Skip to main content

Excitotoxicity and Axon Degeneration

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity
  • 2869 Accesses

Abstract

Excitotoxicity has been implicated as a key pathogenic pathway in a number of neurodegenerative diseases and conditions including Alzheimer’s disease, amyotrophic lateral sclerosis, multiple sclerosis, brain trauma, and stroke. While acute excitotoxicity can result in the initiation of cell death pathways, chronic or low levels of excitotoxin exposure may result in a more slowly progressing pathological cascade. In this respect, there is emerging evidence that excitotoxicity can result in axonal degeneration and pathology, a key pathological feature of many of these neurodegenerative conditions. Recent evidence supports the notion that axon degeneration can be a separate and independent process from cell death, and thus mechanisms involved need to be understood in order to provide axonal protection in neurological disease. While axon degeneration following transection (Wallerian degeneration) has been well documented, less is known about axon degeneration following other insults such as excitotoxicity and the mechanistic relationships they bear to Wallerian degeneration. In particular, how a primarily somatodendritic insult, such as excitotoxicity, results in a pathological cascade within the axon is unclear. This chapter reviews our current understanding of the pathological changes and mechanisms of excitotoxin-induced axon degeneration with particular reference to our understanding of other forms of axonal degeneration and potential mechanisms involved. An increased understanding of the mechanisms of axon degeneration in neurological disease is essential to the development of therapeutic agents targeting axon protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AĂź:

Beta amyloid

ALS:

Amyotrophic lateral sclerosis

AMPA:

Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

CaMKII:

Ca2+/calmodulin-dependent protein kinase II

Cdk5:

Cyclin-dependent kinase 5

CNP:

2′3′-Cyclic nucleotide 3′-phosphodiesterase

CNS:

Central nervous system

CRMP2:

Collapsin response mediator protein 2

MAG:

Myelin-associated glycoprotein

MPP:

1-Methyl-4-phenylpyridine

NAD:

Nicotinamide adenine dinucleotide

NFH:

Neurofilament heavy chain

NFL:

Neurofilament light chain

NFM:

Neurofilament medium chain

NMDA:

N-methyl-d-aspartate

Plp:

Proteolipid protein

PNS:

Peripheral nervous system

TTX:

Tetrodotoxin

Wlds:

Wallerian degeneration slow

References

  • Aarts, M., Liu, Y., Liu, L., Besshoh, S., Arundine, M., Gurd, J. W., Wang, Y. T., Salter, M. W., & Tymianski, M. (2002). Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science, 298, 846–850.

    CAS  PubMed  Google Scholar 

  • Ackerley, S., Grierson, A. J., Brownlees, J., Thornhill, P., Anderton, B. H., Leigh, P. N., Shaw, C. E., & Miller, C. C. (2000). Glutamate slows axonal transport of neurofilaments in transfected neurons. The Journal of Cell Biology, 150, 165–176.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Agrawal, S. K., & Fehlings, M. G. (1997). Role of NMDA and non-NMDA ionotropic glutamate receptors in traumatic spinal cord axonal injury. Journal of Neuroscience, 17, 1055–1063.

    CAS  PubMed  Google Scholar 

  • Araque, A., & Perea, G. (2004). Glial modulation of synaptic transmission in culture. GLIA, 47, 241–248.

    PubMed  Google Scholar 

  • AraujoCouto, L., SampaioNarciso, M., Hokoc, J. N., & Blanco Martinez, A. M. (2004). Calpain inhibitor 2 prevents axonal degeneration of opossum optic nerve fibers. Journal of Neuroscience Research, 77, 410–419.

    Google Scholar 

  • Bakiri, Y., Hamilton, N. B., Karadottir, R., & Attwell, D. (2008). Testing NMDA receptor block as a therapeutic strategy for reducing ischaemic damage to CNS white matter. GLIA, 56, 233–240.

    PubMed Central  PubMed  Google Scholar 

  • Barkhatova, V. P., Zavalishin, I. A., Askarova, L., Shavratskii, V., & Demina, E. G. (1998). Changes in neurotransmitters in multiple sclerosis. Neuroscience and Behavioral Physiology, 28, 341–344.

    CAS  PubMed  Google Scholar 

  • Barten, D. M., Fanara, P., Andorfer, C., Hoque, N., Wong, P. Y., Husted, K. H., Cadelina, G. W., Decarr, L. B., Yang, L., Liu, V., Fessler, C., Protassio, J., Riff, T., Turner, H., Janus, C. G., Sankaranarayanan, S., Polson, C., Meredith, J. E., Gray, G., Hanna, A., Olson, R. E., Kim, S. H., Vite, G. D., Lee, F., & Albright, C. F. (2012). Hyperdynamic microtubules, cognitive deficits, and pathology are improved in tau transgenic mice with low doses of the microtubule-stabilizing agent BMS-241027. Journal of Neuroscience, 32, 7137–7145.

    CAS  PubMed  Google Scholar 

  • Berretta, N., & Jones, R. S. (1996). Tonic facilitation of glutamate release by presynaptic N-methyl-d-aspartate autoreceptors in the entorhinal cortex. Neuroscience, 75, 339–344.

    CAS  PubMed  Google Scholar 

  • Bogaert, E., d’Ydewalle, C., & Van Den Bosch, L. (2010). Amyotrophic lateral sclerosis and excitotoxicity: From pathological mechanism to therapeutic target. CNS & Neurological Disorders Drug Targets, 9, 297–304.

    CAS  Google Scholar 

  • Brand-Schieber, E., & Werner, P. (2003). AMPA/kainate receptors in mouse spinal cord cell-specific display of receptor subunits by oligodendrocytes and astrocytes and at the nodes of Ranvier. GLIA, 42, 12–24.

    PubMed  Google Scholar 

  • Brunden, K. R., Zhang, B., Carroll, J., Yao, Y., Potuzak, J. S., Hogan, A. M., Iba, M., James, M. J., Xie, S. X., Ballatore, C., Smith, A. B., 3rd, Lee, V. M., & Trojanowski, J. Q. (2010). Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. Journal of Neuroscience, 30, 13861–13866.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cavanagh, J. B. (1964). The significance of the “dying back” process in experimental and human neurological disease. International Review of Experimental Pathology, 3, 219–267.

    CAS  PubMed  Google Scholar 

  • Christie, J. M., & Jahr, C. E. (2008). Dendritic NMDA receptors activate axonal calcium channels. Neuron, 60, 298–307.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chung, R. S., McCormack, G. H., King, A. E., West, A. K., & Vickers, J. C. (2005). Glutamate induces rapid loss of axonal neurofilament proteins from cortical neurons in vitro. Experimental Neurology, 193, 481–488.

    CAS  PubMed  Google Scholar 

  • Cifuentes-Diaz, C., Nicole, S., Velasco, M. E., Borra-Cebrian, C., Panozzo, C., Frugier, T., Millet, G., Roblot, N., Joshi, V., & Melki, J. (2002). Neurofilament accumulation at the motor endplate and lack of axonal sprouting in a spinal muscular atrophy mouse model. Human Molecular Genetics, 11, 1439–1447.

    CAS  PubMed  Google Scholar 

  • Coleman, M. (2005). Axon degeneration mechanisms: Commonality amid diversity. Nature Reviews Neuroscience, 6, 889–898.

    CAS  PubMed  Google Scholar 

  • Coleman, M. P., Freeman, M. R. (2010). Wallerian degeneration, wld(s), and nmnat. Annual Review of Neuroscience 33, 245–267.

    CAS  PubMed  Google Scholar 

  • Conforti, L., Wilbrey, A., Morreale, G., Janeckova, L., Beirowski, B., Adalbert, R., Mazzola, F., Di Stefano, M., Hartley, R., Babetto, E., Smith, T., Gilley, J., Billington, R. A., Genazzani, A. A., Ribchester, R. R., Magni, G., & Coleman, M. (2009). Wld S protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice. The Journal of Cell Biology, 184, 491–500.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cuthill, D. J., Fowler, J. H., McCulloch, J., & Dewar, D. (2006). Different patterns of axonal damage after intracerebral injection of malonate or AMPA. Experimental Neurology, 200(2), 509–520.

    CAS  PubMed  Google Scholar 

  • Dashiell, S. M., Tanner, S. L., Pant, H. C., & Quarles, R. H. (2002). Myelin-associated glycoprotein modulates expression and phosphorylation of neuronal cytoskeletal elements and their associated kinases. Journal of Neurochemistry, 81, 1263–1272.

    CAS  PubMed  Google Scholar 

  • Diamond, J. S., & Jahr, C. E. (2000). Synaptically released glutamate does not overwhelm transporters on hippocampal astrocytes during high-frequency stimulation. J Neurophysiol, 83, 2835–2843.

    CAS  PubMed  Google Scholar 

  • Dutta, R., & Trapp, B. D. (2011). Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Progress in Neurobiology, 93, 1–12.

    PubMed Central  PubMed  Google Scholar 

  • Edgar, J. M., McLaughlin, M., Yool, D., Zhang, S. C., Fowler, J. H., Montague, P., Barrie, J. A., McCulloch, M. C., Duncan, I. D., Garbern, J., Nave, K. A., & Griffiths, I. R. (2004). Oligodendroglial modulation of fast axonal transport in a mouse model of hereditary spastic paraplegia. The Journal of Cell Biology, 166, 121–131.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faden, A. I., Demediuk, P., Panter, S. S., & Vink, R. (1989). The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science, 244, 798–800.

    CAS  PubMed  Google Scholar 

  • Finn, J. T., Weil, M., Archer, F., Siman, R., Srinivasan, A., & Raff, M. C. (2000). Evidence that Wallerian degeneration and localized axon degeneration induced by local neurotrophin deprivation do not involve caspases. Journal of Neuroscience, 20, 1333–1341.

    CAS  PubMed  Google Scholar 

  • Fischer, L. R., Culver, D. G., Tennant, P., Davis, A. A., Wang, M., Castellano-Sanchez, A., Khan, J., Polak, M. A., & Glass, J. D. (2004). Amyotrophic lateral sclerosis is a distal axonopathy: Evidence in mice and man. Experimental Neurology, 185, 232–240.

    PubMed  Google Scholar 

  • Fowler, J. H., McCracken, E., Dewar, D., & McCulloch, J. (2003). Intracerebral injection of AMPA causes axonal damage in vivo. Brain Research, 991, 104–112.

    CAS  PubMed  Google Scholar 

  • Fukata, Y., Itoh, T. J., Kimura, T., Menager, C., Nishimura, T., Shiromizu, T., Watanabe, H., Inagaki, N., Iwamatsu, A., Hotani, H., & Kaibuchi, K. (2002). CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nature Cell Biology, 4, 583–591.

    CAS  PubMed  Google Scholar 

  • Fujiwara, T., & Morimoto, K. (2012). Cooperative effect of p150Glued and microtubule stabilization to suppress excitotoxicity-induced axon degeneration. Biochemical and Biophysical Research Communications, 424, 82–88.

    CAS  PubMed  Google Scholar 

  • Garcia, M. L., Lobsiger, C. S., Shah, S. B., Deerinck, T. J., Crum, J., Young, D., Ward, C. M., Crawford, T. O., Gotow, T., Uchiyama, Y., Ellisman, M. H., Calcutt, N. A., & Cleveland, D. W. (2003). NF-M is an essential target for the myelin-directed “outside-in” signaling cascade that mediates radial axonal growth. The Journal of Cell Biology, 163, 1011–1020.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilley, J., & Coleman M. P. (2010). Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons. PLoS Biol, 8(1), e1000300

    PubMed Central  PubMed  Google Scholar 

  • Glass, J. D., Culver, D. G., Levey, A. I., & Nash, N. R. (2002). Very early activation of m-calpain in peripheral nerve during Wallerian degeneration. Journal of the Neurological Sciences, 196, 9–20.

    CAS  PubMed  Google Scholar 

  • Goldstein, M. E., Sternberger, N. H., & Sternberger, L. A. (1987). Phosphorylation protects neurofilaments against proteolysis. Journal of Neuroimmunology, 14, 149–160.

    CAS  PubMed  Google Scholar 

  • Gotow, T. (2000). Neurofilaments in health and disease. Medical Electron Microscopy, 33, 173–199.

    CAS  PubMed  Google Scholar 

  • Gould, T. W., Buss, R. R., Vinsant, S., Prevette, D., Sun, W., Knudson, C. M., Milligan, C. E., & Oppenheim, R. W. (2006). Complete dissociation of motor neuron death from motor dysfunction by Bax deletion in a mouse model of ALS. Journal of Neuroscience, 26, 8774–8786.

    CAS  PubMed  Google Scholar 

  • Hellal, F., Hurtado, A., Ruschel, J., Flynn, K. C., Laskowski, C. J., Umlauf, M., Kapitein, L. C., Strikis, D., Lemmon, V., Bixby, J., Hoogenraad, C. C., & Bradke, F. (2011). Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science, 331, 928–931.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Higuchi, M., Zhang, B., Forman, M. S., Yoshiyama, Y., Trojanowski, J. Q., & Lee, V. M. (2005). Axonal degeneration induced by targeted expression of mutant human tau in oligodendrocytes of transgenic mice that model glial tauopathies. Journal of Neuroscience, 25, 9434–9443.

    CAS  PubMed  Google Scholar 

  • Hosie, K. A., King, A. E., Blizzard, C. A., Vickers, J. C., & Dickson, T. C. (2012). Chronic excitotoxin-induced axon degeneration in a compartmented neuronal culture model. ASN Neuro, 4(1).

    Google Scholar 

  • Hou, S. T., Jiang, S. X., Aylsworth, A., Ferguson, G., Slinn, J., Hu, H., Leung, T., Kappler, J., & Kaibuchi, K. (2009). CaMKII phosphorylates collapsin response mediator protein 2 and modulates axonal damage during glutamate excitotoxicity. Journal of Neurochemistry, 111, 870–881.

    CAS  PubMed  Google Scholar 

  • Hsieh, S. T., Kidd, G. J., Crawford, T. O., Xu, Z., Lin, W. M., Trapp, B. D., Cleveland, D. W., & Griffin, J. W. (1994). Regional modulation of neurofilament organization by myelination in normal axons. Journal of Neuroscience, 14, 6392–6401.

    CAS  PubMed  Google Scholar 

  • Huang, H., & Bordey, A. (2004). Glial glutamate transporters limit spillover activation of presynaptic NMDA receptors and influence synaptic inhibition of Purkinje neurons. Journal of Neuroscience, 24, 5659–5669.

    CAS  PubMed  Google Scholar 

  • Hynd, M. R., Scott, H. L., & Dodd, P. R. (2004). Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochemistry International, 45, 583–595.

    CAS  PubMed  Google Scholar 

  • Jourdain, P., Bergersen, L. H., Bhaukaurally, K., Bezzi, P., Santello, M., Domercq, M., Matute, C., Tonello, F., Gundersen, V., & Volterra, A. (2007). Glutamate exocytosis from astrocytes controls synaptic strength. Nature Neuroscience, 10, 331–339.

    CAS  PubMed  Google Scholar 

  • Kampfl, A., Posmantur, R., Nixon, R., Grynspan, F., Zhao, X., Liu, S. J., Newcomb, J. K., Clifton, G. L., & Hayes, R. L. (1996). mu-calpain activation and calpain-mediated cytoskeletal proteolysis following traumatic brain injury. Journal of Neurochemistry, 67, 1575–1583.

    CAS  PubMed  Google Scholar 

  • Kane-Jackson, R., & Smith, Y. (2003). Pre-synaptic kainate receptors in GABAergic and glutamatergic axon terminals in the monkey globus pallidus. Neuroscience, 122, 285–289.

    CAS  PubMed  Google Scholar 

  • Karadottir, R., Cavelier, P., Bergersen, L. H., & Attwell, D. (2005). NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature, 438, 1162–1166.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katsuno, M., Adachi, H., Minamiyama, M., Waza, M., Tokui, K., Banno, H., Suzuki, K., Onoda, Y., Tanaka, F., Doyu, M., & Sobue, G. (2006). Reversible disruption of dynactin 1-mediated retrograde axonal transport in polyglutamine-induced motor neuron degeneration. Journal of Neuroscience, 26, 12106–12117.

    CAS  PubMed  Google Scholar 

  • Kesavapany, S., Patel, V., Zheng, Y. L., Pareek, T. K., Bjelogrlic, M., Albers, W., Amin, N., Jaffe, H., Gutkind, J. S., Strong, M. J., Grant, P., & Pant, H. C. (2007). Inhibition of Pin1 reduces glutamate-induced perikaryal accumulation of phosphorylated neurofilament-H in neurons. Molecular Biology of the Cell, 18(9), 3645–3655.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kilinc, D., Gallo, G., & Barbee, K. A. (2009). Mechanical membrane injury induces axonal beading through localized activation of calpain. Experimental Neurology, 219, 553–561.

    CAS  PubMed Central  PubMed  Google Scholar 

  • King, A. E., Chung, R. S., Vickers, J. C., & Dickson, T. C. (2006). Localization of glutamate receptors in developing cortical neurons in culture and relationship to susceptibility to excitotoxicity. The Journal of Comparative Neurology, 498, 277–294.

    CAS  PubMed  Google Scholar 

  • King, A. E., Dickson, T. C., Blizzard, C. A., Foster, S. S., Chung, R. S., West, A. K., Chuah, M. I., & Vickers, J. C. (2007). Excitotoxicity mediated by non-NMDA receptors causes distal axonopathy in long-term cultured spinal motor neurons. European Journal of Neuroscience, 26, 2151–2159.

    CAS  PubMed  Google Scholar 

  • King, A. E., Dickson, T. C., Blizzard, C. A., Woodhouse, A., Foster, S. S., Chung, R. S., & Vickers, J. C. (2011). Neuron-glia interactions underlie ALS-like axonal cytoskeletal pathology. Neurobiology of Aging, 32, 459–469.

    CAS  PubMed  Google Scholar 

  • Knoferle, J., Koch, J. C., Ostendorf, T., Michel, U., Planchamp, V., Vutova, P., Tonges, L., Stadelmann, C., Bruck, W., Bahr, M., & Lingor, P. (2010). Mechanisms of acute axonal degeneration in the optic nerve in vivo. Proceedings of the National Academy of Sciences of the U S A, 107, 6064–6069.

    Google Scholar 

  • Kraus, M. F., Susmaras, T., Caughlin, B. P., Walker, C. J., Sweeney, J. A., & Little, D. M. (2007). White matter integrity and cognition in chronic traumatic brain injury: A diffusion tensor imaging study. Brain, 130, 2508–2519.

    PubMed  Google Scholar 

  • Lappe-Siefke, C., Goebbels, S., Gravel, M., Nicksch, E., Lee, J., Braun, P. E., Griffiths, I. R., & Nave, K. A. (2003). Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nature Genetics, 33, 366–374.

    CAS  PubMed  Google Scholar 

  • Lariviere, R. C., & Julien, J. P. (2004). Functions of intermediate filaments in neuronal development and disease. Journal of Neurobiology, 58, 131–148.

    CAS  PubMed  Google Scholar 

  • Lewis, S. E., & Nixon, R. A. (1988). Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: Characterization and evidence for their differential association with stationary and moving neurofilaments. The Journal of Cell Biology, 107, 2689–2701.

    CAS  PubMed  Google Scholar 

  • Li, S., & Stys, P. K. (2000). Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. Journal of Neuroscience, 20, 1190–1198.

    CAS  PubMed  Google Scholar 

  • Liu, Q., Xie, F., Siedlak, S. L., Nunomura, A., Honda, K., Moreira, P. I., Zhua, X., Smith, M. A., & Perry, G. (2004). Neurofilament proteins in neurodegenerative diseases. Cellular and Molecular Life Sciences, 61, 3057–3075.

    CAS  PubMed  Google Scholar 

  • Lucas, D. R., & Newhouse, J. P. (1957). The toxic effect of sodium l-glutamate on the inner layers of the retina. AMA Arch Ophthalmology, 58, 193–201.

    CAS  Google Scholar 

  • Luo, L., & O’Leary, D. D. (2005). Axon retraction and degeneration in development and disease. Annual Review of Neuroscience, 28, 127–156.

    CAS  PubMed  Google Scholar 

  • Mack, T. G., Reiner, M., Beirowski, B., Mi, W., Emanuelli, M., Wagner, D., Thomson, D., Gillingwater, T., Court, F., Conforti, L., Fernando, F. S., Tarlton, A., Andressen, C., Addicks, K., Magni, G., Ribchester, R. R., Perry, V. H., & Coleman, M. P. (2001). Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nature Neuroscience, 4, 1199–1206.

    CAS  PubMed  Google Scholar 

  • Magistretti, P. J. (2006). Neuron-glia metabolic coupling and plasticity. J Exp Biol, 209, 2304–2311

    CAS  PubMed  Google Scholar 

  • Marinkovic, P., Reuter, M. S., Brill, M. S., Godinho, L., Kerschensteiner, M., & Misgeld, T. (2012). Axonal transport deficits and degeneration can evolve independently in mouse models of amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the U S A, 109, 4296–4301.

    CAS  Google Scholar 

  • Matute, C. (1998). Characteristics of acute and chronic kainate excitotoxic damage to the optic nerve. Proceedings of the National Academy of Sciences of the U S A, 95, 10229–10234.

    CAS  Google Scholar 

  • Matute, C., Alberdi, E., Domercq, M., Sanchez-Gomez, M. V., Perez-Samartin, A., Rodriguez-Antiguedad, A., & Perez-Cerda, F. (2007). Excitotoxic damage to white matter. Journal of Anatomy, 210, 693–702.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matute, C., & Ransom, B. R. (2012). Roles of white matter in central nervous system pathophysiologies. ASN Neuro, 4.

    Google Scholar 

  • Micu, I., Jiang, Q., Coderre, E., Ridsdale, A., Zhang, L., Woulfe, J., Yin, X., Trapp, B. D., McRory, J. E., Rehak, R., Zamponi, G. W., Wang, W., & Stys, P. K. (2006). NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature, 439, 988–992.

    CAS  PubMed  Google Scholar 

  • Mitew, S., Kirkcaldie, M. T., Halliday, G. M., Shepherd, C. E., Vickers, J. C., & Dickson, T. C. (2010). Focal demyelination in Alzheimer’s disease and transgenic mouse models. Acta Neuropathologica, 119, 567–577.

    CAS  PubMed  Google Scholar 

  • Morfini, G., Pigino, G., Opalach, K., Serulle, Y., Moreira, J. E., Sugimori, M., Llinas, R. R., & Brady, S. T. (2007). 1-Methyl-4-phenylpyridinium affects fast axonal transport by activation of caspase and protein kinase C. Proceedings of the National Academy of Sciences of the U S A, 104, 2442–2447.

    CAS  Google Scholar 

  • Nath, R., Davis, M., Probert, A. W., Kupina, N. C., Ren, X., Schielke, G. P., & Wang, K. K. (2000). Processing of cdk5 activator p35 to its truncated form (p25) by calpain in acutely injured neuronal cells. Biochemical and Biophysical Research Communications, 274, 16–21.

    CAS  PubMed  Google Scholar 

  • Nave, K. A. (2010). Myelination and support of axonal integrity by GLIA. Nature, 468, 244–252.

    CAS  PubMed  Google Scholar 

  • Newpher, T. M., & Ehlers, M. D. (2008). Glutamate receptor dynamics in dendritic microdomains. Neuron, 58, 472–497.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen, T., Mehta, N. R., Conant, K., Kim, K. J., Jones, M., Calabresi, P. A., Melli, G., Hoke, A., Schnaar, R. L., Ming, G. L., Song, H., Keswani, S. C., & Griffin, J. W. (2009). Axonal protective effects of the myelin-associated glycoprotein. Journal of Neuroscience, 29, 630–637.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nikolaev, A., McLaughlin, T., O’Leary, D. D., & Tessier-Lavigne, M. (2009). APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature, 457, 981–989.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oka, A., Belliveau, M. J., Rosenberg, P. A., & Volpe, J. J. (1993). Vulnerability of oligodendroglia to glutamate: Pharmacology, mechanisms, and prevention. Journal of Neuroscience, 13, 1441–1453.

    CAS  PubMed  Google Scholar 

  • Olney, J. W. (1969). Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science, 164, 719–721.

    CAS  PubMed  Google Scholar 

  • Ouardouz, M., Coderre, E., Basak, A., Chen, A., Zamponi, G. W., Hameed, S., Rehak, R., Yin, X., Trapp, B. D., & Stys, P. K. (2009a). Glutamate receptors on myelinated spinal cord axons: I. GluR6 kainate receptors. Annals of Neurology, 65, 151–159.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ouardouz, M., Coderre, E., Zamponi, G. W., Hameed, S., Yin, X., Trapp, B. D., & Stys, P. K. (2009b). Glutamate receptors on myelinated spinal cord axons: II. AMPA and GluR5 receptors. Annals of Neurology, 65, 160–166.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pantoni, L., Garcia, J. H., & Gutierrez, J. A. (1996). Cerebral white matter is highly vulnerable to ischemia. Stroke, 27, 1641–1646; discussion 1647.

    CAS  PubMed  Google Scholar 

  • Passafaro, M., Piech, V., & Sheng, M. (2001). Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nature Neuroscience, 4, 917–926.

    CAS  PubMed  Google Scholar 

  • PerroneCapano, C., Pernas-Alonso, R., & di Porzio, U. (2001). Neurofilament homeostasis and motoneurone degeneration. Bioessays, 23, 24–33.

    CAS  Google Scholar 

  • Petzold, A., Gveric, D., Groves, M., Schimierer, K., Grant, D., Chapman, M., Keir, G., Cuzner, L., & Thompson, E. J. (2008). Phosphorylation and compactness of neurofilaments in multiple sclerosis: Indicators of axonal pathology. Experimental Neurology, 213, 326–335.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pinheiro, P. S., & Mulle, C. (2008). Presynaptic glutamate receptors: Physiological functions and mechanisms of action. Nature Reviews Neuroscience, 9, 423–436.

    CAS  PubMed  Google Scholar 

  • Pitt, D., Werner, P., & Raine, C. S. (2000). Glutamate excitotoxicity in a model of multiple sclerosis. Nature Medicine, 6, 67–70.

    CAS  PubMed  Google Scholar 

  • Saggu, S. K., Chotaliya, H. P., Blumbergs, P. C., & Casson, R. J. (2010). Wallerian-like axonal degeneration in the optic nerve after excitotoxic retinal insult: An ultrastructural study. BMC Neuroscience, 11, 97.

    PubMed Central  PubMed  Google Scholar 

  • Saggu, S. K., Chotaliya, H. P., Cai, Z., Blumbergs, P., & Casson, R. J. (2008). The spatiotemporal pattern of somal and axonal pathology after perikaryal excitotoxic injury to retinal ganglion cells: A histological and morphometric study. Experimental Neurology, 211, 52–58.

    CAS  PubMed  Google Scholar 

  • Salter, M. G., & Fern, R. (2005). NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature, 438, 1167–1171.

    CAS  PubMed  Google Scholar 

  • Sanchez-Gomez, M. V., & Matute, C. (1999). AMPA and kainate receptors each mediate excitotoxicity in oligodendroglial cultures. Neurobiology of Disease, 6, 475–485.

    CAS  PubMed  Google Scholar 

  • Sasaki, Y., Vohra, B. P., Lund, F. E., & Milbrandt, J. (2009). Nicotinamide mononucleotide adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased levels of neuronal nicotinamide adenine dinucleotide. Journal of Neuroscience, 29, 5525–5535.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saxena, S., & Caroni, P. (2007). Mechanisms of axon degeneration: From development to disease. Progress in Neurobiology, 83, 174–191.

    CAS  PubMed  Google Scholar 

  • Schaefer, A. M., Sanes, J. R., & Lichtman, J. W. (2005). A compensatory subpopulation of motor neurons in a mouse model of amyotrophic lateral sclerosis. The Journal of Comparative Neurology, 490, 209–219.

    PubMed  Google Scholar 

  • Schoenmann, Z., Assa-Kunik, E., Tiomny, S., Minis, A., Haklai-Topper, L., Arama, E., & Yaron, A. (2010). Axonal degeneration is regulated by the apoptotic machinery or a NAD+ -sensitive pathway in insects and mammals. Journal of Neuroscience, 30, 6375–6386.

    CAS  PubMed  Google Scholar 

  • Sharp, D. J., & Ham, T. E. (2011). Investigating white matter injury after mild traumatic brain injury. Current Opinion in Neurology, 24, 558–563.

    PubMed  Google Scholar 

  • Shaw, P. J., Forrest, V., Ince, P. G., Richardson, J. P., & Wastell, H. J. (1995). CSF and plasma amino acid levels in motor neuron disease: Elevation of CSF glutamate in a subset of patients. Neurodegeneration, 4, 209–216.

    CAS  PubMed  Google Scholar 

  • Smith, B., Galbiati, F., Castelvetri, L. C., Givogri, M. I., Lopez-Rosas, A., & Bongarzone, E. R. (2011). Peripheral neuropathy in the Twitcher mouse involves the activation of axonal caspase 3. ASN Neuro, 3, e00066.

    PubMed Central  PubMed  Google Scholar 

  • Smith, T., Groom, A., Zhu, B., & Turski, L. (2000). Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nature Medicine, 6, 62–66.

    CAS  PubMed  Google Scholar 

  • Staal, J. A., & Vickers, J. C. (2011). Selective vulnerability of non-myelinated axons to stretch injury in an in vitro co-culture system. Journal of Neurotrauma, 28, 841–847.

    PubMed  Google Scholar 

  • Stys, P. K. (2011). The axo-myelinic synapse. Trends in Neurosciences, 34, 393–400.

    CAS  PubMed  Google Scholar 

  • Stys, P. K., Waxman, S. G., & Ransom, B. R. (1992). Ionic mechanisms of anoxic injury in mammalian CNS white matter: Role of Na+ channels and Na(+)-Ca2+ exchanger. Journal of Neuroscience, 12, 430–439.

    CAS  PubMed  Google Scholar 

  • Taylor, A. M., Blurton-Jones, M., Rhee, S. W., Cribbs, D. H., Cotman, C. W., & Jeon, N. L. (2005). A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nature Methods, 2, 599–605.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tekkok, S. B., & Goldberg, M. P. (2001). Ampa/kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter. Journal of Neuroscience, 21, 4237–4248.

    CAS  PubMed  Google Scholar 

  • Tovar, K. R., & Westbrook, G. L. (2002). Mobile NMDA receptors at hippocampal synapses. Neuron, 34, 255–264.

    CAS  PubMed  Google Scholar 

  • Trapp, B. D., Peterson, J., Ransohoff, R. M., Rudick, R., Mork, S., & Bo, L. (1998). Axonal transection in the lesions of multiple sclerosis. The New England Journal of Medicine, 338, 278–285.

    CAS  PubMed  Google Scholar 

  • Underhill, S. M., & Goldberg, M. P. (2007). Hypoxic injury of isolated axons is independent of ionotropic glutamate receptors. Neurobiology of Disease, 25, 284–290.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vartiainen, N., Tikka, T., Keinanen, R., Chan, P. H., & Koistinaho, J. (1999). Glutamatergic receptors regulate expression, phosphorylation and accumulation of neurofilaments in spinal cord neurons. Neuroscience, 93, 1123–1133.

    CAS  PubMed  Google Scholar 

  • Vickers, J. C., King, A. E., Woodhouse, A., Kirkcaldie, M. T., Staal, J. A., McCormack, G. H., Blizzard, C. A., Musgrove, R. E., Mitew, S., Liu, Y., Chuckowree, J. A., Bibari, O., & Dickson, T. C. (2009). Axonopathy and cytoskeletal disruption in degenerative diseases of the central nervous system. Brain Research Bulletin, 80, 217–223.

    CAS  PubMed  Google Scholar 

  • Wake, H., Lee, P. R., & Fields, R. D. (2011). Control of local protein synthesis and initial events in myelination by action potentials. Science, 333, 1647–1651.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, J. T., Medress, Z. A., & Barres, B. A. (2012). Axon degeneration: Molecular mechanisms of a self-destruction pathway. The Journal of Cell Biology, 196, 7–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, S., Hamberger, A., Ding, M., & Haglid, K. G. (1992). In vivo activation of kainate receptors induces dephosphorylation of the heavy neurofilament subunit. Journal of Neurochemistry, 59, 1975–1978.

    CAS  PubMed  Google Scholar 

  • Wood, J. D., Beaujeux, T. P., & Shaw, P. J. (2003). Protein aggregation in motor neurone disorders. Neuropathology and Applied Neurobiology, 29, 529–545.

    CAS  PubMed  Google Scholar 

  • Yabe, J. T., Chylinski, T., Wang, F. S., Pimenta, A., Kattar, S. D., Linsley, M. D., Chan, W. K., & Shea, T. B. (2001). Neurofilaments consist of distinct populations that can be distinguished by C-terminal phosphorylation, bundling, and axonal transport rate in growing axonal neurites. Journal of Neuroscience, 21, 2195–2205.

    CAS  PubMed  Google Scholar 

  • Yam, P. S., Dewar, D., & McCulloch, J. (1998). Axonal injury caused by focal cerebral ischemia in the rat. Journal of Neurotrauma, 15, 441–450.

    CAS  PubMed  Google Scholar 

  • Yam, P. S., Dunn, L. T., Graham, D. I., Dewar, D., & McCulloch, J. (2000). NMDA receptor blockade fails to alter axonal injury in focal cerebral ischemia. J Cereb Blood Flow Metab, 20, 772–779

    CAS  PubMed  Google Scholar 

  • Yamada, R. X., Sasaki, T., Ichikawa, J., Koyama, R., Matsuki, N., & Ikegaya, Y. (2008). Long-range axonal calcium sweep induces axon retraction. Journal of Neuroscience, 28, 4613–4618.

    CAS  PubMed  Google Scholar 

  • Yoshioka, A., Bacskai, B., & Pleasure, D. (1996). Pathophysiology of oligodendroglialexcitotoxicity. Journal of Neuroscience Research, 46, 427–437.

    CAS  PubMed  Google Scholar 

  • Zhai, Q., Wang, J., Kim, A., Liu, Q., Watts, R., Hoopfer, E., Mitchison, T., Luo, L., & He, Z. (2003). Involvement of the ubiquitin-proteasome system in the early stages of Wallerian degeneration. Neuron, 39, 217–225.

    CAS  PubMed  Google Scholar 

  • Zhang, B., Carroll, J., Trojanowski, J. Q., Yao, Y., Iba, M., Potuzak, J. S., Hogan, A. M., Xie, S. X., Ballatore, C., Smith, A. B., 3rd, Lee, V. M., & Brunden, K. R. (2012). The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. Journal of Neuroscience, 32, 3601–3611.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng, J. Q., Wan, J. J., & Poo, M. M. (1996). Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient. Journal of Neuroscience, 16, 1140–1149.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna E. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

King, A.E., Vickers, J.C. (2014). Excitotoxicity and Axon Degeneration. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_145

Download citation

Publish with us

Policies and ethics