the National Academy of Sciences of the United States of America, 88(1), 281–285.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Altar, C. A., Boylan, C. B., Jackson, C., Hershenson, S., Miller, J., Wiegand, S. J., et al. (1992). Brain-derived neurotrophic factor augments rotational behavior and nigrostriatal dopamine turnover in vivo. Proceedings of the National Academy of Sciences of the United States of America, 89, 11347–11351.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Altar, C. A., Criden, M. R., Lindsay, R. M., & DiStefano, P. S. (1993). Characterization and topography of high-affinity125I-neurotrophin-3 binding to mammalian brain. The Journal of Neuroscience, 13(2), 733–743.

    CAS  PubMed  Google Scholar 

  • Altar, C. A., Siuciak, J. A., Wright, P., Ip, N. Y., Lindsay, R. M., & Wiegand, S. J. (1994). In situ hybridization of trkB and trkC receptor mRNA in rat forebrain and association with high-affinity binding of [125I]BDNF, [125I]NT-4/5 and [125I]NT-3. The European Journal of Neuroscience, 6, 1389–1405.

    CAS  PubMed  Google Scholar 

  • Altar, C. A., Cai, N., Bliven, T., Juhasz, M., Conner, J. M., Acheson, A. L., et al. (1997). Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature, 389, 856–860.

    CAS  PubMed  Google Scholar 

  • Anderson, K. D., Alderson, R. F., Altar, C. A., DiStefano, P. S., Corcoran, T. L., Lindsay, R. M., & Wiegand, S. J. (1995). Differential distribution of exogenous BDNF, NGF, and NT-3 in the brain corresponds to the relative abundance and distribution of high-affinity and low-affinity neurotrophin receptors. The Journal of Comparative Neurology, 357(2), 296–317.

    CAS  PubMed  Google Scholar 

  • Angelucci, F., Cimino, M., Balduini, W., Piltillo, L., & Aloe, L. (1997). Prenatal exposure to ethanol causes differential effects in nerve growth factor and its receptor in the basal forebrain of preweaning and adult rats. Journal of Neural Transplantation & Plasticity, 6(2), 63–71.

    CAS  Google Scholar 

  • Angelucci, F., Fiore, M., Cozzari, C., & Aloe, L. (1999). Prenatal ethanol effects on NGF level, NPY and ChAT immunoreactivity in mouse entorhinal cortex: A preliminary study. Neurotoxicology and Teratology, 21(4), 415–425.

    CAS  PubMed  Google Scholar 

  • Arendt, T., Henning, D., Gray, J. A., & Marchbanks, R. (1988). Loss of neurons in the rat basal forebrain cholinergic projection system after prolonged intake of ethanol. Brain Research Bulletin, 21(4), 563–569.

    CAS  PubMed  Google Scholar 

  • Aros, S., Mills, J. L., Iñiguez, G., Avila, A., Conley, M. R., Troendle, J., Cox, C., & Cassorla, F. (2011). Effects of prenatal ethanol exposure on postnatal growth and the insulin-like growth factor axis. Hormone Research in Pædiatrics, 75(3), 166–173.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ascano, M., Bodmer, D., & Kuruvilla, R. (2012). Endocytic trafficking of neurotrophins in neural development. Trends in Cell Biology, 22(5), 266–273.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Autry, A. E., & Monteggia, L. M. (2012). Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacological Reviews, 64(2), 238–258.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baek, J. K., Heaton, M. B., & Walker, D. W. (1996). Up-regulation of high-affinity neurotrophin receptor, trk B-like protein on western blots of rat cortex after chronic ethanol treatment. Brain Research. Molecular Brain Research, 40, 161–164.

    CAS  PubMed  Google Scholar 

  • Baquet, Z. C., Gorski, J. A., & Jones, K. R. (2004). Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. The Journal of Neuroscience, 24, 4250–4258.

    CAS  PubMed  Google Scholar 

  • Barak, S., Ahmadiantehrani, S., Kharazia, V., & Ron, D. (2011). Positive autoregulation of GDNF levels in the ventral tegmental area mediates long-lasting inhibition of excessive alcohol consumption. Translational Psychiatry, 1, pii, e60.

    Google Scholar 

  • Barker-Gibb, A. L., Dougherty, K. D., Einheber, S., Drake, C. T., & Milner, T. A. (2001). Hippocampal tyrosine kinase A receptors are restricted primarily to presynaptic vesicle clusters. The Journal of Comparative Neurology, 430(2), 182–199.

    CAS  PubMed  Google Scholar 

  • Barroso-Chinea, P., Cruz-Muros, I., Aymerich, M. S., Rodriguez-Diaz, M., Afonso-Oramas, D., Lanciego, J. L., & Gonzalez-Hernandez, T. (2005). Striatal expression of GDNF and differential vulnerability of midbrain dopaminergic cells. The European Journal of Neuroscience, 21(7), 1815–1827.

    PubMed  Google Scholar 

  • Barrow Heaton, M. B., Kidd, K., Bradley, D., Paiva, M., Mitchell, J., & Walker, D. W. (1999). Prenatal ethanol exposure reduces spinal cord motoneuron number in the fetal rat but does not affect GDNF target tissue protein. Developmental Neuroscience, 21(6), 444–452.

    CAS  PubMed  Google Scholar 

  • Bartkowska, K., Turlejski, K., & Djavadian, R. L. (2010). Neurotrophins and their receptors in early development of the mammalian nervous system. Acta Neurobiologiae Experimentalis (Wars), 70(4), 454–467.

    Google Scholar 

  • Bates, B., Rios, M., Trumpp, A., Chen, C., Fan, G., Bishop, J. M., & Jaenisch, R. (1999). Neurotrophin-3 is required for proper cerebellar development. Nature Neuroscience, 2(2), 115–117.

    CAS  PubMed  Google Scholar 

  • Baydyuk, M., Nguyen, M. T., & Xu, B. (2011). Chronic deprivation of TrkB signaling leads to selective late-onset nigrostriatal dopaminergic degeneration. Experimental Neurology, 228(1), 118–125.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bearer, C. F., Swick, A. R., O’Riordan, M. A., & Cheng, G. (1999). Ethanol inhibits L1-mediated neurite outgrowth in postnatal rat cerebellar granule cells. Journal of Biological Chemistry, 274(19), 13264–13270.

    CAS  PubMed  Google Scholar 

  • Becchetti, A., & Arcangeli, A. (2010). Integrins and ion channels in cell migration: Implications for neuronal development, wound healing and metastatic spread. Advances in Experimental Medicine and Biology, 674, 107–123.

    CAS  PubMed  Google Scholar 

  • Berry, A., Bindocci, E., & Alleva, E. (2012). NGF, brain and behavioral plasticity. Neural Plasticity, 2012, 784040.

    PubMed Central  PubMed  Google Scholar 

  • Bhandari, P., Kendler, K. S., Bettinger, J. C., Davies, A. G., & Grotewiel, M. (2009). An assay for evoked locomotor behavior in Drosophila reveals a role for integrins in ethanol sensitivity and rapid ethanol tolerance. Alcoholism, Clinical and Experimental Research, 33(10), 1794–1805.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhattacharyya, A., Watson, F. L., Bradlee, T. A., Pomeroy, S. L., Stiles, C. D., & Segal, R. A. (1997). Trk receptors function as rapid retrograde signal carriers in the adult nervous system. The Journal of Neuroscience, 17(18), 7007–7016.

    CAS  PubMed  Google Scholar 

  • Bhave, S. V., & Hoffman, P. L. (2004). Phosphatidylinositol 3′-OH kinase and protein kinase A pathways mediate the anti-apoptotic effect of pituitary adenylyl cyclase-activating polypeptide in cultured cerebellar granule neurons: Modulation by ethanol. Journal of Neurochemistry, 88(2), 359–369.

    CAS  PubMed  Google Scholar 

  • Bhave, S. V., Snell, L. D., Tabakoff, B., & Hoffman, P. L. (1999). Ethanol sensitivity of NMDA receptor function in developing cerebellar granule neurons. European Journal of Pharmacology, 369, 247–259.

    CAS  PubMed  Google Scholar 

  • Bjorkblom, B., Padzik, A., Mohammad, H., Westerlund, N., Komulainen, E., Hollos, P., Parviainen, L., Papageorgiou, A. C., Iljin, K., Kallioniemi, O., Kallajoki, M., Courtney, M. J., Magard, M., James, P., & Coffey, E. T. (2012). c-Jun N-terminal kinase phosphorylation of MARCKSL1 determines actin stability and migration in neurons and in cancer cells. Molecular and Cellular Biology, 32(17), 3513–3526.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boehme, F., Gil-Mohapel, J., Cox, A., Patten, A., Giles, E., Brocardo, P. S., & Christie, B. R. (2011). Voluntary exercise induces adult hippocampal neurogenesis and BDNF expression in a rodent model of fetal alcohol spectrum disorders. The European Journal of Neuroscience, 33(10), 1799–1811.

    PubMed  Google Scholar 

  • Bonthius, D. J., Karacay, B., Dai, D., & Pantazis, N. J. (2003). FGF-2, NGF and IGF-1, but not BDNF, utilize a nitric oxide pathway to signal neurotrophic and neuroprotective effects against alcohol toxicity in cerebellar granule cell cultures. Brain Research. Developmental Brain Research, 140, 15–28.

    CAS  PubMed  Google Scholar 

  • Bosse, K. E., & Mathews, T. A. (2011). Ethanol-induced increases in extracellular dopamine are blunted in brain-derived neurotrophic factor heterozygous mice. Neuroscience Letters, 489(3), 172–176.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Botia, B., Jolivel, V., Burel, D., Le Joncour, V., Roy, V., Naassila, M., Banard, M., Fournier, A., Vaudry, H., & Vaudry, D. (2011). Neuroprotective effects of PACAP against ethanol-induced toxicity in the developing rat cerebellum. Neurotoxicity Research, 19(3), 423–434.

    CAS  PubMed  Google Scholar 

  • Bradley, D. M., Beaman, F. D., Moore, D. B., Kidd, K., & Heaton, M. B. (1999). Neurotrophic factors BDNF and GDNF protect embryonic chick spinal cord motoneurons from ethanol neurotoxicity in vivo. Brain Research. Developmental Brain Research, 112(1), 99–106.

    CAS  PubMed  Google Scholar 

  • Braskie, M. N., Jahanshad, N., Stein, J. L., Barysheva, M., Johnson, K., McMahon, K. L., de Zubicaray, G. I., Martin, N. G., Wright, M. J., Ringman, J. M., Toga, A. W., & Thompson, P. M. (2012). Relationship of a variant in the NTRK1 gene to white matter microstructure in young adults. The Journal of Neuroscience, 32(17), 5964–5972.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brocardo, P. S., Gil-Mohapel, J., & Christie, B. R. (2011). The role of oxidative stress in fetal alcohol spectrum disorders. Brain Research Reviews, 67(1–2), 209–225.

    CAS  PubMed  Google Scholar 

  • Brodie, C., & Vernadakis, A. (1992). Ethanol increases cholinergic and decreases GABAergic neuronal expression in cultures derived from 8-day-old chick embryo cerebral hemispheres: Interaction of ethanol and growth factors. Brain Research. Developmental Brain Research, 65(2), 253–257.

    CAS  PubMed  Google Scholar 

  • Brodie, C., Kentroti, S., & Vernadakis, A. (1991). Growth factors attenuate the cholinotoxic effects of ethanol during early neuroembryogenesis in the chick embryo. International Journal of Developmental Neuroscience, 9(3), 203–213.

    CAS  PubMed  Google Scholar 

  • Bruns, M. B., & Miller, M. W. (2007). Neurotrophin ligand-receptor systems in somatosensory cortex of adult rat are affected by repeated episodes of ethanol. Experimental Neurology, 204, 680–692.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cadete-Leite, A., Pereira, P. A., Madeira, M. D., & Paula-Barbosa, M. M. (2003). Nerve growth factor prevents cell death and induces hypertrophy of basal forebrain cholinergic neurons in rats withdrawn from prolonged ethanol intake. Neuroscience, 119(4), 1055–1069.

    CAS  PubMed  Google Scholar 

  • Caldwell, K. K., Sheema, S., Paz, R. D., Samudio-Ruiz, S. L., Laughlin, M. H., Spence, N. E., Roehlk, M. J., Alcon, S. N., & Allan, A. M. (2008). Fetal alcohol spectrum disorder-associated depression: Evidence for reductions in the levels of brain-derived neurotrophic factor in a mouse model. Pharmacology, Biochemistry, and Behavior, 90(4), 614–624.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carnicella, S., Kharazia, V., Jeanblanc, J., Janak, P. H., & Ron, D. (2008). GDNF is a fast-acting potent inhibitor of alcohol consumption and relapse. Proceedings of the National Academy of Sciences of the United States of America, 105(23), 8114–8119.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carnicella, S., Ahmadiantehrani, S., Janak, P. H., & Ron, D. (2009a). GDNF is an endogenous negative regulator of ethanol-mediated reward and of ethanol consumption after a period of abstinence. Alcoholism, Clinical and Experimental Research, 33(6), 1012–1024.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carnicella, S., Amamoto, R., & Ron, D. (2009b). Excessive alcohol consumption is blocked by glial cell line-derived neurotrophic factor. Alcohol, 43(1), 35–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carnicella, S., He, D. Y., Yowell, Q. V., Glick, S. D., & Ron, D. (2010). Noribogaine, but not 18-MC, exhibits similar actions as ibogaine on GDNF expression and ethanolself-administration. Addiction Biology, 15(4), 424–433.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castellani, V., & Bolz, J. (1999). Opposing roles for neurotrophin-3 in targeting and collateral formation of distinct sets of developing cortical neurons. Development, 126(15), 3335–3345.

    CAS  PubMed  Google Scholar 

  • Castren, E. (2004). Neurotrophins as mediators of drug effects on mood, addiction, and neuroprotection. Molecular Neurobiology, 29(3), 289–302.

    CAS  PubMed  Google Scholar 

  • Cazorla, M., Jouvenceau, A., Rose, C., Guilloux, J. P., Pilon, C., Dranovsky, A., & Premont, J. (2010). Cyclotraxin-B, the first highly potent and selective TrkB inhibitor, has anxiolytic properties in mice. PLoS One, 5(3), e9777.

    PubMed Central  PubMed  Google Scholar 

  • Cazorla, M., Premont, J., Mann, A., Girard, N., Kellendonk, C., & Rognan, D. (2011). Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. The Journal of Clinical Investigation, 121(5), 1846–1857.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ceccatelli, S., Ernfors, P., Villar, M. J., Persson, H., & Hockfelt, T. (1991). Expanded distribution of mRNA for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the rat brain after colchicine treatment. Proceedings of the National Academy of Sciences of the United States of America, 88(22), 10352–10356.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chandler, L. J., & Sutton, G. (2005). Acute ethanol inhibits extracellular signal-regulated kinase, protein kinase B, and adenosine 3′:5′-cyclic monophosphate response element binding protein activity in an age- and brain region-specific manner. Alcoholism, Clinical and Experimental Research, 29, 672–682.

    CAS  PubMed  Google Scholar 

  • Chang, L., Jones, Y., Ellisman, M. H., Goldstein, L. S., & Karin, M. (2003). JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Developmental Cell, 4(4), 521–533.

    CAS  PubMed  Google Scholar 

  • Chen, S., & Charness, M. E. (2012). Ethanol disrupts axon outgrowth stimulated by netrin-1, GDNF, and L1 by blocking their convergent activation of Src family kinase signaling. Journal of Neurochemistry, 123(4), 602–612.

    Google Scholar 

  • Chen, Z. Y., Patel, P. D., Sant, G., Meng, C. X., Teng, K. K., Hempstead, B. L., et al. (2004). Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. The Journal of Neuroscience, 24, 4401–4411.

    CAS  PubMed  Google Scholar 

  • Chen, Z. Y., Jing, D., Bath, K. G., Ieraci, A., Khan, T., Siao, C. J., et al. (2006). Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science, 314, 140–143.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chowdary, P. D., Che, D. L., & Cui, B. (2012). Neurotrophin signaling via long-distance axonal transport. Annual Review of Physical Chemistry, 63, 571–594.

    CAS  PubMed  Google Scholar 

  • Climent, E., Pascual, M., Renau-Piqueras, J., & Guerri, C. (2002). Ethanol exposure enhances cell death in the developing cerebral cortex: Role of brain-derived neurotrophic factor and its signaling pathways. Journal of Neuroscience Research, 68, 213–225.

    CAS  PubMed  Google Scholar 

  • Cohen-Cory, S., Dreyfus, C. F., & Black, I. B. (1989). Expression of high- and low-affinity nerve growth factor receptors by Purkinje cells in the developing rat cerebellum. Experimental Neurology, 105(1), 104–109.

    CAS  PubMed  Google Scholar 

  • Collazo, D., Takahashi, H., & McKay, R. D. (1992). Cellular targets and trophic functions of neurotrophin-3 in the developing rat hippocampus. Neuron, 9(4), 643–656.

    CAS  PubMed  Google Scholar 

  • Colzato, L. S., Van der Does, A. J., Kouwenhoven, C., Elzinga, B. M., & Hommel, B. (2011). BDNF Val66Met polymorphism is associated with higher anticipatory cortisol stress response, anxiety, and alcohol consumption in healthy adults. Psychoneuroendocrinology, 36(10), 1562–1569.

    CAS  PubMed  Google Scholar 

  • Conner, J. M. (2001). Localization of neurotrophin proteins within the central nervous system by immunohistochemistry. Methods in Molecular Biology, 169, 3–19.

    CAS  PubMed  Google Scholar 

  • Conner, J. M., & Varon, S. (1992). Distribution of nerve growth factor-like immunoreactive neurons in the adult rat brain following colchicine treatment. The Journal of Comparative Neurology, 326(3), 347–362.

    CAS  PubMed  Google Scholar 

  • Conner, J. M., & Varon, S. (1997). Developmental profile of NGF immunoreactivity in the rat brain: A possible role of NGF in the establishment of cholinergic terminal fields in the hippocampus and cortex. Brain Research. Developmental Brain Research, 101(1–2), 67–79.

    CAS  PubMed  Google Scholar 

  • Conner, J. M., Muir, D., Varon, S., Hagg, T., & Manthorpe, M. (1992). The localization of nerve growth factor-like immunoreactivity in the adult rat basal forebrain and hippocampal formation. The Journal of Comparative Neurology, 319(3), 454–462.

    CAS  PubMed  Google Scholar 

  • Conner, J. M., Lauterborn, J. C., Yan, Q., Gall, C. M., & Varon, S. (1997). Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: Evidence for anterograde axonal transport. The Journal of Neuroscience, 17, 2295–2313.

    CAS  PubMed  Google Scholar 

  • Conner, J. M., Franks, K. M., Titterness, A. K., Russell, K., Merrill, D. A., Christie, B. R., Sejnowski, T. J., & Tuszynski, M. H. (2009). NGF is essential for hippocampal plasticity and learning. The Journal of Neuroscience, 29(35), 10883–10889.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Costa, M. A., Girard, M., Dalmay, F., & Malauzat, D. (2011). Brain-derived neurotrophic factor serum levels in alcohol-dependent subjects 6 months after alcohol withdrawal. Alcoholism, Clinical and Experimental Research, 35(11), 1966–1973.

    CAS  PubMed  Google Scholar 

  • Courtney, M. J., Akerman, K. E., & Coffey, E. T. (1997). Neurotrophins protect cultured cerebellar granule neurons against the early phase of cell death by a two-component mechanism. The Journal of Neuroscience, 17(11), 4201–4211.

    CAS  PubMed  Google Scholar 

  • Camarillo, C., & Miranda R. C. (2008). Ethanol exposure during neurogenesis induces persistent effects on neural maturation: Evidence from an ex vivo model of fetal cerebral cortical neuroepithelial progenitor maturation. Gene Expression, 14(3), 159–171.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Charness, M. E., Safran, R. M., & Perides, G. (1994). Ethanol inhibits neural cell-cell adhesion. Journal of Biological Chemistry, 269(12), 9304–9309.

    CAS  PubMed  Google Scholar 

  • Chanarin, I. (1982). Haemopoiesis and alcohol. British Medical Bulletin, 38(1), 81–86.

    CAS  PubMed  Google Scholar 

  • Chen, L., Wang, Y., Xiao, H., Wang, L., Wang, C., Guo, S., Zhao, Y., Hua, P., Liu, W., & Zhang, N. (2011). The 712A/G polymorphism of brain-derived neurotrophic factor is associated with Parkinson’s disease but not Major Depressive Disorder in a Chinese Han population. Biochemical and Biophysical Research Communications, 408(2), 318–321.

    CAS  PubMed  Google Scholar 

  • Cirulli, F., Reif, A., Herterich, S., Lesch, K. P., Berry, A., Francia, N., Aloe, L., Barr, C. S., Suomi, S. J., & Alleva, E. (2011). A novel BDNF polymorphism affects plasma protein levels in interaction with early adversity in rhesus macaques. Psychoneuroendocrinology, 36(3), 372–379.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cragg, B., & Phillips, S. (1985). Natural loss of Purkinje cells during development and increased loss with alcohol. Brain Research, 325(1–2), 151–160.

    CAS  PubMed  Google Scholar 

  • Davis, M. I. (2008). Ethanol-BDNF interactions: Still more questions than answers. Pharmacology and Therapeutics, 118(1), 36–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dohrman, D. P., West, J. R., & Pantazis, N. J. (1997). Ethanol reduces expression of the nerve growth factor receptor, but not nerve growth factor protein levels in the neonatal rat cerebellum. Alcohol Clinical and Experimental Research, 21(5), 882–893.

    CAS  Google Scholar 

  • D’Sa, C., Dileone, R. J., Anderson, G. M., & Sinha, R. (2012). Serum and plasma brain-derived neurotrophic factor (BDNF) in abstinent alcoholics and social drinkers. Alcohol, 46(3), 253–259.

    PubMed Central  PubMed  Google Scholar 

  • Das, K. P., Chao, S. L., White, L. D., Haines, W. T., Harry, G. J., Tilson, H. A., & Barone, S., Jr. (2001). Differential patterns of nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 mRNA and protein levels in developing regions of rat brain. Neuroscience, 103(3), 739–761.

    CAS  PubMed  Google Scholar 

  • Davis, M. I., Szarowski, D., Turner, J. N., Morrisett, R. A., & Shain, W. (1999). In vivo activation and in situ BDNF-stimulated nuclear translocation of mitogen-activated/extracellular signal-regulated protein kinase is inhibited by ethanol in the developing rat hippocampus. Neuroscience Letters, 272, 95–98.

    CAS  PubMed  Google Scholar 

  • de la Monte, S. M., Tong, M., Bowling, N., & Moskal, P. (2011). si-RNA inhibition of brain insulin or insulin-like growth factor receptors causes developmental cerebellar abnormalities: Relevance to fetal alcohol spectrum disorder. Molecular Brain, 4, 13.

    PubMed Central  PubMed  Google Scholar 

  • de la Monte, S., Derdak, Z., & Wands, J. R. (2012). Alcohol, insulin resistance and the liver-brain axis. Journal of Gastroenterology and Hepatology, 27(Suppl 2), 33–41.

    PubMed  Google Scholar 

  • de Sanctis, L., Memo, L., Pichini, S., Tarani, L., & Vagnarelli, F. (2011). Fetal alcohol syndrome: New perspectives for an ancient and underestimated problem. The Journal of Maternal-Fetal & Neonatal Medicine, 24(Suppl 1), 34–37.

    Google Scholar 

  • De Simone, R., & Aloe, L. (1993). Influence of ethanol consumption on brain nerve growth factor and its target cells in developing and adult rodents. Annali dell'Istituto Superiore di Sanità, 29(1), 179–183.

    PubMed  Google Scholar 

  • Deinhardt, K., Kim, T., Spellman, D. S., Mains, R. E., Eipper, B. A., Neubert, T. A., Chao, M. V., & Hempstead, B. L. (2011). Neuronal growth cone retraction relies on proneurotrophin receptor signaling through Rac. Science Signaling, 4(202), ra82.

    PubMed Central  PubMed  Google Scholar 

  • Devineni, A. V., McClure, K. D., Guarnieri, D. J., Corl, A. B., Wolf, F. W., Eddison, M., & Heberlein, U. (2011). The genetic relationships between ethanol preference, acute ethanol sensitivity, and ethanol tolerance in Drosophila melanogaster. Fly (Austin), 5(3), 191–199.

    CAS  Google Scholar 

  • Di Maria, E., Giorgio, E., Uliana, V., Bonvicini, C., Faravelli, F., Cammarata, S., Novello, M. C., Galimberti, D., Scarpini, E., Zanetti, O., Gennarelli, M., & Tabaton, M. (2012). Possible influence of a non-synonymous polymorphism located in the NGF precursor on susceptibility to late-onset Alzheimer’s disease and mild cognitive impairment. Journal of Alzheimer's Disease, 29(3), 699–705.

    PubMed  Google Scholar 

  • Dow, K. E., & Riopelle, R. J. (1985). Ethanol neurotoxicity: Effects on neurite formation and neurotrophic factor production in vitro. Science, 228(4699), 591–593.

    CAS  PubMed  Google Scholar 

  • Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257–269.

    CAS  PubMed  Google Scholar 

  • Ehrlich, D., Pirchl, M., & Humpel, C. (2012). Ethanol transiently suppresses choline-acetyltransferase in basal nucleus of Meynert slices. Brain Research, 1459, 35–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ericson, M., Haythornthwaite, A. R., Yeh, P. W., & Yeh, H. H. (2003). Brain-derived neurotrophic factor mitigates chronic ethanol-induced attenuation of gamma-aminobutyric acid responses in cultured cerebellar granule cells. Journal of Neuroscience Research, 73(5), 722–730.

    CAS  PubMed  Google Scholar 

  • Ernfors, P., Ibanez, C. F., Ebendal, T., Olson, L., & Persson, H. (1990a). Molecular cloning and neurotrophic activities of a protein with structural similarities to nerve growth factor: Developmental and topographical expression in the brain. Proceedings of the National Academy of Sciences of the United States of America, 87(14), 5454–5458.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ernfors, P., Wetmore, C., Olson, L., & Persson, H. (1990b). Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Neuron, 5(4), 511–526.

    CAS  PubMed  Google Scholar 

  • Ernfors, P., Lee, K. F., & Jaenisch, R. (1994a). Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature, 368, 147–150.

    CAS  PubMed  Google Scholar 

  • Ernfors, P., Lee, K. F., Kucera, J., & Jaenisch, R. (1994b). Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell, 77(4), 503–512.

    CAS  PubMed  Google Scholar 

  • Fagan, A. M., Garber, M., Barbacid, M., Silos-Santiago, I., & Holtzman, D. M. (1997). A role for TrkA during maturation of striatal and basal forebrain cholinergic neurons in vivo. The Journal of Neuroscience, 17(20), 7644–7654.

    CAS  PubMed  Google Scholar 

  • Fattori, V., Abe, S. I., Kobayashi, K., Costa, L. G., & Tsuji, R. (2008). Effects of postnatal ethanol exposure on neurotrophic factors and signal transduction pathways in rat brain. Journal of Applied Toxicology, 28, 370–376.

    CAS  PubMed  Google Scholar 

  • Fawcett, J. R., Chen, X., Rahman, Y. E., & Frey, W. H. (1999). Previously reported nerve growth factor levels are underestimated due to an incomplete release from receptors and interaction with standard curve media. Brain Research, 842(1), 206–210.

    CAS  PubMed  Google Scholar 

  • Feng, M. J., Yan, S. E., & Yan, Q. S. (2005). Effects of prenatal alcohol exposure on brain-derived neurotrophic factor and its receptor tyrosine kinase B in offspring. Brain Research, 1042, 125–132.

    CAS  PubMed  Google Scholar 

  • Fiore, M., Laviola, G., Aloe, L., di Fausto, V., Mancinelli, R., & Ceccanti, M. (2009a). Early exposure to ethanol but not red wine at the same alcohol concentration induces behavioral and brain neurotrophin alterations in young and adult mice. Neurotoxicology, 30(1), 59–71.

    CAS  PubMed  Google Scholar 

  • Fiore, M., Mancinelli, R., Aloe, L., Laviola, G., Sornelli, F., Vitali, M., & Ceccanti, M. (2009b). Hepatocyte growth factor, vascular endothelial growth factor, glial cell-derived neurotrophic factor and nerve growth factor are differentially affected by early chronic ethanol or red wine intake. Toxicology Letters, 188(3), 208–213.

    CAS  PubMed  Google Scholar 

  • Florez-McClure, M. L., Linseman, D. A., Chu, C. T., Barker, P. A., Bouchard, R. J., Le, S. S., Laessig, T. A., & Heidenreich, K. A. (2004). The p75 neurotrophin receptor can induce autophagy and death of cerebellar Purkinje neurons. The Journal of Neuroscience, 24(19), 4498–4509.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fortress, A. M., Buhusi, M., Helke, K. L., & Granholm, A. C. (2011). Cholinergic degeneration and alterations in the TrkA and p75NTR balance as a result of Pro-NGF injection into aged rats. Journal of Aging Research, 2011, 460543.

    PubMed Central  PubMed  Google Scholar 

  • Friedman, W. J. (2010). Proneurotrophins, seizures, and neuronal apoptosis. The Neuroscientist, 16(3), 244–252.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Friedman, W. J., Ernfors, P., & Persson, H. (1991). Transient and persistent expression of NT-3/HDNF mRNA in the rat brain during postnatal development. The Journal of Neuroscience, 11(6), 1577–1584.

    CAS  PubMed  Google Scholar 

  • Fenner, B. M. (2012). Truncated TrkB: Beyond a dominant negative receptor. Cytokine Growth Factor Reviews, 23(1–2), 15–24.

    CAS  PubMed  Google Scholar 

  • Gatt, J. M., Nemeroff, C. B., Dobson-Stone, C., Paul, R. H., Bryant, R. A., Schofield, P. R., Gordon, E., Kemp, A. H., & Williams, L. M. (2009). Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Molecular Psychiatry, 14(7), 681–695.

    CAS  PubMed  Google Scholar 

  • Ge, Y., Belcher, S. M., & Light, K. E. (2004). Alterations of cerebellar mRNA specific for BDNF, p75NTR, and TrkB receptor isoforms occur within hours of ethanol administration to 4-day-old rat pups. Brain Research. Developmental Brain Research, 151, 99–109.

    CAS  PubMed  Google Scholar 

  • George, D. J., Suzuki, H., Bova, G. S., & Isaacs, J. T. (1998). Mutational analysis of the TrkA gene in prostate cancer. Prostate, 36(3), 172–180.

    CAS  PubMed  Google Scholar 

  • Gericke, C. A., Schulte-Herbrüggen, O., Arendt, T., & Hellweg, R. (2006). Chronic alcohol intoxication in rats leads to a strong but transient increase in NGF levels in distinct brain regions. Journal of Neural Transmission, 113(7), 813–820.

    CAS  PubMed  Google Scholar 

  • Ghitza, U. E., Zhai, H., Wu, P., Airavaara, M., Shaham, Y., & Lu, L. (2010). Role of BDNF and GDNF in drug reward and relapse: A review. Neuroscience and Biobehavioral Reviews, 35(2), 157–171.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gibbs, R. B., McCabe, J. T., Buck, C. R., Chao, M. V., & Pfaff, D. W. (1989). Expression of NGF receptor in the rat forebrain detected with in situ hybridization and immunohistochemistry. Brain Research. Molecular Brain Research, 6(4), 275–287.

    CAS  PubMed  Google Scholar 

  • Ginty, D. D., & Segal, R. A. (2002). Retrograde neurotrophin signaling: Trk-ing along the axon. Current Opinion in Neurobiology, 12, 268–274.

    CAS  PubMed  Google Scholar 

  • Golden, J. P., DeMaro, J. A., Osborne, P. A., Milbrandt, J., & Johnson, E. M., Jr. (1999). Expression of neurturin, GDNF, and GDNF family-receptor mRNA in the developing and mature mouse. Experimental Neurology, 158(2), 504–528.

    CAS  PubMed  Google Scholar 

  • Gorski, J. A., Balogh, S. A., Wehner, J. M., & Jones, K. R. (2003). Learning deficits in forebrain-restricted brain-derived neurotrophic factor mutant mice. Neuroscience, 121, 341–354.

    CAS  PubMed  Google Scholar 

  • Gozes, I. (2011). Microtubules (tau) as an emerging therapeutic target: NAP (davunetide). Current Pharmaceutical Design, 17(31), 3413–3417.

    CAS  PubMed  Google Scholar 

  • Gray, J., Yeo, G. S., Cox, J. J., Morton, J., Adlam, A. L., Keogh, J. M., et al. (2006). Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes, 55, 3366–3371.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grzywacz, A., Samochowiec, A., Ciechanowicz, A., & Samochowiec, J. (2010). Family-based study of brain-derived neurotrophic factor (BDNF) gene polymorphism in alcohol dependence. Pharmacological Reports, 62(5), 938–941.

    CAS  PubMed  Google Scholar 

  • Gunn-Moore, F. J., & Tavare, J. M. (1998). Apoptosis of cerebellar granule cells induced by serum withdrawal, glutamate or beta-amyloid, is independent of Jun kinase or p38 mitogen activated protein kinase activation. Neuroscience Letters, 250(1), 53–56.

    CAS  PubMed  Google Scholar 

  • Hallak, H., Seiler, A. E., Green, J. S., Henderson, A., Ross, B. N., & Rubin, R. (2001). Inhibition of insulin-like growth factor-I signaling by ethanol in neuronal cells. Alcoholism, Clinical and Experimental Research, 25(7), 1058–1064.

    CAS  PubMed  Google Scholar 

  • Han, J. Y., Jeong, J. Y., Lee, Y. K., Roh, G. S., Kim, H. J., Kang, S. S., et al. (2006). Suppression of survival kinases and activation of JNK mediate ethanol-induced cell death in the developing rat brain. Neuroscience Letters, 398, 113–117.

    CAS  PubMed  Google Scholar 

  • Hariri, A. R., Goldberg, T. E., Mattay, V. S., Kolachana, B. S., Callicott, J. H., Egan, M. F., et al. (2003). Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. The Journal of Neuroscience, 23, 6690–6694.

    CAS  PubMed  Google Scholar 

  • Harper, C. (2009). The neuropathology of alcohol-related brain damage. Alcohol and Alcoholism, 44(2), 136–140.

    CAS  PubMed  Google Scholar 

  • Hassoun, A. T., Lovinger, D. M., & Davis, M. I. (2007). A rapid screening method for interactions between substrates, motogens, and developmental neurotoxins. Alcoholism, Clinical and Experimental Research, 31(S6), 99A.

    Google Scholar 

  • Hauser, S. R., Getachew, B., Taylor, R. E., & Tizabi, Y. (2011). Alcohol induced depressive-like behavior is associated with a reduction in hippocampal BDNF. Pharmacology, Biochemistry, and Behavior, 100(2), 253–258.

    CAS  PubMed Central  PubMed  Google Scholar 

  • He, D. Y., McGough, N. N., Ravindranathan, A., Jeanblanc, J., Logrip, M. L., Phamluong, K., Janak, P. H., & Ron, D. (2005). Glial cell line-derived neurotrophic factor mediates the desirable actions of the anti-addiction drug ibogaine against alcohol consumption. The Journal of Neuroscience, 25(3), 619–628.

    CAS  PubMed Central  PubMed  Google Scholar 

  • He, D. Y., Neasta, J., & Ron, D. (2010). Epigenetic regulation of BDNF expression via the scaffolding protein RACK1. The Journal of Biological Chemistry, 285(25), 19043–19050.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heaton, M. B., & Bradley, D. M. (1995). Ethanol influences on the chick embryo spinal cord motor system: Analyses of motoneuron cell death, motility, and target trophic factor activity and in vitro analyses of neurotoxicity and trophic factor neuroprotection. Journal of Neurobiology, 26(1), 47–61.

    CAS  PubMed  Google Scholar 

  • Heaton, M. B., Paiva, M., Swanson, D. J., & Walker, D. W. (1993). Modulation of ethanol neurotoxicity by nerve growth factor. Brain Research, 620(1), 78–85.

    CAS  PubMed  Google Scholar 

  • Heaton, M. B., Paiva, M., Swanson, D. J., & Walker, D. W. (1994). Responsiveness of cultured septal and hippocampal neurons to ethanol and neurotrophic substances. Journal of Neuroscience Research, 39(3), 305–318.

    CAS  PubMed  Google Scholar 

  • Heaton, M. B., Paiva, M., Swanson, D. J., & Walker, D. W. (1995). Alterations in responsiveness to ethanol and neurotrophic substances in fetal septohippocampal neurons following chronic prenatal ethanol exposure. Brain Research. Developmental Brain Research, 85(1), 1–13.

    CAS  PubMed  Google Scholar 

  • Heaton, M. B., Swanson, D. J., Paiva, M., & Walker, D. W. (1996). Influence of prenatal ethanol exposure on cholinergic development in the rat striatum. The Journal of Comparative Neurology, 364(1), 113–120.

    CAS  PubMed  Google Scholar 

  • Heaton, M. B., Mitchell, J. J., & Paiva, M. (1999). Ethanol-induced alterations in neurotrophin expression in developing cerebellum: Relationship to periods of temporal susceptibility. Alcoholism, Clinical and Experimental Research, 23, 1637–1642.

    CAS  PubMed  Google Scholar 

  • Heaton, M. B., Kim, D. S., & Paiva, M. (2000a). Neurotrophic factor protection against ethanol toxicity in rat cerebellar granule cell cultures requires phosphatidylinositol 3-kinase activation. Neuroscience Letters, 291(2), 121–125.

    CAS  PubMed  Google Scholar 

  • Heaton, M. B., Mitchell, J. J., & Paiva, M. (2000b). Overexpression of NGF ameliorates ethanol neurotoxicity in the developing cerebellum. Journal of Neurobiology, 45(2), 95–104.

    CAS  PubMed  Google Scholar 

  • Heaton, M. B., Mitchell, J. J., Paiva, M., & Walker, D. W. (2000c). Ethanol-induced alterations in the expression of neurotrophic factors in the developing rat central nervous system. Brain Research. Developmental Brain Research, 121(1), 97–107.

    CAS  PubMed  Google Scholar 

  • Heaton, M. B., Moore, D. B., Paiva, M., Madorsky, I., Mayer, J., & Shaw, G. (2003a). The role of neurotrophic factors, apoptosis-related proteins, and endogenous antioxidants in the differential temporal vulnerability of neonatal cerebellum to ethanol. Alcoholism, Clinical and Experimental Research, 27, 657–669.

    CAS  PubMed  Google Scholar 

  • Heaton, M. B., Paiva, M., Madorsky, I., Mayer, J., & Moore, D. B. (2003b). Effects of ethanol on neurotrophic factors, apoptosis-related proteins, endogenous antioxidants, and reactive oxygen species in neonatal striatum: Relationship to periods of vulnerability. Brain Research. Developmental Brain Research, 140, 237–252.

    CAS  PubMed  Google Scholar 

  • Heaton, M. B., Paiva, M., Madorsky, I., & Shaw, G. (2003c). Ethanol effects on neonatal rat cortex: Comparative analyses of neurotrophic factors, apoptosis-related proteins, and oxidative processes during vulnerable and resistant periods. Brain Research. Developmental Brain Research, 145, 249–262.

    CAS  PubMed  Google Scholar 

  • Heaton, M. B., Paiva, M., Kubovic, S., Kotler, A., Rogozinski, J., Swanson, E., Madorsky, V., & Posados, M. (2012). Differential effects of ethanol on c-jun N-terminal kinase, 14-3-3 proteins, and Bax in postnatal day 4 and postnatal day 7 rat cerebellum. Brain Research, 1432, 15–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heberlein, A., Bleich, S., Bayerlein, K., Frieling, H., Gröschl, M., Kornhuber, J., & Hillemacher, T. (2008). NGF plasma levels increase due to alcohol intoxication and decrease during withdrawal. Psychoneuroendocrinology, 33(7), 999–1003.

    CAS  PubMed  Google Scholar 

  • Heberlein, A., Muschler, M., Wilhelm, J., Frieling, H., Lenz, B., Groschl, M., Kornhuber, J., Bleich, S., & Hillemacher, T. (2010). BDNF and GDNF serum levels in alcohol-dependent patients during withdrawal. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 34(6), 1060–1064.

    CAS  Google Scholar 

  • Heberlein, A., Muschler, M., Frieling, H., Behr, M., Eberlein, C., Wilhelm, J., Gröschl, M., Kornhuber, J., Bleich, S., & Hillemacher, T. (2011). Epigenetic down regulation of nerve growth factor during alcohol withdrawal. Addiction Biology, 18(3), 508–510. doi: 10.1111/j.1369-1600.2010.00307.x.

    Google Scholar 

  • Hefti, F., Dravid, A., & Hartikka, J. (1984). Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions. Brain Research, 293(2), 305–311.

    CAS  PubMed  Google Scholar 

  • Hellmann, J. D., Rommelspacher, H., & Wernicke, C. (2009). Long-term ethanol exposure impairs neuronal differentiation of human neuroblastoma cells involving neurotrophin-mediated intracellular signaling and in particular protein kinase C. Alcoholism, Clinical and Experimental Research, 33(3), 538–550.

    CAS  PubMed  Google Scholar 

  • Hensler, J. G., Ladenheim, E. E., & Lyons, W. E. (2003). Ethanol consumption and serotonin-1A (5-HT1A) receptor function in heterozygous BDNF (+/−) mice. Journal of Neurochemistry, 85, 1139–1147.

    CAS  PubMed  Google Scholar 

  • Heumann, R., Korsching, S., Scott, J., & Thoenen, H. (1984). Relationship between levels of nerve growth factor (NGF) and its messenger RNA in sympathetic ganglia and peripheral target tissues. The EMBO Journal, 3(13), 3183–3189.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hidalgo-Figueroa, M., Bonilla, S., Gutierrez, F., Pascual, A., & Lopez-Barneo, J. (2012). GDNF is predominantly expressed in the PV + neostriatal interneuronal ensemble in normal mouse and after injury of the nigrostriatal pathway. The Journal of Neuroscience, 32(3), 864–872.

    CAS  PubMed  Google Scholar 

  • Hirai, S., de Cui, F., Miyata, T., Ogawa, M., Kiyonari, H., Suda, Y., et al. (2006). The c-Jun N-terminal kinase activator dual leucine zipper kinase regulates axon growth and neuronal migration in the developing cerebral cortex. The Journal of Neuroscience, 26, 11992–12002.

    CAS  PubMed  Google Scholar 

  • Hoener, M. C., & Varon, S. (1997). Reversible sedimentation and masking of nerve growth factor (NGF) antigen by high molecular weight fractions from rat brain. Brain Research, 772(1–2), 1–8.

    CAS  PubMed  Google Scholar 

  • Hoener, M. C., Hewitt, E., Conner, J. M., Costello, J. W., & Varon, S. (1996). Nerve growth factor (NGF) content in adult rat brain tissues is several-fold higher than generally reported and is largely associated with sedimentable fractions. Brain Research, 728(1), 47–56.

    CAS  PubMed  Google Scholar 

  • Hofer, M., Pagliusi, S. R., Hohn, A., Leibrock, J., & Barde, Y. A. (1990). Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. The EMBO Journal, 9(8), 2459–2464.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holtzman, D. M., Li, Y., Parada, L. F., Kinsman, S., Chen, C. K., Valletta, J. S., Zhou, J., et al. (1992). p140trk mRNA marks NGF-responsive forebrain neurons: Evidence that trk gene expression is induced by NGF. Neuron, 9, 465–478.

    CAS  PubMed  Google Scholar 

  • Honegger, P., & Lenoir, D. (1982). Nerve growth factor (NGF) stimulation of cholinergic telencephalic neurons in aggregating cell cultures. Brain Research, 255(2), 229–238.

    CAS  PubMed  Google Scholar 

  • Houeland, G., Romani, A., Marchetti, C., Amato, G., Capsoni, S., Cattaneo, A., & Marie, H. (2010). Transgenic mice with chronic NGF deprivation and Alzheimer’s disease-like pathology display hippocampal region-specific impairments in short- and long-term plasticities. The Journal of Neuroscience, 30(39), 13089–13094.

    CAS  PubMed  Google Scholar 

  • Huang, M. C., Chen, C. H., Chen, C. H., Liu, S. C., Ho, C. J., Shen, W. W., & Leu, S. J. (2008). Alterations of serum brain-derived neurotrophic factor levels in early alcohol withdrawal. Alcohol and Alcoholism, 43(3), 241–245.

    CAS  PubMed  Google Scholar 

  • Huang, M. C., Chen, C. H., Liu, H. C., Chen, C. C., Ho, C. C., & Leu, S. J. (2011). Differential patterns of serum brain-derived neurotrophic factor levels in alcoholic patients with and without delirium tremens during acute withdrawal. Alcoholism, Clinical and Experimental Research, 35(1), 126–131.

    CAS  PubMed  Google Scholar 

  • Hundle, B., McMahon, T., Dadgar, J., Chen, C. H., Mochly-Rosen, D., & Messing, R. O. (1997). An inhibitory fragment derived from protein kinase Cepsilon prevents enhancement of nerve growth factor responses by ethanol and phorbol esters. The Journal of Biological Chemistry, 272(23), 15028–15035.

    CAS  PubMed  Google Scholar 

  • Hassoun, A. T., Erdélyi, F., Szabó, G., & Davis M. I. (2007b). A rapid screening method for population-specific neuronal motogens, substrates and associated signaling pathways. Journal of Neuroscience Methods, 166(2), 178–194.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoener, M. C., & Varon, S. (1997). Reversible sedimentation and masking of nerve growth factor (NGF) antigen by high molecular weight fractions from rat brain. Brain Research, 772(1–2), 1–8.

    CAS  PubMed  Google Scholar 

  • Hong, C. J., Liou, Y. J., & Tsai, S. J. (2011). Effects of BDNF polymorphisms on brain function and behavior in health and disease. Brain Research Bulletin, 86(5–6), 287–297.

    CAS  PubMed  Google Scholar 

  • Incerti, M., Vink, J., Roberson, R., Benassou, I., Abebe, D., & Spong, C. Y. (2010). Prevention of the alcohol-induced changes in brain-derived neurotrophic factor expression using neuroprotective peptides in a model of fetal alcohol syndrome. American Journal of Obstetrics and Gynecology, 202(5), 457.e1-4.

    PubMed  Google Scholar 

  • Ip, N. Y., Li, Y., Yancopoulos, G. D., & Lindsay, R. M. (1993). Cultured hippocampal neurons show responses to BDNF, NT-3, and NT-4, but not NGF. The Journal of Neuroscience, 13, 3394–3405.

    CAS  PubMed  Google Scholar 

  • Jain, S., Golden, J. P., Wozniak, D., Pehek, E., Johnson, E. M., Jr., & Milbrandt, J. (2006). RET is dispensable for maintenance of midbrain dopaminergic neurons in adult mice. The Journal of Neuroscience, 26(43), 11230–11238.

    CAS  PubMed  Google Scholar 

  • Jang, S. W., Liu, X., Yepes, M., Shepherd, K. R., Miller, G. W., Liu, Y., Wilson, W. D., Xiao, G., Blanchi, B., Sun, Y. E., & Ye, K. (2010). A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proceedings of the National Academy of Sciences of the United States of America, 107(6), 2687–2692.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jaurena, M. B., Carri, N. G., Battiato, N. L., & Rovasio, R. A. (2011). Trophic and proliferative perturbations of in vivo/in vitro cephalic neural crest cells after ethanol exposure are prevented by neurotrophin 3. Neurotoxicology and Teratology, 33(3), 422–430.

    CAS  PubMed  Google Scholar 

  • Jeanblanc, J., He, D. Y., McGough, N. N., Logrip, M. L., Phamluong, K., Janak, P. H., & Ron, D. (2006). The dopamine D3 receptor is part of a homeostatic pathway regulating ethanol consumption. Journal of Neuroscience, 26(5), 1457–1464.

    CAS  PubMed  Google Scholar 

  • Jeanblanc, J., He, D. Y., Carnicella, S., Kharazia, V., Janak, P. H., & Ron, D. (2009). Endogenous BDNF in the dorsolateral striatum gates alcohol drinking. The Journal of Neuroscience, 29(43), 13494–13502.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang, X., Xu, K., Hoberman, J., Tian, F., Marko, A. J., Waheed, J. F., et al. (2005). BDNF variation and mood disorders: A novel functional promoter polymorphism and Val66Met are associated with anxiety but have opposing effects. Neuropsychopharmacology, 30, 1353–1361.

    CAS  PubMed  Google Scholar 

  • Jiang, Y., Kumada, T., Cameron, D. B., & Komuro, H. (2008). Cerebellar granule cell migration and the effects of alcohol. Developmental Neuroscience, 30(1–3), 7–23.

    PubMed  Google Scholar 

  • Jin, J., Suzuki, H., Hirai, S., Mikoshiba, K., & Ohshima, T. (2010). JNK phosphorylates Ser332 of doublecortin and regulates its function in neurite extension and neuronal migration. Developmental Neurobiology, 70(14), 929–942.

    CAS  PubMed  Google Scholar 

  • Jockers-Scherubl, M. C., Bauer, A., Kuhn, S., Reischies, F., Danker-Hopfe, H., Schmidt, L. G., Rentzsch, J., & Hellweg, R. (2007). Nerve growth factor in serum is a marker of the stage of alcohol disease. Neuroscience Letters, 419(1), 78–82.

    PubMed  Google Scholar 

  • Joe, K. H., Kim, Y. K., Kim, T. S., Roh, S. W., Choi, S. W., et al. (2007). Decreased plasma brain derived neurotrophic factor levels in patients with alcohol dependence. Alcoholism, Clinical and Experimental Research, 31, 1–6.

    Google Scholar 

  • Jones, K. R., Farinas, I., Backus, C., & Reichardt, L. F. (1994). Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell, 76, 989–999.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kalev-Zylinska, M. L., & During, M. J. (2007). Paradoxical facilitatory effect of low-dose alcohol consumption on memory mediated by NMDA receptors. The Journal of Neuroscience, 39, 10456–10467.

    Google Scholar 

  • Kalluri, H. S., & Ticku, M. K. (2002). Ethanol-mediated inhibition of mitogen-activated protein kinase phosphorylation in mouse brain. European Journal of Pharmacology, 439, 53–58.

    CAS  PubMed  Google Scholar 

  • Kalluri, H. S., & Ticku, M. K. (2003). Regulation of ERK phosphorylation by ethanol in fetal cortical neurons. Neurochemical Research, 28, 765–769.

    CAS  PubMed  Google Scholar 

  • Kapuscinski, M., Charchar, F., Innes, B., Mitchell, G. A., Norman, T. L., & Harrap, S. B. (1996). Nerve growth factor gene and hypertension in spontaneously hypertensive rats. Journal of Hypertension, 14(2), 191–197.

    CAS  PubMed  Google Scholar 

  • Karpac, J., & Jasper, H. (2009). Insulin and JNK: Optimizing metabolic homeostasis and lifespan. Trends in Endocrinology and Metabolism, 20(3), 100–106.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawaja, M. D., & Crutcher, K. A. (1997). Sympathetic axons invade the brains of mice overexpressing nerve growth factor. The Journal of Comparative Neurology, 383(1), 60–72.

    CAS  PubMed  Google Scholar 

  • Kawaja, M. D., Walsh, G. S., Tovich, P. R., & Julien, J. P. (1998). Effects of elevated levels of nerve growth factor on the septohippocampal system in transgenic mice. The European Journal of Neuroscience, 10(7), 2207–2216.

    CAS  PubMed  Google Scholar 

  • Kawaja, M. D., Smithson, L. J., Elliott, J., Trinh, G., Crotty, A. M., Michalski, B., & Fahnestock, M. (2011). Nerve growth factor promoter activity revealed in mice expressing enhanced green fluorescent protein. The Journal of Comparative Neurology, 519(13), 2522–2545.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kernie, S. G., Liebl, D. J., & Parada, L. F. (2000). BDNF regulates eating behavior and locomotor activity in mice. The EMBO Journal, 19, 1290–1300.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kerns, R. T., Ravindranathan, A., Hassan, S., Cage, M. P., York, T., Sikela, J. M., et al. (2005). Ethanol-responsive brain region expression networks: Implications for behavioral responses to acute ethanol in DBA/2 J versus C57BL/6 J mice. The Journal of Neuroscience, 25, 2255–2266.

    CAS  PubMed  Google Scholar 

  • Klein, R. (1994). Role of neurotrophins in mouse neuronal development. The FASEB Journal, 8, 738–744.

    CAS  Google Scholar 

  • Klein, R., Lamballe, F., Bryant, S., & Barbacid, M. (1992). The trkB tyrosine protein kinase is a receptor for neurotrophin-4. Neuron, 8(5), 947–956.

    CAS  PubMed  Google Scholar 

  • Kolb, J. E., Trettel, J., & Levine, E. S. (2005). BDNF enhancement of postsynaptic NMDA receptors is blocked by ethanol. Synapse, 55, 52–57.

    CAS  PubMed  Google Scholar 

  • Kooijman, R., Sarre, S., Michotte, Y., & De Keyser, J. (2009). Insulin-like growth factor I: A potential neuroprotective compound for the treatment of acute ischemic stroke? Stroke, 40(4), e83-8.

    PubMed  Google Scholar 

  • Korsching, S., & Thoenen, H. (1983). Nerve growth factor in sympathetic ganglia and corresponding target organs of the rat: Correlation with density of sympathetic innervation. Proceedings of the National Academy of Sciences of the United States of America, 80(11), 3513–3516.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Korsching, S., Auburger, G., Heumann, R., Scott, J., & Thoenen, H. (1985). Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation. The EMBO Journal, 4(6), 1389–1393.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koshimizu, H., Kiyosue, K., Hara, T., Hazama, S., Suzuki, S., Uegaki, K., Nagappan, G., Zaitsev, E., Hirokawa, T., Tatsu, Y., Ogura, A., Lu, B., & Kojima, M. (2009). Multiple functions of precursor BDNF to CNS neurons: Negative regulation of neurite growth, spine formation and cell survival. Molecular Brain, 2, 27.

    PubMed Central  PubMed  Google Scholar 

  • Koshimizu, H., Hazama, S., Hara, T., Ogura, A., & Kojima, M. (2010). Distinct signaling pathways of precursor BDNF and mature BDNF in cultured cerebellar granule neurons. Neuroscience Letters, 473(3), 229–232.

    CAS  PubMed  Google Scholar 

  • Koushika, S. P. (2008). “JIP”ing along the axon: The complex roles of JIPs in axonal transport. Bioessays, 30(1), 10–14.

    CAS  PubMed  Google Scholar 

  • Kramer, E. R., Aron, L., Ramakers, G. M., Seitz, S., Zhuang, X., Beyer, K., Smidt, M. P., & Klein, R. (2007). Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biology, 5(3), e39.

    PubMed Central  PubMed  Google Scholar 

  • Krimm, R. F. (2007). Factors that regulate embryonic gustatory development. BMC Neuroscience, 8(Suppl 3), S4.

    PubMed Central  PubMed  Google Scholar 

  • Kroener, S., Mulholland, P. J., New, N. N., Gass, J. T., Becker, H. C., & Chandler, L. J. (2012). Chronic alcohol exposure alters behavioral and synaptic plasticity of the rodent prefrontal cortex. PLoS One, 7(5), e37541.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kulkarny, V. V., Wiest, N. E., Marquez, C. P., Nixon, S. C., Valenzuela, C. F., & Perrone-Bizzozero, N. I. (2011). Opposite effects of acute ethanol exposure on GAP-43 and BDNF expression in the hippocampus versus the cerebellum of juvenile rats. Alcohol, 45(5), 461–471.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuri, B. A., Chan, S. A., & Smith, C. B. (2009). PACAP regulates immediate catecholamine release from adrenal chromaffin cells in an activity-dependent manner through a protein kinase C-dependent pathway. Journal of Neurochemistry, 110(4), 1214–1225.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katoh-Semba, R., Takeuchi, I. K., Semba, R., & Kato, K. (1997). Distribution of brain-derived neurotrophic factor in rats and its changes with development in the brain. Journal of Neurochemistry, 69, 34–42.

    CAS  PubMed  Google Scholar 

  • Lang, U. E., Hellweg, R., Sander, T., & Gallinat, J. (2009). The Met allele of the BDNF Val66Met polymorphism is associated with increased BDNF serum concentrations. Molecular Psychiatry, 14(2), 120–122.

    CAS  PubMed  Google Scholar 

  • Lin, S., Rhodes, P. G., & Cai, Z. (2011). Whole body hypothermia broadens the therapeutic window of intranasally administered IGF-1 in a neonatal rat model of cerebral hypoxia-ischemia. Brain Research, 1385, 246–256.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin, S., Fan, L. W., Rhodes, P. G., Cai, Z. (2009). Intranasal administration of IGF-1 attenuates hypoxic-ischemic brain injury in neonatal rats. Experimental Neurology, 217(2), 361–370.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lamballe, F., Klein, R., & Barbacid, M. (1991). trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell, 66(5), 967–979.

    CAS  PubMed  Google Scholar 

  • Lang, U. E., Hellweg, R., Bajbouj, M., Gaus, V., Sander, T., & Gallinat, J. (2008). Gender-dependent association of a functional NGF polymorphism with anxiety-related personality traits. Pharmacopsychiatry, 41(5), 196–199.

    CAS  PubMed  Google Scholar 

  • Larkfors, L., Ebendal, T., Whittemore, S. R., Persson, H., Hoffer, B., & Olson, L. (1987). Decreased level of nerve growth factor (NGF) and its messenger RNA in the aged rat brain. Brain Research, 427(1), 55–60.

    CAS  PubMed  Google Scholar 

  • Larkfors, L., Lindsay, R. M., & Alderson, R. F. (1996). Characterization of the responses of Purkinje cells to neurotrophin treatment. Journal of Neurochemistry, 66(4), 1362–1373.

    CAS  PubMed  Google Scholar 

  • Lasek, A. W., Gesch, J., Giorgetti, F., Kharazia, V., & Heberlein, U. (2011a). Alk is a transcriptional target of LMO4 and ERα that promotes cocaine sensitization and reward. The Journal of Neuroscience, 31(40), 14134–14141.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lasek, A. W., Lim, J., Kliethermes, C. L., Berger, K. H., Joslyn, G., Brush, G., Xue, L., Robertson, M., Moore, M. S., Vranizan, K., Morris, S. W., Schuckit, M. A., White, R. L., & Heberlein, U. (2011b). An evolutionary conserved role for anaplastic lymphoma kinase in behavioral responses to ethanol. PLoS One, 6(7), e22636.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lauterborn, J. C., Isackson, P. J., & Gall, C. M. (1994). Cellular localization of NGF and NT-3 mRNAs in postnatal rat forebrain. Molecular and Cellular Neurosciences, 5(1), 46–62.

    CAS  PubMed  Google Scholar 

  • Lauterborn, J. C., Bizon, J. L., Tran, T. M., & Gall, C. M. (1995). NGF mRNA is expressed by GABAergic but not cholinergic neurons in rat basal forebrain. The Journal of Comparative Neurology, 360(3), 454–462.

    CAS  PubMed  Google Scholar 

  • Ledda, F. (2007). Ligand-induced cell adhesion as a new mechanism to promote synapse formation. Cell Adhesion & Migration, 3, 137–139.

    Google Scholar 

  • Lee, B. C., Choi, I. G., Kim, Y. K., Ham, B. J., Yang, B. H., Roh, S., Choi, J., Lee, J. S., Oh, D. Y., & Chai, Y. G. (2009). Relation between plasma brain-derived neurotrophic factor and nerve growth factor in the male patients with alcohol dependence. Alcohol, 43(4), 265–269.

    PubMed  Google Scholar 

  • Leibrock, J., Lottspeich, F., Hohn, A., Hofer, M., Hengerer, B., Masiakowski, P., Thoenen, H., & Barde, Y. A. (1989). Molecular cloning and expression of brain-derived neurotrophic factor. Nature, 341(6238), 149–152.

    CAS  PubMed  Google Scholar 

  • Lein, E. S., Hohn, A., & Shatz, C. J. (2000). Dynamic regulation of BDNF and NT-3 expression during visual system development. The Journal of Comparative Neurology, 420(1), 1–18.

    CAS  PubMed  Google Scholar 

  • Levi-Montalcini, R., & Cohen, S. (1960). Effects of the extract of the mouse submaxillary salivary glands on the sympathetic system of mammals. Annals of the New York Academy of Sciences, 29(85), 324–341.

    Google Scholar 

  • Li, Z., Ding, M., Thiele, C. J., & Luo, J. (2004). Ethanol inhibits brain-derived neurotrophic factor-mediated intracellular signaling and activator protein-1 activation in cerebellar granule neurons. Neuroscience, 126, 149–162.

    CAS  PubMed  Google Scholar 

  • Li, Y., Yui, D., Luikart, B. W., McKay, R. M., Li, Y., Rubenstein, J. L., & Parada, L. F. (2012). Conditional ablation of brain-derived neurotrophic factor-TrkB signaling impairs striatal neuron development. Proceedings of the National Academy of Sciences of the United States of America, 109(38), 15491–15496.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liebl, D. J., Tessarollo, L., Palko, M. E., & Parada, L. F. (1997). Absence of sensory neurons before target innervation in brain-derived neurotrophic factor-, neurotrophin 3-, and TrkC-deficient embryonic mice. The Journal of Neuroscience, 17(23), 9113–9121.

    CAS  PubMed  Google Scholar 

  • Light, K. E., Ge, Y., & Belcher, S. M. (2001). Early postnatal ethanol exposure selectively decreases BDNF and truncated TrkB-T2 receptor mRNA expression in the rat cerebellum. Brain Research. Molecular Brain Research, 93, 46–55.

    CAS  PubMed  Google Scholar 

  • Light, K. E., Brown, D. P., Newton, B. W., Belcher, S. M., & Kane, C. J. (2002). Ethanol-induced alterations of neurotrophin receptor expression on Purkinje cells in the neonatal rat cerebellum. Brain Research, 924, 71–81.

    CAS  PubMed  Google Scholar 

  • Lindsley, T. A., Shah, S. N., & Ruggiero, E. A. (2011). Ethanol alters BDNF-induced Rho GTPase activation in axonal growth cones. Alcoholism, Clinical and Experimental Research, 35(7), 1321–1330.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ling, M., Trollér, U., Zeidman, R., Lundberg, C., & Larsson, C. (2004). Induction of neurites by the regulatory domains of PKCdelta and epsilon is counteracted by PKC catalytic activity and by the RhoA pathway. Experimental Cell Research, 292(1), 135–150.

    CAS  PubMed  Google Scholar 

  • Logrip, M. L., Janak, P. H., & Ron, D. (2008). Dynorphin is a downstream effector of striatal BDNF regulation of ethanol intake. The FASEB Journal, 22(7), 2393–2404.

    CAS  Google Scholar 

  • Logrip, M. L., Janak, P. H., & Ron, D. (2009). Escalating ethanol intake is associated with altered corticostriatal BDNF expression. Journal of Neurochemistry, 109(5), 1459–1468.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lommatzsch, M., Zingler, D., Schuhbaeck, K., Schloetcke, K., Zingler, C., Schuff-Werner, P., & Virchow, J. C. (2005). The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiology of Aging, 26(1), 115–123.

    CAS  PubMed  Google Scholar 

  • Luberg, K., Wong, J., Weickert, C. S., & Timmusk, T. (2010). Human TrkB gene: Novel alternative transcripts, protein isoforms and expression pattern in the prefrontal cerebral cortex during postnatal development. Journal of Neurochemistry, 113(4), 952–964.

    CAS  PubMed  Google Scholar 

  • Lukoyanov, N. V., Pereira, P. A., Paula-Barbosa, M. M., & Cadete-Leite, A. (2003). Nerve growth factor improves spatial learning and restores hippocampal cholinergic fibers in rats withdrawn from chronic treatment with ethanol. Experimental Brain Research, 148(1), 88–94.

    CAS  PubMed  Google Scholar 

  • Luo, J., West, J. R., & Pantazis, N. J. (1997). Nerve growth factor and basic fibroblast growth factor protect rat cerebellar granule cells in culture against ethanol-induced cell death. Alcoholism, Clinical and Experimental Research, 21(6), 1108–1120.

    CAS  PubMed  Google Scholar 

  • Lyons, W. E., Mamounas, L. A., Ricaurte, G. A., Coppola, V., Reid, S. W., Bora, S. H., et al. (1999). Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proceedings of the National Academy of Sciences of the United States of America, 96, 15239–15244.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma, L., Harada, T., Harada, C., Romero, M., Hebert, J. M., McConnell, S. K., & Parada, L. F. (2002). Neurotrophin-3 is required for appropriate establishment of thalamocortical connections. Neuron, 36(4), 623–634.

    CAS  PubMed  Google Scholar 

  • Macdonald, D. S., Weerapura, M., Beazely, M. A., Martin, L., Czerwinski, W., Roder, J. C., Orser, B. A., & MacDonald, J. F. (2005). Modulation of NMDA receptors by pituitary adenylate cyclase activating peptide in CA1 neurons requires G alpha q, protein kinase C, and activation of Src. The Journal of Neuroscience, 25(49), 11374–11384.

    CAS  PubMed  Google Scholar 

  • MacLennan, A. J., Lee, N., & Walker, D. W. (1995). Chronic ethanol administration decreases brain-derived neurotrophic factor gene expression in the rat hippocampus. Neuroscience Letters, 197, 105–108.

    CAS  PubMed  Google Scholar 

  • Madhav, T. R., Pei, Q., & Zetterstrom, T. S. (2001). Serotonergic cells of the rat raphe nuclei express mRNA of tyrosine kinase B (trkB), the high-affinity receptor for brain derived neurotrophic factor (BDNF). Brain Research. Molecular Brain Research, 93, 56–63.

    CAS  PubMed  Google Scholar 

  • Maisonpierre, P. C., Belluscio, L., Friedman, B., Alderson, R. F., Wiegand, S. J., Furth, M. E., Lindsay, R. M., & Yancopoulos, G. D. (1990a). NT-3, BDNF, and NGF in the developing rat nervous system: Parallel as well as reciprocal patterns of expression. Neuron, 5(4), 501–509.

    CAS  PubMed  Google Scholar 

  • Maisonpierre, P. C., Belluscio, L., Squinto, S., Ip, N. Y., Furth, M. E., Lindsay, R. M., & Yancopoulos, G. D. (1990b). Neurotrophin-3: A neurotrophic factor related to NGF and BDNF. Science, 247(4949 Pt 1), 1446–1451.

    CAS  PubMed  Google Scholar 

  • Mardy, S., Miura, Y., Endo, F., Matsuda, I., & Indo, Y. (2001). Congenital insensitivity to pain with anhidrosis (CIPA): Effect of TRKA (NTRK1) missense mutations on autophosphorylation of the receptor tyrosine kinase for nerve growth factor. Human Molecular Genetics, 10(3), 179–188.

    CAS  PubMed  Google Scholar 

  • Marini, A. M., Rabin, S. J., Lipsky, R. H., & Mocchetti, I. (1998). Activity-dependent release of brain-derived neurotrophic factor underlies the neuroprotective effect of N-methyl-d-aspartate. The Journal of Biological Chemistry, 273, 29394–29399.

    CAS  PubMed  Google Scholar 

  • Mason, I. (2000). The RET, receptor tyrosine kinase: Activation, signaling and significance in neural development and disease. Pharmaceutica Acta Helvetiae, 74(2–3), 261–264.

    CAS  PubMed  Google Scholar 

  • Massa, S. M., Yang, T., Xie, Y., Shi, J., Bilgen, M., Joyce, J. N., Nehama, D., Rajadas, J., & Longo, F. M. (2010). Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. The Journal of Clinical Investigation, 120(5), 1774–1785.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masure, S., Cik, M., Pangalos, M. N., Bonaventure, P., Verhasselt, P., Lesage, A. S., Leysen, J. E., & Gordon, R. D. (1998). Molecular cloning, expression and tissue distribution of glial-cell-line-derived neurotrophic factor family receptor alpha-3 (GFRalpha-3). European Journal of Biochemistry, 251(3), 622–630.

    CAS  PubMed  Google Scholar 

  • Matsushita, S., Kimura, M., Miyakawa, T., Yoshino, A., Murayama, M., Masaki, T., & Higuchi, S. (2004). Association study of brain-derived neurotrophic factor gene polymorphism and alcoholism. Alcoholism, Clinical and Experimental Research, 28(11), 1609–1612.

    CAS  PubMed  Google Scholar 

  • May, P. A., Gossage, J. P., Kalberg, W. O., Robinson, L. K., Buckley, D., Manning, M., & Hoyme, H. E. (2009). Prevalence and epidemiologic characteristics of FASD from various research methods with an emphasis on recent in-school studies. Developmental Disabilities Research Reviews, 15(3), 176–192.

    PubMed  Google Scholar 

  • McAlhany, R. E., Jr., West, J. R., & Miranda, R. C. (1997). Glial-derived neurotrophic factor rescues calbindin-D28k-immunoreactive neurons in alcohol-treated cerebellar explant cultures. Journal of Neurobiology, 33(6), 835–847.

    CAS  PubMed  Google Scholar 

  • McAlhany, R. E., Jr., Miranda, R. C., Finnell, R. H., & West, J. R. (1999). Ethanol decreases Glial-Derived Neurotrophic Factor (GDNF) protein release but not mRNA expression and increases GDNF-stimulated Shc phosphorylation in the developing cerebellum. Alcoholism, Clinical and Experimental Research, 23(10), 1691–1697.

    CAS  PubMed  Google Scholar 

  • McAlhany, R. E., Jr., West, J. R., & Miranda, R. C. (2000). Glial-derived neurotrophic factor (GDNF) prevents ethanol-induced apoptosis and JUN kinase phosphorylation. Brain Research. Developmental Brain Research, 119(2), 209–216.

    CAS  PubMed  Google Scholar 

  • McGough, N. N., He, D. Y., Logrip, M. L., Jeanblanc, J., Phamluong, K., Luong, K., et al. (2004). RACK1 and brain-derived neurotrophic factor: A homeostatic pathway that regulates alcohol addiction. The Journal of Neuroscience, 24, 10542–10552.

    CAS  PubMed  Google Scholar 

  • Melendez, R. I., McGinty, J. F., Kalivas, P. W., & Becker, H. C. (2012). Brain region-specific gene expression changes after chronic intermittent ethanol exposure and early withdrawal in C57BL/6 J mice. Addiction Biology, 17(2), 351–364.

    CAS  PubMed  Google Scholar 

  • Meng, D., Wu, T., Rao, U., North, C. S., Xiao, H., Javors, M. A., & Adinoff, B. (2011). Serum NPY and BNDF response to a behavioral stressor in alcohol-dependent and healthy control participants. Psychopharmacology, 218(1), 59–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Messing, R. O., Henteleff, M., & Park, J. J. (1991). Ethanol enhances growth factor-induced neurite formation in PC12 cells. Brain Research, 565(2), 301–311.

    CAS  PubMed  Google Scholar 

  • Miller, M. W. (2004). Repeated episodic exposure to ethanol affects neurotrophin content in the forebrain of the mature rat. Experimental Neurology, 189, 173–181.

    CAS  PubMed  Google Scholar 

  • Miller, M. W., & Mooney, S. M. (2004). Chronic exposure to ethanol alters neurotrophin content in the basal forebrain-cortex system in the mature rat: Effects on autocrine-paracrine mechanisms. Journal of Neurobiology, 60, 490–498.

    CAS  PubMed  Google Scholar 

  • Miller, T. M., Tansey, M. G., Johnson, E. M., & Creedon, D. J. (1997). Inhibition of phosphatidylinositol 3-kinase activity blocks depolarization- and insulin-like growth factor I-mediated survival of cerebellar granule cells. The Journal of Biological Chemistry, 272, 9847–9853.

    CAS  PubMed  Google Scholar 

  • Miller, R., King, M. A., Heaton, M. B., & Walker, D. W. (2002). The effects of chronic ethanol consumption on neurotrophins and their receptors in the rat hippocampus and basal forebrain. Brain Research, 950, 137–147.

    CAS  PubMed  Google Scholar 

  • Miller, M. W., Mooney, S. M., & Middleton, F. A. (2006). Transforming growth factor beta1 and ethanol affect transcription and translation of genes and proteins for cell adhesion molecules in B104 neuroblastoma cells. Journal of Neurochemistry, 97(4), 1182–1190.

    CAS  PubMed  Google Scholar 

  • Mitchell, J. J., Paiva, M., Walker, D. W., & Heaton, M. B. (1999). BDNF and NGF afford in vitro neuroprotection against ethanol combined with acute ischemia and chronic hypoglycemia. Developmental Neuroscience, 21(1), 68–75.

    CAS  PubMed  Google Scholar 

  • Mitschelen, M., Yan, H., Farley, J. A., Warrington, J. P., Han, S., Hereñú, C. B., Csiszar, A., Ungvari, Z., Bailey-Downs, L. C., Bass, C. E., & Sonntag, W. E. (2011). Long-term deficiency of circulating and hippocampal insulin-like growth factor I induces depressive behavior in adult mice: A potential model of geriatric depression. Neuroscience, 185, 50–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mobley, W. C., Rutkowski, J. L., Tennekoon, G. I., Gemski, J., Buchanan, K., & Johnston, M. V. (1986). Nerve growth factor increases choline acetyltransferase activity in developing basal forebrain neurons. Brain Research, 387(1), 53–62.

    CAS  PubMed  Google Scholar 

  • Moises, H. C., Womble, M. D., Washburn, M. S., & Williams, L. R. (1995). Nerve growth factor facilitates cholinergic neurotransmission between nucleus basalis and the amygdala in rat: An electrophysiological analysis. The Journal of Neuroscience, 15(12), 8131–8142.

    CAS  PubMed  Google Scholar 

  • Monk, B. R., Leslie, F. M., & Thomas, J. D. (2012). The effects of perinatal choline supplementation on hippocampal cholinergic development in rats exposed to alcohol during the brain growth spurt. Hippocampus, 22(8), 1750–1757.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mooney, S. M., & Miller, M. W. (2007). Nerve growth factor neuroprotection of ethanol-induced neuronal death in rat cerebral cortex is age dependent. Neuroscience, 149(2), 372–381.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moore, D. B., Madorsky, I., Paiva, M., & Barrow Heaton, M. (2004a). Ethanol exposure alters neurotrophin receptor expression in the rat central nervous system: Effects of prenatal exposure. Journal of Neurobiology, 60, 101–113.

    CAS  PubMed  Google Scholar 

  • Moore, D. B., Madorsky, I., Paiva, M., & Barrow Heaton, M. (2004b). Ethanol exposure alters neurotrophin receptor expression in the rat central nervous system: Effects of neonatal exposure. Journal of Neurobiology, 60, 114–126.

    CAS  PubMed  Google Scholar 

  • Mounien, L., Do Rego, J. C., Bizet, P., Boutelet, I., Gourcerol, G., Fournier, A., Brabet, P., Costentin, J., Vaudry, H., & Jegou, S. (2009). Pituitary adenylate cyclase-activating polypeptide inhibits food intake in mice through activation of the hypothalamic melanocortin system. Neuropsychopharmacology, 34(2), 424–435.

    CAS  PubMed  Google Scholar 

  • Mount, H. T., Dreyfus, C. F., & Black, I. B. (1994). Neurotrophin-3 selectively increases cultured Purkinje cell survival. Neuroreport, 5(18), 2497–2500.

    CAS  PubMed  Google Scholar 

  • Mullikin-Kilpatrick, D., & Treistman, S. N. (1995). Inhibition of dihydropyridine-sensitive Ca++ channels by ethanol in undifferentiated and nerve growth factor-treated PC12 cells: Interaction with the inactivated state. The Journal of Pharmacology and Experimental Therapeutics, 272(2), 489–497.

    CAS  PubMed  Google Scholar 

  • Muschler, M. A., Heberlein, A., Frieling, H., Vogel, N., Becker, C. M., Kornhuber, J., Bleich, S., & Hillemacher, T. (2011). Brain-derived neurotrophic factor, Val66Met single nucleotide polymorphism is not associated with alcohol dependence. Psychiatric Genetics, 21(1), 53–54.

    PubMed  Google Scholar 

  • McClure, K. D., French, R. L., & Heberlein, U. (2011). A Drosophila model for fetal alcohol syndrome disorders: Role for the insulin pathway. Disease Models & Mechanisms, 4(3), 335–346.

    CAS  Google Scholar 

  • Miki, T., Kuma, H., Yokoyama, T., Sumitani, K., Matsumoto, Y., Kusaka, T., Warita, K., Wang, Z. Y., Hosomi, N., Imagawa, T., S Bedi, K., Itoh, S., Nakamura, Y., & Takeuchi, Y. (2008). Early postnatal ethanol exposure induces fluctuation in the expression of BDNF mRNA in the developing rat hippocampus. Acta Neurobiologiae Expimentalis (Wars), 68(4), 484–493.

    Google Scholar 

  • Mitchell, J. J., Paiva, M., Moore, D. B., Walker, D. W., & Heaton, M. B. (1998). A comparative study of ethanol, hypoglycemia, hypoxia and neurotrophic factor interactions with fetal rat hippocampal neurons: A multi-factor in vitro model developmental ethanol effects. Brain Research: Developmental Brain Research, 105(2), 241–250.

    CAS  PubMed  Google Scholar 

  • Mobley, W. C., Woo, J. E., Edwards, R. H., Riopelle, R. J., Longo, F. M., Weskamp, G., Otten, U., Valletta, J. S., & Johnston, M. V. (1989). Developmental regulation of nerve growth factor and its receptor in the rat caudate-putamen. Neuron, 3(5), 655–664.

    CAS  PubMed  Google Scholar 

  • Mon, A., Durazzo, T. C., Gazdzinski, S., Hutchison, K. E., Pennington, D., & Meyerhoff, D. J.(2013). Brain-derived neurotrophic factor genotype is associated with brain gray and white matter tissue volumes recovery in abstinent alcohol-dependent individuals. Genes Brain and Behavior, 12(1), 98–107.

    CAS  Google Scholar 

  • Montag, C., Basten, U., Stelzel, C., Fiebach, C. J., & Reuter, M. (2010). The BDNF Val66Met polymorphism and anxiety: Support for animal knock-in studies from a genetic association study in humans. Psychiatry Research, 179(1), 86–90.

    CAS  PubMed  Google Scholar 

  • Moonat, S., Sakharkar, A. J., Zhang, H., & Pandey, S. C. (2011). The role of amygdaloid brain-derived neurotrophic factor, activity-regulated cytoskeleton-associated protein and dendritic spines in anxiety and alcoholism. Addiction Biology, 16(2), 238–250.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moore, M. S., DeZazzo, J., Luk, A. Y., Tully, T., Singh, C. M., & Heberlein, U. (1998). Ethanol intoxication in Drosophila: Genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell, 93(6), 997–1007.

    CAS  PubMed  Google Scholar 

  • Nagata, T., Shinagawa, S., Nukariya, K., Nakayama, R., Nakayama, K., & Yamada, H. (2011). Association between nerve growth factor gene polymorphism and executive dysfunction in Japanese patients with early-stage Alzheimer’s disease and amnestic mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 32(6), 379–386.

    CAS  PubMed  Google Scholar 

  • Nakano, T., Fujimoto, T., Shimooki, S., Fukudome, T., Uchida, T., Tsuji, T., Mitsuyama, Y., Akimoto, H., & Furukawa, S. (1996). Transient elevation of nerve growth factor content in the rat hippocampus and frontal cortex by chronic ethanol treatment. Psychiatry and Clinical Neurosciences, 50(3), 157–160.

    CAS  PubMed  Google Scholar 

  • Nakata, M., Kohno, D., Shintani, N., Nemoto, Y., Hashimoto, H., Baba, A., & Yada, T. (2004). PACAP deficient mice display reduced carbohydrate intake and PACAP activates NPY-containing neurons in the rat hypothalamic arcuate nucleus. Neuroscience Letters, 370(2–3), 252–256.

    CAS  PubMed  Google Scholar 

  • Neasta, J., Kiely, P. A., He, D. Y., Adams, D. R., O’Connor, R., & Ron, D. (2012). Direct interaction between scaffolding proteins RACK1 and 14-3-3Œ∂ regulates brain-derived neurotrophic factor (BDNF) transcription. The Journal of Biological Chemistry, 287(1), 322–336.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nishijima, T., Piriz, J., Duflot, S., Fernandez, A. M., Gaitan, G., Gomez-Pinedo, U., Verdugo, J. M., Leroy, F., Soya, H., Nuñez, A., & Torres-Aleman, I. (2010). Neuronal activity drives localized blood–brain-barrier transport of serum insulin-like growth factor-I into the CNS. Neuron, 67(5), 834–846.

    CAS  PubMed  Google Scholar 

  • Nonomura, T., Kubo, T., Oka, T., Shimoke, K., Yamada, M., Enokido, Y., & Hatanaka, H. (1996). Signaling pathways and survival effects of BDNF and NT-3 on cultured cerebellar granule cells. Brain Research. Developmental Brain Research, 97(1), 42–50.

    CAS  PubMed  Google Scholar 

  • Numan, S., & Seroogy, K. B. (1999). Expression of trkB and trkC mRNAs by adult midbrain dopamine neurons: A double-label in situ hybridization study. The Journal of Comparative Neurology, 403, 295–308.

    CAS  PubMed  Google Scholar 

  • Nakahashi, T., Fujimura, H., Altar, C. A., Li, J., Kambayashi, J., Tandon, N. N., & Sun, B. (2000). Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor. FEBS Letters, 470(2), 113–117.

    CAS  PubMed  Google Scholar 

  • Okragly, A. J., & Haak-Frendscho, M. (1997) An acid-treatment method for the enhanced detection of GDNF in biological samples. Experimental Neurology, 145(2 Pt. 1), 592–596.

    Google Scholar 

  • Ozan, E., Okur, H., Eker, C., Eker, O. D., Gönül, A. S., & Akarsu, N. (2010). The effect of depression, BDNF gene val66met polymorphism and gender on serum BDNF levels. Brain Research Bulletin, 81(1), 61–65.

    CAS  PubMed  Google Scholar 

  • Oberdoerster, J., & Rabin, R. A. (1999). NGF-differentiated and undifferentiated PC12 cells vary in induction of apoptosis by ethanol. Life Sciences, 64(23), PL 267–PL 272.

    CAS  Google Scholar 

  • Ohrtman, J. D., Stancik, E. K., Lovinger, D. M., & Davis, M. I. (2006). Ethanol inhibits brain-derived neurotrophic factor stimulation of extracellular signal-regulated/mitogen-activated protein kinase in cerebellar granule cells. Alcohol, 39, 29–37.

    CAS  PubMed  Google Scholar 

  • Okamoto, H., Miki, T., Lee, K. Y., Yokoyama, T., Kuma, H., Gu, H., et al. (2006). Effects of chronic ethanol administration on the expression levels of neurotrophic factors in the rat hippocampus. Okajimas Folia Anatomica Japonica, 83, 1–6.

    CAS  PubMed  Google Scholar 

  • Oliva, A. A., Jr., Atkins, C. M., Copenagle, L., & Banker, G. A. (2006). Activated c-Jun N-terminal kinase is required for axon formation. The Journal of Neuroscience, 26, 9462–9470.

    CAS  PubMed  Google Scholar 

  • Pan, W., & Kastin, A. J. (2000). Interactions of IGF-1 with the blood–brain barrier in vivo and in situ. Neuroendocrinology, 72(3), 171–178.

    CAS  PubMed  Google Scholar 

  • Pandey, S. C., Zhang, H., Roy, A., & Misra, K. (2005). Central and medial amygdaloid brain-derived neurotrophic factor signaling plays a critical role in alcohol-drinking and anxiety-like behaviors. The Journal of Neuroscience, 26, 8320–8331.

    Google Scholar 

  • Parks, E. A., McMechan, A. P., Hannigan, J. H., & Berman, R. F. (2008). Environmental enrichment alters neurotrophin levels after fetal alcohol exposure in rats. Alcoholism, Clinical and Experimental Research, 32(10), 1741–1751.

    CAS  PubMed  Google Scholar 

  • Pascual, M., Rocamora, N., Acsády, L., Freund, T. F., & Soriano, E. (1998). Expression of nerve growth factor and neurotrophin-3 mRNAs in hippocampal interneurons: Morphological characterization, levels of expression, and colocalization of nerve growth factor and neurotrophin-3. The Journal of Comparative Neurology, 395(1), 73–90.

    CAS  PubMed  Google Scholar 

  • Passilta, M., Kervinen, K., & Kesäniemi, Y. A. (1999). Glucose metabolism, insulin-like growth factor-I, and insulin-like growth factor-binding protein-1 after alcohol withdrawal. Alcoholism, Clinical and Experimental Research, 23(3), 471–475.

    CAS  PubMed  Google Scholar 

  • Patten, A. R., Brocardo, P. S., & Christie, B. R. (2012). Omega-3 supplementation can restore glutathione levels and prevent oxidative damage caused by prenatal ethanol exposure. Journal of Nutrition Biochemistry, 24(5), 760–769. doi:10.1016/j.jnutbio.2012.04.003.

    Google Scholar 

  • Paula-Barbosa, M. M., Pereira, P. A., Cadete-Leite, A., & Dulce Madeira, M. (2003). NGF and NT-3 exert differential effects on the expression of neuropeptides in the suprachiasmatic nucleus of rats withdrawn from ethanol treatment. Brain Research, 983(1–2), 64–73.

    CAS  PubMed  Google Scholar 

  • Pitts, A. F., & Miller, M. W. (1995). Expression of nerve growth factor, p75, and trk in the somatosensory and motor cortices of mature rats: Evidence for local trophic support circuits. Somatosensory & Motor Research, 12(3–4), 329–342.

    CAS  Google Scholar 

  • Pitts, A. F., & Miller, M. W. (2000). Expression of nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 in the somatosensory cortex of the mature rat: Coexpression with high-affinity neurotrophin receptors. The Journal of Comparative Neurology, 418(3), 241–254.

    CAS  PubMed  Google Scholar 

  • Pochon, N. A., Menoud, A., Tseng, J. L., Zurn, A. D., & Aebischer, P. (1997). Neuronal GDNF expression in the adult rat nervous system identified by in situ hybridization. The European Journal of Neuroscience, 9(3), 463–471.

    CAS  PubMed  Google Scholar 

  • Prado de Carvalho, L., & Izquierdo, I. (1977). Changes in the frequency of electroencephalographic rhythms of the rat caused by single, intraperitoneal injections of ethanol. Archives Internationales de Pharmacodynamie et de Thérapie, 229(1), 157–162.

    CAS  PubMed  Google Scholar 

  • Pruunsild, P., Kazantseva, A., Aid, T., Palm, K., & Timmusk, T. (2007). Dissecting the human BDNF locus: Bidirectional transcription, complex splicing, and multiple promoters. Genomics, 90, 397–406.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pascual, A., Hidalgo-Figueroa, M., Gómez-Díaz, R., & López-Barneo, J. (2011). GDNF and protection of adult central catecholaminergic neurons. Journal of Molecular Endocrinology, 46(3), R83–R92.

    CAS  PubMed  Google Scholar 

  • Petryshen, T. L., Sabeti, P. C., Aldinger, K. A., Fry, B., Fan, J. B., Schaffner, S. F., Waggoner, S. G., Tahl, A. R., & Sklar, P. (2010). Population genetic study of the brain-derived neurotrophic factor (BDNF) gene. Molecular Psychiatry, 15(8), 810–815.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Powrozek, T. A., & Olson, E. C. (2012). Ethanol-induced disruption of Golgi apparatus morphology, primary neurite number and cellular orientation in developing cortical neurons. Alcohol, 46(7), 619–627.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prakash, A., Zhang, H., & Pandey, S. C. (2008). Innate differences in the expression of brain-derived neurotrophic factor in the regions within the extended amygdala between alcohol preferring and nonpreferring rats. Alcohol Clinical and Experimental Research, 32(6), 909–920.

    CAS  Google Scholar 

  • Rahman, H., Kentroti, S., & Vernadakis, A. (1993). Early in ovo exposure of chick embryos toethanol prevents the neuronotrophic effects of intracerebral NGF administration on cholinergic phenotypic expression. Brain Research. Developmental Brain Research, 76(2), 256–259.

    CAS  PubMed  Google Scholar 

  • Raivio, N., Tiraboschi, E., Saarikoski, S. T., Castren, E., & Kiianmaa, K. (2012). Brain-derived neurotrophic factor expression after acute administration of ethanol. European Journal of Pharmacology, 687(1–3), 9–13.

    CAS  PubMed  Google Scholar 

  • Rajagopal, R., Chen, Z. Y., Lee, F. S., & Chao, M. V. (2004). Transactivation of Trk neurotrophin receptors by G-protein-coupled receptor ligands occurs on intracellular membranes. The Journal of Neuroscience, 24(30), 6650–6658.

    CAS  PubMed  Google Scholar 

  • Reichardt, L. F. (2006). Neurotrophin-regulated signaling pathways. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 361, 1545–1564.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reiter-Funk, C. K., & Dohrman, D. P. (2005). Chronic ethanol exposure increases microtubule content in PC12 cells. BMC Neuroscience, 6, 16.

    PubMed Central  PubMed  Google Scholar 

  • Resnicoff, M., Cui, S., Coppola, D., Hoek, J. B., & Rubin, R. (1996). Ethanol-induced inhibition of cell proliferation is modulated by insulin-like growth factor-I receptor levels. Alcoholism, Clinical and Experimental Research, 20(5), 961–966.

    CAS  PubMed  Google Scholar 

  • Rios, M., Fan, G., Fekete, C., Kelly, J., Bates, B., Kuehn, R., et al. (2001). Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Molecular Endocrinology, 15, 1748–1757.

    CAS  PubMed  Google Scholar 

  • Roberto, M., Nelson, T. E., Ur, C. L., Brunelli, M., Sanna, P. P., & Gruol, D. L. (2003). The transient depression of hippocampal CA1 LTP induced by chronic intermittent ethanol exposure is associated with an inhibition of the MAP kinase pathway. The European Journal of Neuroscience, 17, 1646–1654.

    CAS  PubMed  Google Scholar 

  • Rocamora, N., Pascual, M., Acsàdy, L., de Lecea, L., Freund, T. F., & Soriano, E. (1996). Expression of NGF and NT3 mRNAs in hippocampal interneurons innervated by the GABAergic septohippocampal pathway. The Journal of Neuroscience, 16(12), 3991–4004.

    CAS  PubMed  Google Scholar 

  • Roivainen, R., McMahon, T., & Messing, R. O. (1993). Protein kinase C isozymes that mediate enhancement of neurite outgrowth by ethanol and phorbol esters in PC12 cells. Brain Research, 624(1–2), 85–93.

    CAS  PubMed  Google Scholar 

  • Roivainen, R., Hundle, B., & Messing, R. O. (1995). Ethanol enhances growth factor activation of mitogen-activated protein kinases by a protein kinase C-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 92, 1891–1895.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rojdmark, S., & Brismar, K. (2001). Decreased IGF-I bioavailability after ethanol abuse in alcoholics: Partial restitution after short-term abstinence. Journal of Endocrinological Investigation, 24(7), 476–482.

    CAS  PubMed  Google Scholar 

  • Rojdmark, S., Rydvald, Y., Aquilonius, A., & Brismar, K. (2000). Insulin-like growth factor (IGF)-1 and IGF-binding protein-1 concentrations in serum of normal subjects after alcohol ingestion: Evidence for decreased IGF-1 bioavailability. Clinical Endocrinology, 52(3), 313–318.

    CAS  PubMed  Google Scholar 

  • Ron, D., & Messing, R. O. (2013). Signaling pathways mediating alcohol effects. Current Topics in Behavioral Neurosciences, 13, 87–126.

    PubMed Central  PubMed  Google Scholar 

  • Rossignol, D. A., & Frye, R. E. (2012). A review of research trends in physiological abnormalities in autism spectrum disorders: Immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Molecular Psychiatry, 17(4), 389–401.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rueda, A. V., Teixeira, A. M., Yonamine, M., & Camarini, R. (2012). Environmental enrichment blocks ethanol-induced locomotor sensitization and decreases BDNF levels in the prefrontal cortex in mice. Addiction Biology, 17(4), 736–745.

    CAS  PubMed  Google Scholar 

  • Ryan, S. H., Williams, J. K., & Thomas, J. D. (2008). Choline supplementation attenuates learning deficits associated with neonatal alcohol exposure in the rat: Effects of varying the timing of choline administration. Brain Research, 27(1237), 91–100.

    Google Scholar 

  • Sakata-Haga, H., Sawada, K., Hisano, S., & Fukui, Y. (2001). Abnormalities of cerebellar foliation in rats prenatally exposed to ethanol. Acta Neuropathologica, 102(1), 36–40.

    CAS  PubMed  Google Scholar 

  • Schmitt, M., Gleiter, C. H., Nichol, J. L., Pralle, L., Hasselblatt, M., Poser, W., & Ehrenreich, H. (1999). Haematological abnormalities in early abstinent alcoholics are closely associated with alterations in thrombopoietin and erythropoietin serum profiles. Thrombosis and Haemostasis, 82(5), 1422–1427.

    CAS  PubMed  Google Scholar 

  • Sivaswamy, S., Neafsey, E. J., & Collins, M. A. (2010). Neuroprotective preconditioning of rat brain cultures with ethanol: Potential transduction by PKC isoforms and focal adhesion kinase upstream of increases in effector heat shock proteins. European Journal of Neuroscience, 32(11), 1800–1812.

    PubMed  Google Scholar 

  • Söderström, S., & Ebendal, T. (1995). The levels of neurotrophin-3 protein in the rat brain determined by enzyme immunoassay show a pattern distinct from nerve growth factor. Neuroscience Letters, 189(1), 5–8.

    PubMed  Google Scholar 

  • Stornetta, R. L., & Zhu, J. J. (2011). Ras and Rap signaling in synaptic plasticity and mental disorders. Neuroscientist, 17(1), 54–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sajdel-Sulkowska, E. M., Xu, M., McGinnis, W., & Koibuchi, N. (2011). Brain region-specific changes in oxidative stress and neurotrophin levels in autism spectrum disorders (ASD). Cerebellum, 10(1), 43–48.

    CAS  PubMed  Google Scholar 

  • Sanchez, M. P., Silos-Santiago, I., Frison, J., He, B., Lira, S. A., & Barbacid, M. (1996). Renalagenesis and the absence of enteric neurons in mice lacking GDNF. Nature, 382(6586), 70–73.

    CAS  PubMed  Google Scholar 

  • Sanchez-Ortiz, E., Yui, D., Song, D., Li, Y., Rubenstein, J. L., Reichardt, L. F., & Parada, L. F. (2012). TrkA gene ablation in basal forebrain results in dysfunction of the cholinergic circuitry. The Journal of Neuroscience, 32(12), 4065–4079.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sariola, H., & Saarma, M. (2003). Novel functions and signalling pathways for GDNF. Journal of Cell Science, 116(Pt 19), 3855–3862.

    CAS  PubMed  Google Scholar 

  • Scarpi, D., Cirelli, D., Matrone, C., Castronovo, G., Rosini, P., Occhiato, E. G., Romano, F., Bartali, L., Clemente, A. M., Bottegoni, G., Cavalli, A., De Chiara, G., Bonini, P., Calissano, P., Palamara, A. T., Garaci, E., Torcia, M. G., Guarna, A., & Cozzolino, F. (2012). Low molecular weight, non-peptidic agonists of TrkA receptor with NGF-mimetic activity. Cell Death and Disease, 3, e389.

    CAS  PubMed  Google Scholar 

  • Scaruffi, P., Cusano, R., Dagnino, M., & Tonini, G. P. (1999). Detection of DNA polymorphisms and point mutations of high-affinity nerve growth factor receptor (TrkA) in human neuroblastoma. International Journal of Oncology, 14(5), 935–938.

    CAS  PubMed  Google Scholar 

  • Schecterson, L. C., & Bothwell, M. (2010). Neurotrophin receptors: Old friends with new partners. Developmental Neurobiology, 70(5), 332–338.

    CAS  PubMed  Google Scholar 

  • Seabold, G. K., Luo, J., & Miller, M. W. (1998). Effect of ethanol on neurotrophin-mediated cell survival and receptor expression in cultures of cortical neurons. Brain Research. Developmental Brain Research, 108, 139–145.

    CAS  PubMed  Google Scholar 

  • Segal, R. A., Takahashi, H., & McKay, R. D. (1992). Changes in neurotrophin responsiveness during the development of cerebellar granule neurons. Neuron, 9, 1041–1152.

    CAS  PubMed  Google Scholar 

  • Seiler, M., & Schwab, M. E. (1984). Specific retrograde transport of nerve growth factor (NGF) from neocortex to nucleus basalis in the rat. Brain Research, 300(1), 33–39.

    CAS  PubMed  Google Scholar 

  • Shelton, D. L., & Reichardt, L. F. (1986). Studies on the expression of the beta nerve growth factor (NGF) gene in the central nervous system: Level and regional distribution of NGF mRNA suggest that NGF functions as a trophic factor for several distinct populations of neurons. Proceedings of the National Academy of Sciences of the United States of America, 83(8), 2714–2718.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi, G. X., Jin, L., & Andres, D. A. (2010). Src-dependent TrkA transactivation is required for pituitary adenylate cyclase-activating polypeptide 38-mediated Rit activation and neuronal differentiation. Molecular Biology of the Cell, 21(9), 1597–1608.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimoke, K., Yamagishi, S., Yamada, M., Ikeuchi, T., & Hatanaka, H. (1999). Inhibition of phosphatidylinositol 3-kinase activity elevates c-Jun N-terminal kinase activity in apoptosis of cultured cerebellar granule neurons. Brain Research. Developmental Brain Research, 112(2), 245–253.

    CAS  PubMed  Google Scholar 

  • Shin, S., Stewart, R., Ferri, C. P., Kim, J. M., Shin, I. S., Kim, S. W., Yang, S. J., & Yoon, J. S. (2010). An investigation of associations between alcohol use disorder and polymorphisms on ALDH2, BDNF, 5-HTTLPR, and MTHFR genes in older Korean men. International Journal of Geriatric Psychiatry, 25(5), 441–448.

    PubMed  Google Scholar 

  • Smeyne, R. J., Klein, R., Schnapp, A., Long, L. K., Bryant, S., Lewin, A., Lira, S. A., & Barbacid, M. (1994). Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature, 368(6468), 246–249.

    CAS  PubMed  Google Scholar 

  • Sobreviela, T., Clary, D. O., Reichardt, L. F., Brandabur, M. M., Kordower, J. H., & Mufson, E. J. (1994). TrkA-immunoreactive profiles in the central nervous system: Colocalization with neurons containing p75 nerve growth factor receptor, choline acetyltransferase, and serotonin. The Journal of Comparative Neurology, 350(4), 587–611.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soliman, F., Glatt, C. E., Bath, K. G., Levita, L., Jones, R. M., Pattwell, S. S., Jing, D., Tottenham, N., Amso, D., Somerville, L. H., Voss, H. U., Glover, G., Ballon, D. J., Liston, C., Teslovich, T., Van Kempen, T., Lee, F. S., & Casey, B. J. (2010). A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science, 327(5967), 863–866.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sotelo, C. (2004). Cellular and genetic regulation of the development of the cerebellar system. Progress in Neurobiology, 72, 295–339.

    CAS  PubMed  Google Scholar 

  • Spengler, D., Waeber, C., Pantaloni, C., Holsboer, F., Bockaert, J., Seeburg, P. H., & Journot, L. (1993). Differential signal transduction by five splice variants of the PACAP receptor. Nature, 365(6442), 170–175.

    CAS  PubMed  Google Scholar 

  • Strand, A. D., Baquet, Z. C., Aragaki, A. K., Holmans, P., Yang, L., Cleren, C., et al. (2007). Expression profiling of Huntington’s disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. The Journal of Neuroscience, 27, 11758–11768.

    CAS  PubMed  Google Scholar 

  • Studer, L., Spenger, C., Luthman, J., & Seiler, R. W. (1994). NGF increases neuritic complexity of cholinergic interneurons in organotypic cultures of neonatal rat striatum. The Journal of Comparative Neurology, 340(2), 281–296.

    CAS  PubMed  Google Scholar 

  • Su, N., Zhang, L., Fei, F., Hu, H., Wang, K., Hui, H., Jiang, X. F., Li, X., Zhen, H. N., Li, J., Cao, B. P., Dang, W., Qu, Y., & Zhou, F. (2011). The brain-derived neurotrophic factor is associated with alcohol dependence-related depression and antidepressant response. Brain Research, 1415, 119–126.

    CAS  PubMed  Google Scholar 

  • Swanson, D. J., King, M. A., Walker, D. W., & Heaton, M. B. (1995). Chronic prenatal ethanol exposure alters the normal ontogeny of choline acetyltransferase activity in the rat septohippocampal system. Alcoholism, Clinical and Experimental Research, 19(5), 1252–1260.

    CAS  PubMed  Google Scholar 

  • Swanson, D. J., Tonjes, L., King, M. A., Walker, D. W., & Heaton, M. B. (1996). Influence of chronic prenatal ethanol on cholinergic neurons of the septohippocampal system. The Journal of Comparative Neurology, 364(1), 104–112.

    CAS  PubMed  Google Scholar 

  • Szabò, G., & Hoffman, P. L. (1995). Brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin-4/5 maintain functional tolerance to ethanol. European Journal of Pharmacology, 287, 35–41.

    PubMed  Google Scholar 

  • Tanaka, K., Hashimoto, H., Shintani, N., Yamamoto, A., & Baba, A. (2004). Reduced hypothermic and hypnotic responses to ethanol in PACAP-deficient mice. Regulatory Peptides, 123(1–3), 95–98.

    CAS  PubMed  Google Scholar 

  • Tapia-Arancibia, L., Rage, F., Givalois, L., Dingeon, P., Arancibia, S., & Beauge, F. (2001). Effects of alcohol on brain-derived neurotrophic factor mRNA expression in discrete regions of the rat hippocampus and hypothalamus. Journal of Neuroscience Research, 63, 200–208.

    CAS  PubMed  Google Scholar 

  • Tararuk, T., Ostman, N., Li, W., Bjorkblom, B., Padzik, A., Zdrojewska, J., Hongisto, V., Herdegen, T., Konopka, W., Courtney, M. J., & Coffey, E. T. (2006). JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length. The Journal of Cell Biology, 173(2), 265–277.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tateno, M., Ukai, W., Ozawa, H., Yamamoto, M., Toki, S., Ikeda, H., & Saito, T. (2004). Ethanol inhibition of neural stem cell differentiation is reduced by neurotrophic factors. Alcoholism, Clinical and Experimental Research, 28(8 Suppl Proceedings), 134S–138S.

    CAS  PubMed  Google Scholar 

  • Tessarollo, L., Tsoulfas, P., Martin-Zanca, D., Gilbert, D. J., Jenkins, N. A., Copeland, N. G., & Parada, L. F. (1993). trkC, a receptor for neurotrophin-3, is widely expressed in the developing nervous system and in non-neuronal tissues. Development, 118(2), 463–475.

    CAS  PubMed  Google Scholar 

  • Timmusk, T., Palm, K., Metsis, M., Reintam, T., Paalme, V., Saarma, M., et al. (1993). Multiple promoters direct tissue-specific expression of the rat BDNF gene. Neuron, 10, 475–489.

    CAS  PubMed  Google Scholar 

  • Tongiorgi, E., Domenici, L., & Simonato, M. (2006). What is the biological significance of BDNF mRNA targeting in the dendrites? Clues from epilepsy and cortical development. Molecular Neurobiology, 33, 17–32.

    CAS  PubMed  Google Scholar 

  • Trupp, M., Ryden, M., Jörnvall, H., Funakoshi, H., Timmusk, T., Arenas, E., & Ibanez, C. F. (1995). Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. The Journal of Cell Biology, 130(1), 137–148.

    CAS  PubMed  Google Scholar 

  • Tsai, S. J., Liao, D. L., Yu, Y. W., Chen, T. J., Wu, H. C., Lin, C. H., Cheng, C. Y., & Hong, C. J. (2005). A study of the association of (Val66Met) polymorphism in the brain-derived neurotrophic factor gene with alcohol dependence and extreme violence in Chinese males. Neuroscience Letters, 381(3), 340–343.

    CAS  PubMed  Google Scholar 

  • Tsuji, R., Guizzetti, M., & Costa, L. G. (2003). In vivo ethanol decreases phosphorylated MAPK and p70S6 kinase in the developing rat brain. Neuroreport, 14, 1395–1399.

    CAS  PubMed  Google Scholar 

  • Tsuji, R., Fattori, V., Abe, S., Costa, L. G., & Kobayashi, K. (2008). Effects of postnatal ethanol exposure at different developmental phases on neurotrophic factors and phosphorylated proteins on signal transductions in rat brain. Neurotoxicology and Teratology, 30(3), 228–236.

    CAS  PubMed  Google Scholar 

  • Tang, N., He, M., O’Riordan, M. A., Farkas, C., Buck, K., Lemmon, V., Bearer, C. F. (2006). Ethanol inhibits L1 cell adhesion molecule activation of mitogen-activated protein kinases. Journal of Neurochemistry, 96(5), 1480–1490.

    CAS  PubMed  Google Scholar 

  • Terracciano, A., Piras, M. G., Lobina, M., Mulas, A., Meirelles, O., Sutin, A. R., Chan, W., Sanna, S., Uda, M., Crisponi, L., & Schlessinger, D. (2011). Genetics of serum BDNF: Meta-analysis of the Val66Met and genome-wide association study. World Journal of Biological Psychiatry.

    Google Scholar 

  • Trajkovska, V., Marcussen, A. B., Vinberg, M., Hartvig, P., Aznar, S., & Knudsen, G. M. (2007). Measurements of brain-derived neurotrophic factor: Methodological aspects and demographical data. Brain Research Bulletin, 73(1–3), 143–149.

    CAS  PubMed  Google Scholar 

  • Uhl, G. R., Liu, Q. R., Walther, D., Hess, J., & Naiman, D. (2001). Polysubstance abuse-vulnerability genes: Genome scans for association, using 1,004 subjects and 1,494 single-nucleotide polymorphisms. American Journal of Human Genetics, 69, 1290–1300.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Umene-Nakano, W., Yoshimura, R., Ikenouchi-Sugita, A., Hori, H., Hayashi, K., Ueda, N., & Nakamura, J. (2009). Serum levels of brain-derived neurotrophic factor in comorbidity of depression and alcohol dependence. Human Psychopharmacology, 24(5), 409–413.

    CAS  PubMed  Google Scholar 

  • Vangipuram, S. D., Grever, W. E., Parker, G. C., & Lyman, W. D. (2008). Ethanol increases fetal human neurosphere size and alters adhesion molecule gene expression. Alcoholism, Clinical and Experimental Research, 32(2), 339–347.

    CAS  PubMed  Google Scholar 

  • Vaudry, D., Hamelink, C., Damadzic, R., Eskay, R. L., Gonzalez, B., & Eiden, L. E. (2005). Endogenous PACAP acts as a stress response peptide to protect cerebellar neurons from ethanol or oxidative insult. Peptides, 26(12), 2518–2524.

    CAS  PubMed  Google Scholar 

  • Ventimiglia, R., Mather, P. E., Jones, B. E., & Lindsay, R. M. (1995). The neurotrophins BDNF, NT-3 and NT-4/5 promote survival and morphological and biochemical differentiation of striatal neurons in vitro. The European Journal of Neuroscience, 7(2), 213–222.

    CAS  PubMed  Google Scholar 

  • Vig, P. J., Subramony, S. H., D’Souza, D. R., Wei, J., & Lopez, M. E. (2006). Intranasal administration of IGF-I improves behavior and Purkinje cell pathology in SCA1 mice. Brain Research Bulletin, 69(5), 573–579.

    CAS  PubMed  Google Scholar 

  • Vigers, A. J., Baquet, Z. C., & Jones, K. R. (2000). Expression of neurotrophin-3 in the mouse forebrain: Insights from a targeted LacZ reporter. The Journal of Comparative Neurology, 416(3), 398–415.

    CAS  PubMed  Google Scholar 

  • Villegas, S. N., Njaine, B., Linden, R., & Carri, N. G. (2006). Glial-derived neurotrophic factor (GDNF) prevents ethanol (EtOH) induced B92 glial cell death by both PI3K/AKT and MEK/ERK signaling pathways. Brain Research Bulletin, 71(1–3), 116–126.

    CAS  PubMed  Google Scholar 

  • Van Vulpen, E. H., & Van Der Kooy, D. (1999). NGF facilitates the developmental maturation of the previously committed cholinergic interneurons in the striatal matrix. Journal of Comparative Neurology, 411(1), 87–96.

    PubMed  Google Scholar 

  • Wang, M. C., Bohmann, D., & Jasper, H. (2003). JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Developmental Cell, 5(5), 811–816.

    CAS  PubMed  Google Scholar 

  • Wang, Z. Y., Miki, T., Lee, K. Y., Yokoyama, T., Kusaka, T., Sumitani, K., Warita, K., Matsumoto, Y., Yakura, T., Hosomi, N., Ameno, K., Bedi, K. S., & Takeuchi, Y. (2010). Short-term exposure to ethanol causes a differential response between nerve growth factor and brain-derived neurotrophic factor ligand/receptor systems in the mouse cerebellum. Neuroscience, 165(2), 485–491.

    CAS  PubMed  Google Scholar 

  • Welch, K. A. (2011). Neurological complications of alcohol and misuse of drugs. Practical Neurology, 11(4), 206–219.

    PubMed  Google Scholar 

  • Wentzel, P., & Eriksson, U. J. (2009). Altered gene expression in neural crest cells exposed to ethanol in vitro. Brain Research, 1305(Suppl), S50–S60.

    CAS  PubMed  Google Scholar 

  • West, J. R. (1993). Acute and long-term changes in the cerebellum following developmental exposure to ethanol. Alcohol and Alcoholism. Supplement, 2, 199–202.

    CAS  PubMed  Google Scholar 

  • Weston, C. R., & Davis, R. J. (2007). The JNK signal transduction pathway. Current Opinion in Cell Biology, 19, 142–149.

    CAS  PubMed  Google Scholar 

  • Whittemore, S. R., Ebendal, T., Lärkfors, L., Olson, L., Seiger, A., Strömberg, I., & Persson, H. (1986). Development and regional expression of beta nerve growth factor messenger RNA and protein in the rat central nervous system. Proceedings of the National Academy of Sciences of the United States of America, 83(3), 817–821.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wojnar, M., Brower, K. J., Strobbe, S., Ilgen, M., Matsumoto, H., Nowosad, I., Sliwerska, E., & Burmeister, M. (2009). Association between Val66Met brain-derived neurotrophic factor (BDNF) gene polymorphism and post-treatment relapse in alcohol dependence. Alcoholism, Clinical and Experimental Research, 33(4), 693–702.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woo, N. H., Teng, H. K., Siao, C. J., Chiaruttini, C., Pang, P. T., Milner, T. A., et al. (2005). Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nature Neuroscience, 8, 1069–1077.

    CAS  PubMed  Google Scholar 

  • Wooten, M. W., & Ewald, S. J. (1991). Alcohols synergize with NGF to induce early differentiation of PC12 cells. Brain Research, 550(2), 333–339.

    CAS  PubMed  Google Scholar 

  • Xu, K., Anderson, T. R., Neyer, K. M., Lamparella, N., Jenkins, G., Zhou, Z., et al. (2007). Nucleotide sequence variation within the human tyrosine kinase B neurotrophin receptor gene: Association with antisocial alcohol dependence. The Pharmacogenomics Journal, 7, 368–379.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu, S., Chan, T., Shah, V., Zhang, S., Pletcher, S. D., & Roman, G. (2012). The propensity for consuming ethanol in Drosophila requires rutabaga adenylyl cyclase expression within mushroom body neurons. Genes, Brain, and Behavior, 11(6), 727–739.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yaka, R., He, D. Y., Phamluong, K., & Ron, D. (2003a). Pituitary adenylate cyclase-activating polypeptide (PACAP(1–38)) enhances N-methyl-d-aspartate receptor function and brain-derived neurotrophic factor expression via RACK1. The Journal of Biological Chemistry, 278(11), 9630–9638.

    CAS  PubMed  Google Scholar 

  • Yaka, R., Phamluong, K., & Ron, D. (2003b). Scaffolding of Fyn kinase to the NMDA receptor determines brain region sensitivity to ethanol. The Journal of Neuroscience, 23(9), 3623–3632.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yaka, R., Tang, K. C., Camarini, R., Janak, P. H., & Ron, D. (2003c). Fyn kinase and NR2B-containing NMDA receptors regulate acute ethanol sensitivity but not ethanol intake or conditioned reward. Alcoholism, Clinical and Experimental Research, 27(11), 1736–1742.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yan, Q. S., Feng, M. J., & Yan, S. E. (2005). Different expression of brain-derived neurotrophic factor in the nucleus accumbens of alcohol-preferring (P) and -nonpreferring (NP) rats. Brain Research, 1035, 215–218.

    CAS  PubMed  Google Scholar 

  • Yanagisawa, H., Komuta, Y., Kawano, H., Toyoda, M., & Sango, K. (2010). Pleiotrophin induces neurite outgrowth and up-regulates growth-associated protein (GAP)-43 mRNA through the ALK/GSK3beta/beta-catenin signaling in developing mouse neurons. Neuroscience Research, 66(1), 111–116.

    CAS  PubMed  Google Scholar 

  • Yeiser, E. C., Rutkoski, N. J., Naito, A., Inoue, J., & Carter, B. D. (2004). Neurotrophin signaling through the p75 receptor is deficient in traf6−/− mice. The Journal of Neuroscience, 24(46), 10521–10529.

    CAS  PubMed  Google Scholar 

  • Yeo, G. S., Connie Hung, C. C., Rochford, J., Keogh, J., Gray, J., Sivaramakrishnan, S., et al. (2004). A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nature Neuroscience, 7, 1187–1189.

    CAS  PubMed  Google Scholar 

  • Yoon, S. J., Roh, S., Lee, H., Lee, J. Y., Lee, B. H., Kim, Y. K., & Kim, D. J. (2006). Possible role of nerve growth factor in the pathogenesis of alcohol dependence. Alcoholism, Clinical and Experimental Research, 30(6), 1060–1065.

    CAS  PubMed  Google Scholar 

  • Young, C., Straiko, M. M., Johnson, S. A., Creeley, C., & Olney, J. W. (2008). Ethanol causes and lithium prevents neuroapoptosis and suppression of pERK in the infant mouse brain. Neurobiology of Disease, 31(3), 355–360.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yeaney, N. K., He, M., Tang, N., Malouf, A. T., O’Riordan, M. A., Lemmon, V., & Bearer, C. F. (2009). Ethanol inhibits L1 cell adhesion molecule tyrosine phosphorylation and dephosphorylation and activation of pp60(src). Journal of Neurochemistry, 110(3), 779–790.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshimura, R,, Kishi, T., Suzuki, A., Umene-Nakano, W., Ikenouchi-Sugita, A., Hori, H., Otani, K., Iwata, N., & Nakamura, J. (2011). The brain-derived neurotrophic factor (BDNF) polymorphism Val66Met is associated with neither serum BDNF level nor response to selective serotonin reuptake inhibitors in depressed Japanese patients. Progress in Neuropsychopharmacology and Biological Psychiatry, 35(4), 1022–1025.

    CAS  Google Scholar 

  • Zhang, H., Ozbay, F., Lappalainen, J., Kranzler, H. R., van Dyck, C. H., Charney, D. S., Price, L. H., Southwick, S., Yang, B. Z., Rasmussen, A., & Gelernter, J. (2006). Brain derived neurotrophic factor (BDNF) gene variants and Alzheimer’s disease, affective disorders, posttraumatic stress disorder, schizophrenia, and substance dependence. American Journal of Medical Genetics B Neuropsychiatric Genetics, 141B(4), 387–393.

    CAS  Google Scholar 

  • Zhang, S., Zettler, C., Cupler, E. J., Hurtado, P., Wong, K., & Rush, R. A. (2000). Neurotrophin 4/5 immunoassay: Identification of sources of errors for the quantification of neurotrophins. Journal of Neuroscience Methods, 99(1–2), 119–127.

    CAS  PubMed  Google Scholar 

  • Zahr, N. M., Kaufman, K. L., & Harper, C. G. (2011). Clinical and pathological features of alcohol-related brain damage. Nature Reviews. Neurology, 7(5), 284–294.

    CAS  PubMed  Google Scholar 

  • Zanardini, R., Fontana, A., Pagano, R., Mazzaro, E., Bergamasco, F., Romagnosi, G., Gennarelli, M., & Bocchio-Chiavetto, L. (2011). Alterations of brain-derived neurotrophic factor serum levels in patients with alcohol dependence. Alcoholism, Clinical and Experimental Research, 8, 1529–1533.

    Google Scholar 

  • Zeidman, R., Löfgren, B., Pâhlman, S., & Larsson, C. (1999). PKCepsilon, via its regulatory domain and independently of its catalytic domain, induces neurite-like processes in neuroblastoma cells. The Journal of Cell Biology, 145(4), 713–726.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zemlyak, I., Sapolsky, R., & Gozes, I. (2009). NAP protects against cytochrome c release: Inhibition of the initiation of apoptosis. European Journal of Pharmacology, 618(1–3), 9–14.

    CAS  PubMed  Google Scholar 

  • Zhou, X. F., & Rush, R. A. (1994). Localization of neurotrophin-3-like immunoreactivity in the rat central nervous system. Brain Research, 643(1–2), 162–172.

    CAS  PubMed  Google Scholar 

  • Zhou, F. C., Fang, Y., & Goodlett, C. (2008). Peptidergic agonists of activity-dependent neurotrophic factor protect against prenatal alcohol-induced neural tube defects and serotonin neuron loss. Alcoholism, Clinical and Experimental Research, 32(8), 1361–1371.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zorner, B., Wolfer, D. P., Brandis, D., Kretz, O., Zacher, C., Madani, R., et al. (2003). Forebrain-specific trkB-receptor knockout mice: Behaviorally more hyperactive than “depressive”. Biological Psychiatry, 54, 972–982.

    CAS  PubMed  Google Scholar 

  • Zucca, S., & Valenzuela, C. F. (2010). Low concentrations of alcohol inhibit BDNF-dependent GABAergic plasticity via L-type Ca2+ channel inhibition in developing CA3 hippocampal pyramidal neurons. The Journal of Neuroscience, 30(19), 6776–6781.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret I. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Davis, M.I. (2014). Neurotrophic Factors and Ethanol Neurotoxicity. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_47

Download citation

Publish with us

Policies and ethics