Skip to main content

Nanotoxicology in Green Nanoscience

  • Chapter
  • First Online:
Innovations in Green Chemistry and Green Engineering
  • 2535 Accesses

Abstract

Nanotechnology holds great promise for future economical and technological advances, yet health and safety concerns regarding nanomaterials persist. As an emerging technology, nanotechnology is in the unique position to proactively address health and safety concerns throughout the product life cycle. Green chemistry aims to create benign compounds in a way that prevents pollution and reduces waste throughout every stage of production. Through green nanoscience, the principles of green chemistry can be applied toward making high performance, yet inherently safe nanomaterials. Successful application of green chemistry principles to assess nanomaterial health and safety requires efficient, predictive, high-throughput nanotoxicity testing. With these approaches, designers and manufacturers of nanomaterials can assess nanotoxicity early in production to redesign or replace hazardous nanomaterials.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 17.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Embryonic development:

The molecular signaling, cell divisions, cell rearrangements, and cell differentiation that lead to tissues, organs, and structures of an organism.

High throughput:

A method of stream-lining, often through automation, testing procedures to rapidly conduct thousands of experiments.

Nanotechnology:

As defined by the National Nanotechnology Initiative, “nanotechnology is the understanding and control of matter at the nanoscale, at dimensions between approximately 1 and 100nm, where unique phenomena enable novel applications.”

Structure activity relationships (SARS):

A method of relating how structural and physiochemical properties of a compound influence biological activity.

Tiered approach:

An approach that optimizes identification of potentially hazardous compounds through testing and systematic interpretation of results [1].

Toxicology testing:

Testing to examine and understand the adverse effects of physical, biological, or chemical compounds on organisms and the environment with the objective of mitigation or prevention [2].

Bibliography

  1. Hushon J, Clerman R, Wagner B (1979) Tiered testing for chemical hazard assessment. Environ Sci Technol 13:1202–1207

    Article  Google Scholar 

  2. Society of Toxicology (2005) How do you define toxicology? Soc Toxicol Commun. http://www.toxicology.org/ai/pub/si05/SI05_Define.asp

  3. NSET/NEHI (2011) NNI environmental, health, and safety research strategy fact sheet. http://nano.gov/sites/default/files/pub_resource/2011_ehs_strategy_fact_sheet_locked.pdf

  4. Forrest DR (2001) Molecular nanotechnology. IEEE Instrum Meas Mag 4(3):11–20

    Article  Google Scholar 

  5. Lecoanet H, Wiesner MR (2004) Assessment of the mobility of nanomaterials in groundwater acouifers. Abs Pap Am Chem Soc 227:U1275–U1275

    Google Scholar 

  6. Lecoanet HF, Bottero JY, Wiesner MR (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol 38:5164–5169

    Article  CAS  Google Scholar 

  7. Lecoanet HF, Wiesner MR (2004) Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol 38:4377–4382

    Article  CAS  Google Scholar 

  8. Okamoto Y (2001) Ab initio investigation of hydrogenation of C-60. J Phys Chem A 105:7634–7637

    Article  CAS  Google Scholar 

  9. Sun O, Wang Q, Jena P, Kawazoe Y (2005) Clustering of Ti on a C-60 surface and its effect on hydrogen storage. J Am Chem Soc 127:14582–14583

    Article  CAS  Google Scholar 

  10. Lux Research (2009) The recession’s ripple effect on nanotech. Lux Research Inc., New York

    Google Scholar 

  11. Dahl J, Maddux BLS, Hutchison JE (2007) Green nanosynthesis. Chem Rev 107:2228–2269

    Article  CAS  Google Scholar 

  12. Hutchison JE (2008) Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2:395–402

    Article  CAS  Google Scholar 

  13. Thomas K, Sayre P (2005) Research strategies for safety evaluation of nanomaterials, Part I: evaluating the human health implications of exposure to nanoscale materials. Toxicol Sci 87:316–321

    Article  CAS  Google Scholar 

  14. NRC (2000) Scientific Frontiers in developmental toxicology and risk assessment. National Academy Press, Washington, DC, pp 1–327

    Google Scholar 

  15. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford/New York, xi, 135 p

    Google Scholar 

  16. McKenzie LC, Hutchinson J (2004) Green nanoscience: an integrated approach to greener products, processes and applications. Chem Today 22:30–33

    Google Scholar 

  17. Abbott BD, Perdew GH, Buckalew AR, Birnbaum LS (1994) Interactive regulation of Ah and glucocorticoid receptors in the synergistic induction of cleft palate by 2,3,7,8-tetrachlorodibenzo-p-dioxin and hydrocortisone. Toxicol Appl Pharmacol 128:138–150

    Article  CAS  Google Scholar 

  18. Podgórski A, Balazy A, Gradon L (2006) Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem Eng Sci 61:6804–6815

    Article  CAS  Google Scholar 

  19. Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanoparticle Res 7:331–342

    Article  CAS  Google Scholar 

  20. Yuan J, Liu X, Akbulut O, Hu J, Suib SL et al (2008) Superwetting nanowire membranes for selective absorption. Nat Nano 3:332–336

    Article  CAS  Google Scholar 

  21. Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312

    Article  CAS  Google Scholar 

  22. Lein P, Silbergeld E, Locke P, Goldberg AM (2005) In vitro and other alternative approaches to developmental neurotoxicity testing (DNT). Environ Toxicol Pharmacol 19:735–744

    Article  CAS  Google Scholar 

  23. Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8

    Article  CAS  Google Scholar 

  24. Detrich HW, Westerfield M, Zon LI (eds) (1999) The zebrafish biology. Academic, San Diego, 391 p

    Google Scholar 

  25. Truong L, Harper SL, Tanguay RL (2011) Evaluation of embryotoxicity using the zebrafish model. Methods Mol Biol 691:271–279

    Article  CAS  Google Scholar 

  26. van der Sar AM, Appelmelk BJ, Vandenbroucke-Grauls CM, Bitter W (2004) A star with stripes: zebrafish as an infection model. Trends Microbiol 12:451–457

    Article  CAS  Google Scholar 

  27. Trede NS, Langenau DM, Traver D, Look AT, Zon LI (2004) The use of zebrafish to understand immunity. Immunity 20:367–379

    Article  CAS  Google Scholar 

  28. Traver D, Herbomel P, Patton EE, Murphey RD, Yoder JA et al (2003) The zebrafish as a model organism to study development of the immune system. Adv Immunol 81:253–330

    Google Scholar 

  29. de Jong JL, Zon LI (2005) Use of the zebrafish to study primitive and definitive hematopoiesis. Annu Rev Genet 39:481–501

    Article  CAS  Google Scholar 

  30. Gerhard GS (2003) Comparative aspects of zebrafish (Danio rerio) as a model for aging research. Exp Gerontol 38:1333–1341

    Article  CAS  Google Scholar 

  31. Keller ET, Murtha JM (2004) The use of mature zebrafish (Danio rerio) as a model for human aging and disease. Comp Biochem Physiol C Toxicol Pharmacol 138:335–341

    Article  CAS  Google Scholar 

  32. Spitsbergen J, Kent M (2003) The state of the art of the zebrafish model for toxicology and toxicologic pathology research – advantages and current limitations. Toxicol Pathol 31:62–87

    CAS  Google Scholar 

  33. Amatruda JF, Shepard JL, Stern HM, Zon LI (2002) Zebrafish as a cancer model system. Cancer Cell 1:229–231

    Article  CAS  Google Scholar 

  34. Moore JL, Gestl EE, Cheng KC (2004) Mosaic eyes, genomic instability mutants, and cancer susceptibility. Methods Cell Biol 76:555–568

    Article  CAS  Google Scholar 

  35. Chen JN, Fishman MC (2000) Genetic dissection of heart development. Ernst Schering Res Found Workshop 29:107–122

    CAS  Google Scholar 

  36. Beis D, Bartman T, Jin SW, Scott IC, D’Amico LA et al (2005) Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development 132:4193–4204

    Article  CAS  Google Scholar 

  37. Drummond IA (2004) Zebrafish kidney development. Methods Cell Biol 76:501–530

    Article  CAS  Google Scholar 

  38. Hentschel DM, Park KM, Cilenti L, Zervos AS, Drummond I et al (2005) Acute renal failure in zebrafish: a novel system to study a complex disease. Am J Physiol Renal Physiol 288:F923–F929

    Article  CAS  Google Scholar 

  39. Drummond IA (2005) Kidney development and disease in the zebrafish. J Am Soc Nephrol 16:299–304

    Article  CAS  Google Scholar 

  40. Bahadori R, Huber M, Rinner O, Seeliger MW, Geiger-Rudolph S et al (2003) Retinal function and morphology in two zebrafish models of oculo-renal syndromes. Eur J Neurosci 18:1377–1386

    Article  Google Scholar 

  41. McMahon C, Semina EV, Link BA (2004) Using zebrafish to study the complex genetics of glaucoma. Comp Biochem Physiol C Toxicol Pharmacol 138:343–350

    Article  CAS  Google Scholar 

  42. Whitfield TT (2002) Zebrafish as a model for hearing and deafness. J Neurobiol 53:157–171

    Article  Google Scholar 

  43. Nicolson T (2005) The genetics of hearing and balance in zebrafish. Annu Rev Genet 39:9–22

    Article  CAS  Google Scholar 

  44. Darland T, Dowling JE (2001) Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci USA 98:11691–11696

    Article  CAS  Google Scholar 

  45. Svoboda KR, Vijayaraghavan S, Tanguay RL (2002) Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J Neurosci 22:10731–10741

    CAS  Google Scholar 

  46. Gerlai R, Lahav M, Guo S, Rosenthal A (2000) Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67:773–782

    Article  CAS  Google Scholar 

  47. Poss KD, Keating MT, Nechiporuk A (2003) Tales of regeneration in zebrafish. Dev Dyn 226:202–210

    Article  Google Scholar 

  48. Akimenko MA, Mari-Beffa M, Becerra J, Geraudie J (2003) Old questions, new tools, and some answers to the mystery of fin regeneration. Dev Dyn 226:190–201

    Article  Google Scholar 

  49. Andreasen EA, Mathew LK, Tanguay RL (2006) Regenerative growth is impacted by TCDD: gene expression analysis reveals extracellular matrix modulation. Toxicol Sci 92:254–269

    Article  CAS  Google Scholar 

  50. Vogel G (2000) Genomics. Sanger will sequence zebrafish genome. Science 290:1671

    Article  CAS  Google Scholar 

  51. Zon LI (1999) Zebrafish: a new model for human disease. Genome Res 9:99–100

    CAS  Google Scholar 

  52. Ackermann GE, Paw BH (2003) Zebrafish: a genetic model for vertebrate organogenesis and human disorders. Front Biosci 8:d1227–d1253

    Article  CAS  Google Scholar 

  53. Rubinstein AL (2003) Zebrafish: from disease modeling to drug discovery. Curr Opin Drug Discov Devel 6:218–223

    CAS  Google Scholar 

  54. Wixon J (2000) Featured organism: Danio rerio, the zebrafish. Yeast 17:225–231

    Article  CAS  Google Scholar 

  55. Dodd A, Curtis PM, Williams LC, Love DR (2000) Zebrafish: bridging the gap between development and disease. Hum Mol Genet 9:2443–2449

    Article  CAS  Google Scholar 

  56. Hahn M (2002) Aryl hydrocarbon receptors: diversity and evolution(1). Chem Biol Interact 141:131

    Article  CAS  Google Scholar 

  57. Tanguay RL, Andreasen EA, Walker MK, Peterson RE (2003) Dioxin toxicity and aryl hydrocarbon receptor signaling in fish. In: Schecter A (ed) Dioxins and health. Plenum Press, New York, pp 603–628

    Google Scholar 

  58. Carney SA, Chen J, Burns CG, Xiong KM, Peterson RE et al (2006) AHR activation produces heart-specific transcriptional and toxic responses in developing zebrafish. Mol Pharmacol 70:549–561

    Article  CAS  Google Scholar 

  59. Muller U (1999) Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis. Mech Dev 82:3–21

    Article  CAS  Google Scholar 

  60. Ryffel B (1997) Impact of knockout mice in toxicology. Crit Rev Toxicol 27:135–154

    Article  CAS  Google Scholar 

  61. Rudolph U, Mohler H (1999) Genetically modified animals in pharmacological research: future trends. Eur J Pharmacol 375:327–337

    Article  CAS  Google Scholar 

  62. Gonzalez FJ (2002) Transgenic models in xenobiotic metabolism and toxicology. Toxicology 181–182:237–239

    Article  Google Scholar 

  63. Fan L, Collodi P (2002) Progress towards cell-mediated gene transfer in zebrafish. Brief Funct Genomic Proteomic 1:131–138

    Article  Google Scholar 

  64. Summerton J, Weller D (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7:187–195

    Article  CAS  Google Scholar 

  65. Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216–220

    Article  CAS  Google Scholar 

  66. Nasevicius A, Ekker SC (2001) The zebrafish as a novel system for functional genomics and therapeutic development applications. Curr Opin Mol Ther 3:224–228

    CAS  Google Scholar 

  67. Nasevicius A, Larson J, Ekker SC (2000) Distinct requirements for zebrafish angiogenesis revealed by a VEGF-A morphant. Yeast 17:294–301

    Article  CAS  Google Scholar 

  68. Draper BW, Morcos PA, Kimmel CB (2001) Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 30:154–156

    Article  CAS  Google Scholar 

  69. Yan YL, Miller CT, Nissen RM, Singer A, Liu D et al (2002) A zebrafish sox9 gene required for cartilage morphogenesis. Development 129:5065–5079

    CAS  Google Scholar 

  70. Knight RD, Nair S, Nelson SS, Afshar A, Javidan Y et al (2003) Lockjaw encodes a zebrafish tfap2a required for early neural crest development. Development 130:5755–5768

    Article  CAS  Google Scholar 

  71. Imamura S, Kishi S (2005) Molecular cloning and functional characterization of zebrafish ATM. Int J Biochem Cell Biol 37:1105–1116

    Article  CAS  Google Scholar 

  72. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M et al (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    CAS  Google Scholar 

  73. Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J et al (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46

    CAS  Google Scholar 

  74. Abdelilah S, Solnica-Krezel L, Stainier DY, Driever W (1994) Implications for dorsoventral axis determination from the zebrafish mutation janus. Nature 370:468–471

    Article  CAS  Google Scholar 

  75. Stainier DY, Fouquet B, Chen JN, Warren KS, Weinstein BM et al (1996) Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123:285–292

    CAS  Google Scholar 

  76. Talbot WS, Schier AF (1999) Positional cloning of mutated zebrafish genes. Methods Cell Biol 60:259–286

    Article  CAS  Google Scholar 

  77. Brownlie A, Donovan A, Pratt SJ, Paw BH, Oates AC et al (1998) Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia. Nat Genet 20:244–250

    Article  CAS  Google Scholar 

  78. Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135:630–636

    Article  CAS  Google Scholar 

  79. Amsterdam A, Burgess S, Golling G, Chen W, Sun Z et al (1999) A large-scale insertional mutagenesis screen in zebrafish. Genes Dev 13:2713–2724

    Article  CAS  Google Scholar 

  80. Chen W, Burgess S, Golling G, Amsterdam A, Hopkins N (2002) High-throughput selection of retrovirus producer cell lines leads to markedly improved efficiency of germ line-transmissible insertions in zebra fish. J Virol 76:2192–2198

    Article  CAS  Google Scholar 

  81. Golling G, Amsterdam A, Sun Z, Antonelli M, Maldonado E et al (2002) Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet 31:135–140

    Article  CAS  Google Scholar 

  82. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701

    Article  CAS  Google Scholar 

  83. Meng A, Tang H, Yuan B, Ong BA, Long Q et al (1999) Positive and negative cis-acting elements are required for hematopoietic expression of zebrafish GATA-1. Blood 93:500–508

    CAS  Google Scholar 

  84. Torgersen J, Collas P, Alestrom P (2000) Gene-gun-mediated transfer of reporter genes to somatic zebrafish (Danio rerio) tissues. Mar Biotechnol (NY) 2:293–300

    CAS  Google Scholar 

  85. Powers DA, Hereford L, Cole T, Chen TT, Lin CM et al (1992) Electroporation: a method for transferring genes into the gametes of zebrafish (Brachydanio rerio), channel catfish (Ictalurus punctatus), and common carp (Cyprinus carpio). Mol Mar Biol Biotechnol 1:301–308

    CAS  Google Scholar 

  86. Halloran MC, Sato-Maeda M, Warren JT, Su F, Lele Z et al (2000) Laser-induced gene expression in specific cells of transgenic zebrafish. Development 127:1953–1960

    CAS  Google Scholar 

  87. Huang CJ, Jou TS, Ho YL, Lee WH, Jeng YT et al (2005) Conditional expression of a myocardium-specific transgene in zebrafish transgenic lines. Dev Dyn 233:1294–1303

    Article  CAS  Google Scholar 

  88. Linney E, Hardison NL, Lonze BE, Lyons S, DiNapoli L (1999) Transgene expression in zebrafish: a comparison of retroviral-vector and DNA-injection approaches. Dev Biol 213:207–216

    Article  CAS  Google Scholar 

  89. Linney E, Udvadia AJ (2004) Construction and detection of fluorescent, germline transgenic zebrafish. Methods Mol Biol 254:271–288

    Google Scholar 

  90. Bogers R, Mutsaerds E, Druke J, De Roode DF, Murk AJ et al (2006) Estrogenic endpoints in fish early life-stage tests: luciferase and vitellogenin induction in estrogen-responsive transgenic zebrafish. Environ Toxicol Chem 25:241–247

    Article  CAS  Google Scholar 

  91. Ashworth R, Brennan C (2005) Use of transgenic zebrafish reporter lines to study calcium signalling in development. Brief Funct Genomic Proteomic 4:186–193

    Article  CAS  Google Scholar 

  92. Higashijima S, Masino MA, Mandel G, Fetcho JR (2003) Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J Neurophysiol 90:3986–3997

    Article  Google Scholar 

  93. Mattingly CJ, McLachlan JA, Toscano WA Jr (2001) Green fluorescent protein (GFP) as a marker of aryl hydrocarbon receptor (AhR) function in developing zebrafish (Danio rerio). Environ Health Perspect 109:845–849

    Article  CAS  Google Scholar 

  94. Higashijima S, Hotta Y, Okamoto H (2000) Visualization of cranial motor neurons in live transgenic zebrafish expressing green fluorescent protein under the control of the islet-1 promoter/enhancer. J Neurosci 20:206–218

    CAS  Google Scholar 

  95. Hill A, Howard CV, Strahle U, Cossins A (2003) Neurodevelopmental defects in zebrafish (Danio rerio) at environmentally relevant dioxin (TCDD) concentrations. Toxicol Sci 76:392–399

    Article  CAS  Google Scholar 

  96. Blechinger SR, Warren JT Jr, Kuwada JY, Krone PH (2002) Developmental toxicology of cadmium in living embryos of a stable transgenic zebrafish line. Environ Health Perspect 110:1041–1046

    Article  CAS  Google Scholar 

  97. Amanuma K, Takeda H, Amanuma H, Aoki Y (2000) Transgenic zebrafish for detecting mutations caused by compounds in aquatic environments. Nat Biotechnol 18:62–65

    Article  CAS  Google Scholar 

  98. Scalzo FM, Levin ED (2004) The use of zebrafish (Danio rerio) as a model system in neurobehavioral toxicology. Neurotoxicol Teratol 26:707–708

    Article  CAS  Google Scholar 

  99. Rodriguez F, Lopez JC, Vargas JP, Broglio C, Gomez Y et al (2002) Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish. Brain Res Bull 57:499–503

    Article  CAS  Google Scholar 

  100. Gerlai R (2003) Zebra fish: an uncharted behavior genetic model. Behav Genet 33:461–468

    Article  Google Scholar 

  101. Carvan MJ 3rd, Loucks E, Weber DN, Williams FE (2004) Ethanol effects on the developing zebrafish: neurobehavior and skeletal morphogenesis. Neurotoxicol Teratol 26:757–768

    Article  CAS  Google Scholar 

  102. Giacomini NJ, Rose B, Kobayashi K, Guo S (2006) Antipsychotics produce locomotor impairment in larval zebrafish. Neurotoxicol Teratol 28:245–250

    Article  CAS  Google Scholar 

  103. Levin ED, Swain HA, Donerly S, Linney E (2004) Developmental chlorpyrifos effects on hatchling zebrafish swimming behavior. Neurotoxicol Teratol 26:719–723

    Article  CAS  Google Scholar 

  104. Bretaud S, Lee S, Guo S (2004) Sensitivity of zebrafish to environmental toxins implicated in Parkinson’s disease. Neurotoxicol Teratol 26:857–864

    Article  CAS  Google Scholar 

  105. Samson JC, Goodridge R, Olobatuyi F, Weis JS (2001) Delayed effects of embryonic exposure of zebrafish (Danio rerio) to methylmercury (MeHg). Aquat Toxicol 51:369–376

    Article  CAS  Google Scholar 

  106. Kokel D, Bryan J, Laggner C, White R, Cheung CY et al (2010) Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6:231–237

    Article  CAS  Google Scholar 

  107. Corredor-Adamez M, Welten MC, Spaink HP, Jeffery JE, Schoon RT et al (2005) Genomic annotation and transcriptome analysis of the zebrafish (Danio rerio) hox complex with description of a novel member, hox b 13a. Evol Dev 7:362–375

    Article  CAS  Google Scholar 

  108. Lo J, Lee S, Xu M, Liu F, Ruan H et al (2003) 15000 unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome Res 13:455–466

    Article  Google Scholar 

  109. Linney E, Dobbs-McAuliffe B, Sajadi H, Malek RL (2004) Microarray gene expression profiling during the segmentation phase of zebrafish development. Comp Biochem Physiol C Toxicol Pharmacol 138:351–362

    Article  CAS  Google Scholar 

  110. van der Ven K, De Wit M, Keil D, Moens L, Van Leemput K et al (2005) Development and application of a brain-specific cDNA microarray for effect evaluation of neuro-active pharmaceuticals in zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 141:408–417

    Article  CAS  Google Scholar 

  111. Mathavan S, Lee SG, Mak A, Miller LD, Murthy KR et al (2005) Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS Genet 1:260–276

    Article  CAS  Google Scholar 

  112. Clark MD, Hennig S, Herwig R, Clifton SW, Marra MA et al (2001) An oligonucleotide fingerprint normalized and expressed sequence tag characterized zebrafish cDNA library. Genome Res 11:1594–1602

    Article  Google Scholar 

  113. Handley-Goldstone HM, Grow MW, Stegeman JJ (2005) Cardiovascular gene expression profiles of dioxin exposure in zebrafish embryos. Toxicol Sci 85:683–693

    Article  CAS  Google Scholar 

  114. Ton C, Stamatiou D, Liew CC (2003) Gene expression profile of zebrafish exposed to hypoxia during development. Physiol Genomics 13:97–106

    CAS  Google Scholar 

  115. Hoyt PR, Doktycz MJ, Beattie KL, Greeley MS Jr (2003) DNA microarrays detect 4-nonylphenol-induced alterations in gene expression during zebrafish early development. Ecotoxicology 12:469–474

    Article  CAS  Google Scholar 

  116. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  Google Scholar 

  117. Mandrell D, Moore A, Jephson C, Sarker M, Lang C et al (2011) Automated zebrafish chorion removal and single embryo transfer: optimizing throughput of zebrafish developmental toxicity screens. J Lab Autom (submitted)

    Google Scholar 

  118. Wang W, Liu X, Gelinas D, Ciruna B, Sun Y (2007) A fully automated robotic system for microinjection of zebrafish embryos. PLoS One 2:e862

    Article  CAS  Google Scholar 

  119. Carpenter AE (2007) Image-based chemical screening. Nat Chem Biol 3:461–465

    Article  CAS  Google Scholar 

  120. Mayr LM, Fuerst P (2008) The future of high-throughput screening. J Biomol Screen 13:443–448

    Article  CAS  Google Scholar 

  121. Milan DJ, Peterson TA, Ruskin JN, Peterson RT, MacRae CA (2003) Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation 107:1355–1358

    Article  Google Scholar 

  122. Berghmans S, Butler P, Goldsmith P, Waldron G, Gardner I et al (2008) Zebrafish based assays for the assessment of cardiac, visual and gut function–potential safety screens for early drug discovery. J Pharmacol Toxicol Methods 58:59–68

    Article  CAS  Google Scholar 

  123. Grassian VH (2008) When size really matters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments†. J Phys Chem C 112:18303–18313

    CAS  Google Scholar 

  124. MacPhail RC, Brooks J, Hunter DL, Padnos B, Irons TD et al (2009) Locomotion in larval zebrafish: influence of time of day, lighting and ethanol. Neurotoxicology 30:52–58

    Article  CAS  Google Scholar 

  125. Usenko CY, Harper SL, Tanguay RL (2007) In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon 45:1891–1898

    Article  CAS  Google Scholar 

  126. Harper SL, Dahl JL, Maddux BLS, Tanguay RL, Hutchison JE (2008) Proactively designing nanomaterials to enhance performance and minimize hazard. I J Nanotechnol 5:124–142

    Article  CAS  Google Scholar 

  127. Holdsworth DW, Thornton MM (2002) Micro-CT in small animal and specimen imaging. Trends Biotechnol 20:S34–S39

    Article  Google Scholar 

  128. Harper SL, Usenko C, Hutchinson JE, Maddux BLS, Tanguay RL (2008) In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalization and route of exposure. J Exp Nanosci 3:195–206

    Article  CAS  Google Scholar 

  129. Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW et al (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125

    Article  CAS  Google Scholar 

  130. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  131. Colvin V (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Article  CAS  Google Scholar 

  132. Jiang W, KimBetty YS, Rutka JT, ChanWarren CW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nano 3:145–150

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leah Wehmas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wehmas, L., Tanguay, R.L. (2013). Nanotoxicology in Green Nanoscience. In: Anastas, P., Zimmerman, J. (eds) Innovations in Green Chemistry and Green Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5817-3_6

Download citation

Publish with us

Policies and ethics