Skip to main content

p75NTR: A Molecule with Multiple Functions in Amyloid-Beta Metabolism and Neurotoxicity

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

The p75 neurotrophin receptor (p75NTR) is a pan-receptor for neurotrophins including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin 4/5. P75NTR plays a diverse role from regulating cell survival to modulating neurite outgrowth. Under some pathological conditions, p75NTR expression is activated and plays detrimental roles in disease progression. Alzheimer’s disease (AD), the most common form of dementia, is characterized by the deposition of amyloid plaques, accumulation of fibrillary tangles in neurons, neurite degeneration, loss of neurons, and a progressive loss of cognitive function. Recent studies suggest that p75NTR, also a receptor for amyloid-beta (Aβ), is a critical factor involved in the pathogenesis of AD. This chapter is to discuss the roles of p75NTR in the production of amyloid-beta (Aβ), neuronal death, neurite degeneration, tau hyperphosphorylation, cell cycle re-entry, and cognition decline, to propose that p75NTR is a potential target for the development of therapeutic drugs for AD, and to provide perspectives in developing various therapeutic strategies targeting different aspects of AD hallmarks which relate to p75NTR functions, and breaking the p75NTR-mediated positive-feedback loop which promotes the cascades in the pathogenesis of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

Aβ:

Amyloid-beta

BACE:

Beta-site APP-cleaving enzyme

BDNF:

Brain-derived neurotrophic factor

CNS:

Central nervous system

DRG:

Dorsal root ganglion

ECD:

Extracellular domain

MAG:

Myelin-associated glycoprotein

NBM:

Nucleus basalis of Meynert

NGF:

Nerve growth factor

NT:

Neurotrophin

p75NTR:

p75NTR neurotrophin receptor

PNS:

Peripheral nervous system

TACE:

TNF-alpha converting enzyme

TNF:

Tumor necrosis factor

Trk:

Tropomyosin receptor kinase

References

  • Al-Shawi, R., Hafner, A., et al. (2007). ProNGF, sortilin, and age-related neurodegeneration. Annals of the New York Academy of Sciences, 1119, 208–215.

    CAS  PubMed  Google Scholar 

  • Al-Shawi, R., Hafner, A., et al. (2008). Neurotoxic and neurotrophic roles of proNGF and the receptor sortilin in the adult and ageing nervous system. European Journal of Neuroscience, 27(8), 2103–2114.

    PubMed  Google Scholar 

  • Arendt, T., Holzer, M., et al. (1995). Increased expression and subcellular translocation of the mitogen activated protein kinase kinase and mitogen-activated protein kinase in Alzheimer’s disease. Neuroscience, 68(1), 5–18.

    CAS  PubMed  Google Scholar 

  • Arendt, T., Schindler, C., et al. (1997). Plastic neuronal remodeling is impaired in patients with Alzheimer’s disease carrying apolipoprotein epsilon 4 allele. Journal of Neuroscience, 17(2), 516–529.

    CAS  PubMed  Google Scholar 

  • Bai, Y., Dergham, P., et al. (2010). Chronic and acute models of retinal neurodegeneration TrkA activity are neuroprotective whereas p75NTR activity is neurotoxic through a paracrine mechanism. Journal of Biological Chemistry, 285(50), 39392–39400.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bamji, S. X., Majdan, M., et al. (1998). The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. The Journal of Cell Biology, 140(4), 911–923.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barker, P. A. (2004). p75NTR is positively promiscuous: Novel partners and new insights. Neuron, 42(4), 529–533.

    CAS  PubMed  Google Scholar 

  • Barrett, G. L., & Bartlett, P. F. (1994). The p75 nerve growth factor receptor mediates survival or death depending on the stage of sensory neuron development. Proceedings of the National Academy of Sciences of the United States of America, 91(14), 6501–6505.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beattie, M. S., Harrington, A. W., et al. (2002). ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron, 36(3), 375–386.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bengoechea, T. G., Chen, Z., et al. (2009). p75 reduces beta-amyloid-induced sympathetic innervation deficits in an Alzheimer’s disease mouse model. Proceedings of the National Academy of Sciences of the United States of America, 106(19), 7870–7875.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhakar, A. L., Howell, J. L., et al. (2003). Apoptosis induced by p75NTR overexpression requires Jun kinase-dependent phosphorylation of Bad. Journal of Neuroscience, 23(36), 11373–11381.

    CAS  PubMed  Google Scholar 

  • Brann, A. B., Scott, R., et al. (1999). Ceramide signaling downstream of the p75 neurotrophin receptor mediates the effects of nerve growth factor on outgrowth of cultured hippocampal neurons. Journal of Neuroscience, 19(19), 8199–8206.

    CAS  PubMed  Google Scholar 

  • Bronfman, F. C., & Fainzilber, M. (2004). Multi-tasking by the p75 neurotrophin receptor: Sortilin things out? EMBO Reports, 5(9), 867–871.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buck, C. R., Martinez, H. J., et al. (1987). Developmentally regulated expression of the nerve growth factor receptor gene in the periphery and brain. Proceedings of the National Academy of Sciences of the United States of America, 84(9), 3060–3063.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Capsoni, S., Tiveron, C., et al. (2010). Dissecting the involvement of tropomyosin-related kinase A and p75 neurotrophin receptor signaling in NGF deficit-induced neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 107(27), 12299–12304.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carter, B. D., Kaltschmidt, C., et al. (1996). Selective activation of NF-kappa B by nerve growth factor through the neurotrophin receptor p75. Science, 272(5261), 542–545.

    CAS  PubMed  Google Scholar 

  • Casaccia-Bonnefil, P., Aibel, L., et al. (1996). Central glial and neuronal populations display differential sensitivity to ceramide-dependent cell death. Journal of Neuroscience Research, 43(3), 382–389.

    CAS  PubMed  Google Scholar 

  • Chakravarthy, B., Gaudet, C., et al. (2010). Amyloid-beta peptides stimulate the expression of the p75NTR neurotrophin receptor in SHSY5Y human neuroblastoma cells and AD transgenic mice. Journal of Alzheimer’s Disease, 19(3), 915–925.

    CAS  PubMed  Google Scholar 

  • Chao, M. V., & Bothwell, M. (2002). Neurotrophins: To cleave or not to cleave. Neuron, 33(1), 9–12.

    CAS  PubMed  Google Scholar 

  • Cheema, S. S., Barrett, G. L., et al. (1996). Reducing p75 nerve growth factor receptor levels using antisense oligonucleotides prevents the loss of axotomized sensory neurons in the dorsal root ganglia of newborn rats. Journal of Neuroscience Research, 46(2), 239–245.

    CAS  PubMed  Google Scholar 

  • Chu, G. K., Yu, W., et al. (2007). The p75 neurotrophin receptor is essential for neuronal cell survival and improvement of functional recovery after spinal cord injury. Neuroscience, 148(3), 668–682.

    CAS  PubMed  Google Scholar 

  • Clewes, O., Fahey, M. S., et al. (2008). Human ProNGF: Biological effects and binding profiles at TrkA, P75NTR and sortilin. Journal of Neurochemistry, 107(4), 1124–1135.

    CAS  PubMed  Google Scholar 

  • Copray, S., Kust, B., et al. (2004). Deficient p75 low-affinity neurotrophin receptor expression exacerbates experimental allergic encephalomyelitis in C57/BL6 mice. Journal of Neuroimmunology, 148(1–2), 41–53.

    CAS  PubMed  Google Scholar 

  • Costantini, C., Della-Bianca, V., et al. (2005a). The expression of p75 neurotrophin receptor protects against the neurotoxicity of soluble oligomers of beta-amyloid. Experimental Cell Research, 311(1), 126–134.

    CAS  PubMed  Google Scholar 

  • Costantini, C., Weindruch, R., et al. (2005b). A TrkA to p75 NTR molecular switch activates amyloid beta-peptide generation during aging. Biochemical Journal, 59(Pt1), 59–67.

    Google Scholar 

  • Costantini, C., Scrable, H., et al. (2006). An aging pathway controls the TrkA to p75NTR receptor switch and amyloid beta-peptide generation. The EMBO Journal, 25(9), 1997–2006.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coulson, E. J. (2006). Does the p75 neurotrophin receptor mediate Abeta-induced toxicity in Alzheimer’s disease? Journal of Neurochemistry, 98(3), 654–660.

    CAS  PubMed  Google Scholar 

  • Coulson, E. J., May, L. M., et al. (2009). The role of the p75 neurotrophin receptor in cholinergic dysfunction in Alzheimer’s disease. The Neuroscientist, 15(4), 317–323.

    CAS  PubMed  Google Scholar 

  • Cragnolini, A. B., & Friedman, W. J. (2008). The function of p75NTR in glia. Trends in Neurosciences, 31(2), 99–104.

    CAS  PubMed  Google Scholar 

  • Cuello, A. C., Bruno, M. A., et al. (2007). NGF-cholinergic dependency in brain aging, MCI and Alzheimer’s disease. Current Alzheimer Research, 4(4), 351–358.

    CAS  PubMed  Google Scholar 

  • Davey, F., & Davies, A. M. (1998). TrkB signalling inhibits p75-mediated apoptosis induced by nerve growth factor in embryonic proprioceptive neurons. Current Biology, 8(16), 915–918.

    CAS  PubMed  Google Scholar 

  • Dechant, G., & Barde, Y. A. (2002). The neurotrophin receptor p75(NTR): Novel functions and implications for diseases of the nervous system. Nature Neuroscience, 5(11), 1131–1136.

    CAS  PubMed  Google Scholar 

  • Deinhardt, K., Kim, T., et al. (2011). Neuronal growth cone retraction relies on proneurotrophin receptor signaling through Rac. Science Signaling, 4(202), ra82.

    PubMed Central  PubMed  Google Scholar 

  • Dias Bda, C., Jovanovic, K., et al. (2011). Structural and mechanistic commonalities of amyloid-beta and the prion protein. Prion, 5(3), 126–137.

    Google Scholar 

  • Domeniconi, M., Hempstead, B. L., et al. (2007). Pro-NGF secreted by astrocytes promotes motor neuron cell death. Molecular and Cellular Neuroscience, 34(2), 271–279.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ernfors, P., Hallbook, F., et al. (1988). Developmental and regional expression of beta-nerve growth factor receptor mRNA in the chick and rat. Neuron, 1(10), 983–996.

    CAS  PubMed  Google Scholar 

  • Fahnestock, M., Michalski, B., et al. (2001). The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease. Molecular and Cellular Neuroscience, 18(2), 210–220.

    CAS  PubMed  Google Scholar 

  • Fahnestock, M., Yu, G., et al. (2004). ProNGF: A neurotrophic or an apoptotic molecule? Progress in Brain Research, 146, 101–110.

    CAS  PubMed  Google Scholar 

  • Ferri, C. C., & Bisby, M. A. (1999). Improved survival of injured sciatic nerve Schwann cells in mice lacking the p75 receptor. Neuroscience Letters, 272(3), 191–194.

    CAS  PubMed  Google Scholar 

  • Ferri, C. C., Moore, F. A., et al. (1998). Effects of facial nerve injury on mouse motoneurons lacking the p75 low-affinity neurotrophin receptor. Journal of Neurobiology, 34(1), 1–9.

    CAS  PubMed  Google Scholar 

  • Fombonne, J., Rabizadeh, S., et al. (2009). Selective vulnerability in Alzheimer’s disease: Amyloid precursor protein and p75(NTR) interaction. Annals of Neurology, 65(3), 294–303.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fournier, A. E., GrandPre, T., et al. (2001). Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature, 409(6818), 341–346.

    CAS  PubMed  Google Scholar 

  • Friedman, W. J. (2000). Neurotrophins induce death of hippocampal neurons via the p75 receptor. Journal of Neuroscience, 20(17), 6340–6346.

    CAS  PubMed  Google Scholar 

  • Gartner, U., Holzer, M., et al. (1995). Induction of p21ras in Alzheimer pathology. NeuroReport, 6(10), 1441–1444.

    CAS  PubMed  Google Scholar 

  • Geetha, T., Zheng, C., et al. (2012). TRAF6 and p62 inhibit amyloid beta-induced neuronal death through p75 neurotrophin receptor. Neurochemistry International, 61, 1289–1293.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giehl, K. M., Rohrig, S., et al. (2001). Endogenous brain-derived neurotrophic factor and neurotrophin-3 antagonistically regulate survival of axotomized corticospinal neurons in vivo. Journal of Neuroscience, 21(10), 3492–3502.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ginsberg, S. D., Che, S., et al. (2006). Down regulation of trk but not p75NTR gene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer’s disease. Journal of Neurochemistry, 97(2), 475–487.

    CAS  PubMed  Google Scholar 

  • Goedert, M., Fine, A., et al. (1989). Nerve growth factor receptor mRNA distribution in human brain: Normal levels in basal forebrain in Alzheimer’s disease. Brain Research. Molecular Brain Research, 5(1), 1–7.

    CAS  PubMed  Google Scholar 

  • Gotz, J., & Ittner, L. M. (2008). Animal models of Alzheimer’s disease and frontotemporal dementia. Nature Review Neuroscience, 9(7), 532–544.

    Google Scholar 

  • Griesmaier, E., Schlager, G., et al. (2010). Role of p75(NTR) in NMDAR-mediated excitotoxic brain injury in neonatal mice. Brain Research, 1355, 31–40.

    CAS  PubMed  Google Scholar 

  • Gruss, H. J. (1996). Molecular, structural, and biological characteristics of the tumor necrosis factor ligand superfamily. International Journal of Clinical & Laboratory Research, 26(3), 143–159.

    CAS  Google Scholar 

  • Hartig, W., Seeger, J., et al. (1998). Selective in vivo fluorescence labelling of cholinergic neurons containing p75(NTR) in the rat basal forebrain. Brain Research, 808(2), 155–165.

    CAS  PubMed  Google Scholar 

  • Hasegawa, Y., Yamagishi, S., et al. (2004). p75 neurotrophin receptor signaling in the nervous system. Biotechnology Annual Review, 10, 123–149.

    CAS  PubMed  Google Scholar 

  • Hu, X. Y., Zhang, H. Y., et al. (2002). Increased p75(NTR) expression in hippocampal neurons containing hyperphosphorylated tau in Alzheimer patients. Experimental Neurology, 178(1), 104–111.

    CAS  PubMed  Google Scholar 

  • Huang, E. J., & Reichardt, L. F. (2003). Trk receptors: Roles in neuronal signal transduction. Annual Review of Biochemistry, 72, 609–642.

    CAS  PubMed  Google Scholar 

  • Ito, S., Menard, M., et al. (2012). Involvement of insulin-like growth factor 1 receptor signaling in the amyloid-beta peptide oligomers-induced p75 neurotrophin receptor protein expression in mouse hippocampus. Journal of Alzheimer’s Disease, 31(3), 493–506.

    CAS  PubMed  Google Scholar 

  • Jansen, P., Giehl, K., et al. (2007). Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nature Neuroscience, 10(11), 1449–1457.

    CAS  PubMed  Google Scholar 

  • Kawarabayashi, T., Younkin, L. H., et al. (2001). Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. Journal of Neuroscience, 21(2), 372–381.

    CAS  PubMed  Google Scholar 

  • Knowles, J. K., Rajadas, J., et al. (2009). The p75 neurotrophin receptor promotes amyloid-beta(1–42)-induced neuritic dystrophy in vitro and in vivo. Journal of Neuroscience, 29(34), 10627–10637.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koh, S., & Loy, R. (1989). Localization and development of nerve growth factor-sensitive rat basal forebrain neurons and their afferent projections to hippocampus and neocortex. Journal of Neuroscience, 9(9), 2999–3018.

    CAS  PubMed  Google Scholar 

  • Lowry, K. S., Murray, S. S., et al. (2001). A potential role for the p75 low-affinity neurotrophin receptor in spinal motor neuron degeneration in murine and human amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2(3), 127–134.

    CAS  PubMed  Google Scholar 

  • Mi, S., Lee, X., et al. (2004). LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nature Neuroscience, 7(3), 221–228.

    CAS  PubMed  Google Scholar 

  • Morillo, S. M., Escoll, P., et al. (2010). Somatic tetraploidy in specific chick retinal ganglion cells induced by nerve growth factor. Proceedings of the National Academy of Sciences of the United States of America, 107(1), 109–114.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mufson, E. J., & Kordower, J. H. (1992). Cortical neurons express nerve growth factor receptors in advanced age and Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 89(2), 569–573.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mufson, E. J., Counts, S. E., et al. (2002). Gene expression profiles of cholinergic nucleus basalis neurons in Alzheimer’s disease. Neurochemical Research, 27(10), 1035–1048.

    CAS  PubMed  Google Scholar 

  • Nakamura, K., Namekata, K., et al. (2007). Intracellular sortilin expression pattern regulates proNGF-induced naturally occurring cell death during development. Cell Death and Differentiation, 14(8), 1552–1554.

    CAS  PubMed  Google Scholar 

  • Naumann, T., Casademunt, E., et al. (2002). Complete deletion of the neurotrophin receptor p75NTR leads to long-lasting increases in the number of basal forebrain cholinergic neurons. Journal of Neuroscience, 22(7), 2409–2418.

    CAS  PubMed  Google Scholar 

  • Niewiadomska, G., Mietelska-Porowska, A., et al. (2011). The cholinergic system, nerve growth factor and the cytoskeleton. Behavioural Brain Research, 221(2), 515–526.

    CAS  PubMed  Google Scholar 

  • Nykjaer, A., Lee, R., et al. (2004). Sortilin is essential for proNGF-induced neuronal cell death. Nature, 427(6977), 843–848.

    CAS  PubMed  Google Scholar 

  • Palmada, M., Kanwal, S., et al. (2002). c-jun is essential for sympathetic neuronal death induced by NGF withdrawal but not by p75 activation. Journal of Cell Biology, 158(3), 453–461.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pedraza, C. E., Podlesniy, P., et al. (2005). Pro-NGF isolated from the human brain affected by Alzheimer’s disease induces neuronal apoptosis mediated by p75NTR. American Journal of Pathology, 166(2), 533–543.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peng, S., Wuu, J., et al. (2004). Increased proNGF levels in subjects with mild cognitive impairment and mild Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 63(6), 641–649.

    CAS  PubMed  Google Scholar 

  • Petratos, S., Li, Q. X., et al. (2008). The beta-amyloid protein of Alzheimer’s disease increases neuronal CRMP-2 phosphorylation by a Rho-GTP mechanism. Brain, 131(Pt 1), 90–108.

    PubMed  Google Scholar 

  • Pincheira, R., Baerwald, M., et al. (2009). Sall2 is a novel p75NTR-interacting protein that links NGF signalling to cell cycle progression and neurite outgrowth. The EMBO Journal, 28(3), 261–273.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Podlesniy, P., Kichev, A., et al. (2006). Pro-NGF from Alzheimer’s disease and normal human brain displays distinctive abilities to induce processing and nuclear translocation of intracellular domain of p75NTR and apoptosis. American Journal of Pathology, 169(1), 119–131.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roux, P. P., & Barker, P. A. (2002). Neurotrophin signaling through the p75 neurotrophin receptor. Progress in Neurobiology, 67(3), 203–233.

    CAS  PubMed  Google Scholar 

  • Salehi, A., Ocampo, M., et al. (2000). P75 neurotrophin receptor in the nucleus basalis of meynert in relation to age, sex, and Alzheimer’s disease. Experimental Neurology, 161(1), 245–258.

    CAS  PubMed  Google Scholar 

  • Santee, S. M., & Owen-Schaub, L. B. (1996). Human tumor necrosis factor receptor p75/80 (CD120b) gene structure and promoter characterization. Journal of Biological Chemistry, 271(35), 21151–21159.

    CAS  PubMed  Google Scholar 

  • Sedel, F., Bechade, C., et al. (1999). Nerve growth factor (NGF) induces motoneuron apoptosis in rat embryonic spinal cord in vitro. European Journal of Neuroscience, 11(11), 3904–3912.

    CAS  PubMed  Google Scholar 

  • Selkoe, D. J. (2001). Alzheimer’s disease: Genes, proteins, and therapy. Physiological Reviews, 81(2), 741–766.

    CAS  PubMed  Google Scholar 

  • Sendtner, M., Holtmann, B., et al. (1992). Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature, 360(6406), 757–759.

    CAS  PubMed  Google Scholar 

  • Sotthibundhu, A., Sykes, A. M., et al. (2008). Beta-amyloid(1–42) induces neuronal death through the p75 neurotrophin receptor. Journal of Neuroscience, 28(15), 3941–3946.

    CAS  PubMed  Google Scholar 

  • Spuch, C., & Carro, E. (2011). The p75 neurotrophin receptor localization in blood-CSF barrier: Expression in choroid plexus epithelium. BMC Neuroscience, 12, 39.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Susen, K., & Blochl, A. (2005). Low concentrations of aggregated beta-amyloid induce neurite formation via the neurotrophin receptor p75. Journal of Molecular Medicine, 83(9), 720–735.

    CAS  PubMed  Google Scholar 

  • Tabaton, M., Zhu, X., et al. (2010). Signaling effect of amyloid-beta(42) on the processing of AbetaPP. Experimental Neurology, 221(1), 18–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Treanor, J. J., Dawbarn, D., et al. (1991). Low affinity nerve growth factor receptor binding in normal and Alzheimer’s disease basal forebrain. Neuroscience Letters, 121(1–2), 73–76.

    CAS  PubMed  Google Scholar 

  • Troy, C. M., Friedman, J. E., et al. (2002). Mechanisms of p75-mediated death of hippocampal neurons. Role of caspases. Journal of Biological Chemistry, 277(37), 34295–34302.

    CAS  PubMed  Google Scholar 

  • Van der Zee, C. E., Ross, G. M., et al. (1996). Survival of cholinergic forebrain neurons in developing p75NGFR-deficient mice. Science, 274(5293), 1729–1732.

    PubMed  Google Scholar 

  • Volosin, M., Trotter, C., et al. (2008). Induction of proneurotrophins and activation of p75NTR-mediated apoptosis via neurotrophin receptor-interacting factor in hippocampal neurons after seizures. Journal of Neuroscience, 28(39), 9870–9879.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walsh, G. S., Krol, K. M., et al. (1999). Enhanced neurotrophin-induced axon growth in myelinated portions of the CNS in mice lacking the p75 neurotrophin receptor. Journal of Neuroscience, 19(10), 4155–4168.

    CAS  PubMed  Google Scholar 

  • Wang, K. C., Kim, J. A., et al. (2002a). P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature, 420(6911), 74–78.

    CAS  PubMed  Google Scholar 

  • Wang, K. C., Koprivica, V., et al. (2002b). Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature, 417(6892), 941–944.

    CAS  PubMed  Google Scholar 

  • Wang, Y. J., Valadares, D., et al. (2010a). Effects of proNGF on neuronal viability, neurite growth and amyloid-beta metabolism. Neurotoxicity Research, 17(3), 257–267.

    PubMed  Google Scholar 

  • Wang, Y. J., Wang, X., et al. (2010b). p75NTR regulates Abeta deposition by increasing Abeta production but inhibiting Abeta aggregation with its extracellular domain. Journal of Neuroscience, 31, 2292–2304.

    Google Scholar 

  • Wang, Y. J., Wang, X., et al. (2011). p75NTR regulates Abeta deposition by increasing Abeta production but inhibiting Abeta aggregation with its extracellular domain. Journal of Neuroscience, 31(6), 2292–2304.

    CAS  PubMed  Google Scholar 

  • Weskamp, G., Schlondorff, J., et al. (2004). Evidence for a critical role of the tumor necrosis factor alpha convertase (TACE) in ectodomain shedding of the p75 neurotrophin receptor (p75NTR). Journal of Biological Chemistry, 279(6), 4241–4249.

    CAS  PubMed  Google Scholar 

  • Wong, S. T., Henley, J. R., et al. (2002). A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nature Neuroscience, 5(12), 1302–1308.

    CAS  PubMed  Google Scholar 

  • Yaar, M., Zhai, S., et al. (1997). Binding of beta-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer’s disease. The Journal of Clinical Investigation, 100(9), 2333–2340.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamashita, T., Tucker, K. L., et al. (1999). Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron, 24(3), 585–593.

    CAS  PubMed  Google Scholar 

  • Yamashita, T., Higuchi, H., et al. (2002). The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. Journal of Cell Biology, 157(4), 565–570.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang, T., Knowles, J. K., et al. (2008). Small molecule, non-peptide p75 ligands inhibit Abeta-induced neurodegeneration and synaptic impairment. PLoS One, 3(11), e3604.

    PubMed Central  PubMed  Google Scholar 

  • Yoon, S. O., Casaccia-Bonnefil, P., et al. (1998). Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. Journal of Neuroscience, 18(9), 3273–3281.

    CAS  PubMed  Google Scholar 

  • Zhao, J., Fu, Y., et al. (2007). Beta-site amyloid precursor protein cleaving enzyme 1 levels become elevated in neurons around amyloid plaques: Implications for Alzheimer’s disease pathogenesis. Journal of Neuroscience, 27(14), 3639–3649.

    CAS  PubMed  Google Scholar 

  • Zhou, X. F., & Wang, Y. J. (2011). The p75NTR extracellular domain: A potential molecule regulating the solubility and removal of amyloid-beta. Prion, 5(3), 161–163.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Jiang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Wang, YJ., Zeng, F., Saadipour, K., Lu, JJ., Zhou, XF. (2014). p75NTR: A Molecule with Multiple Functions in Amyloid-Beta Metabolism and Neurotoxicity. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_28

Download citation

Publish with us

Policies and ethics