Skip to main content

Battery Components, Active Materials for

  • Chapter
  • First Online:
Batteries for Sustainability

Abstract

The active materials of a battery are the chemically active components of the two electrodes of a cell and the electrolyte between them.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Battery efficiency:

Output energy/input energy for storage of electrically energy as chemical energy.

Electrolyte window:

Separation of electrolyte LUMO and HOMO energies of a liquid electrolyte and of conduction and valence bands of a solid electrolyte.

Fermi energy:

Electrochemical potential of a solid.

HOMO:

Highest occupied molecular orbital.

Insertion compound:

A host solid into which a working ion (guest) can be inserted/extracted reversibly over a solid-solution range.

LUMO:

Lowest unoccupied molecular orbital.

Polarization, η = V OC − V(q, I):

Loss of battery voltage at a state of charge q due to resistance to ion transfer inside battery cell where an electronic current I is flowing outside of battery.

Rate of charge/ discharge, nC :

Time, (60/n) min, for complete discharge or charge of a battery or cell; it is also a measure of the current.

Redox couple:

Cation M(m+1)/Mm+ mixed-valent energy applicable to localized-electron configurations.

SEI layer:

Solid/electrolyte interface (passivation) layer at an electrode having its Fermi energy outside the electrolyte window.

Separator:

A solid layer permeable to the working ion that separates anode from cathode to prevent electron transfer between them inside a battery cell.

Spin state:

Refers to spin of a redox couple, which may be reduced (low-spin state) from its free-ion value (high-spin state) by a ligand-field splitting of energies of atomic orbitals that is larger than the Hund intraatomic-exchange splitting of electron spins.

State of charge:

Amount of chemical energy in a battery or cell relative to the total energy available.

Tap density:

A measure of the volume density, which increases with compaction of the active electrode particles.

Working ion:

Ion carrying ionic current inside a battery cell.

Bibliography

Primary Literature

  1. Winter M, Brodd RJ (2004) Chem Rev 104:4245–4269

    Article  Google Scholar 

  2. Mennicke S (1992) In: Balkanski M, Takahashi T, Tuller HL (eds) Solid state ionics. North-Holland, Amsterdam, pp 3–15

    Google Scholar 

  3. Visco SJ, Nimon E, DeJonghe L, Katz B, Petrov A (2007) US Patent 2007/0037058

    Google Scholar 

  4. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1989) J Electrochem Soc 136:590–591

    Article  Google Scholar 

  5. Armand MB (1986) Ann Rev Mater Sci 16:245–261

    Article  Google Scholar 

  6. Croce F, Appetecci GB, Persi L, Scrosati B (1998) Nature 394:456–458

    Article  Google Scholar 

  7. Zinck L, Borck M, Ripp C, Hambitzer G (2006) J Appl Electrochem 36:1291–1295

    Article  Google Scholar 

  8. Dahn JR, VonSacken U, Juzkow MW, Al-Janaby H (1991) J Electrochem Soc 138:2207–2211

    Article  Google Scholar 

  9. Whittingham MS, Jacobson AJ (eds) (1982) Intercalation chemistry. Academic Press, New York

    Google Scholar 

  10. Kim Y, Goodenough JB (2010) Chem Mater 22:587–603

    Article  Google Scholar 

  11. Hert JT, Huang Q, McQueen T, Klimczuk T, Bos JWG, Viciu L, Cava RJ (2008) Phys Rev B 77:075119

    Article  Google Scholar 

  12. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Mater Res Bull 15:783–799

    Article  Google Scholar 

  13. Gupta R, Manthiram A (1996) J Solid State Chem 121:483–491

    Article  Google Scholar 

  14. Saadoune I, Delmas C (1992) Solid State Ionics 53:370–375

    Article  Google Scholar 

  15. Ohzuka T, Makimura Y (2001) Layered lithium insertion material of LiNi1/2Mn1/2O2: a possible alternative to LiCoO2 for advanced lithium-ion batteries. Chem Lett 8:744–745

    Article  Google Scholar 

  16. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) J Mater Chem 17:3112–3125

    Article  Google Scholar 

  17. Delmas C, Cognac-Auradon H, Cocciontelli JM, Ménétrier M, Doumerc JP (1994) Solid State Ionics 69:257–264

    Article  Google Scholar 

  18. Thackeray MM, David WIF, Bruce PG, Goodenough JB (1983) Mater Res Bull 18:461–472

    Article  Google Scholar 

  19. Sinha S, Murphy DW (1986) Solid State Ionics 20:81–84

    Article  Google Scholar 

  20. Goodenough JB (1983) In: Wheat TA, Ahmad A, Kuriakose AK (eds) Progress in solid electrolytes. Energy, Mines and Resources, Canada, pp 53–76

    Google Scholar 

  21. Nanjundaswamy KS, Padhi AK, Goodenough JB, Okada S, Ohtsuka H, Arai H, Yamaki J (1996) Solid State Ionics 92:1–10

    Article  Google Scholar 

  22. Manthiram A, Goodenough JB (1989) J Power Sources 26:403–408

    Article  Google Scholar 

  23. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194

    Article  Google Scholar 

  24. Huang Y, Goodenough JB (2008) Chem Mater 20:7237–7241

    Article  Google Scholar 

  25. van Gool W (ed) (1973) Fast ion transport in solids. North-Holland/American Elsevier, Amsterdam/New York, pp 559–590

    Google Scholar 

  26. Ji X, Lee KT, Nazar LF (2009) Nature Mater 8:500–506

    Article  Google Scholar 

  27. Lu Y, Goodenough JB (2011) J Mater Chem. doi: 10.1039/c0jm04222f

    Google Scholar 

  28. Debart A, Paterson AJ, Bao J, Bruce PG (2008) Angew Chem Int Ed 47:4521–4524

    Article  Google Scholar 

  29. Lu Y-C, Xu Z, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y (2010) Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J Am Chem Soc 132:12170–12171. doi:10.102/ja1036572

    Article  Google Scholar 

  30. Rychick M, Skyllas-Kazacos M (1988) Characteristics of new all-vanadium redox flow battery. J Power Sources 22:59–67

    Article  Google Scholar 

Books and Reviews

  • Balbuena PB, Wang Y (eds) (2010) Lithium ion batteries: solid-electrolyte interphase. Imperial College Press/World Scientific, London/Singapore

    Google Scholar 

  • Bockris JO’M, Reddy AKN (1970) Modern electrochemistry. Plenum, New York

    Book  Google Scholar 

  • Bruce PG (ed) (1995) Solid state electrochemistry. Cambridge University Press, Cambridge

    Google Scholar 

  • Goodenough JB, Abruña HD, Buchanan MV (eds) (2007) Basic research needs for electrical energy storage. Office of BES, DOE, Washington http://www.sc.doe.gov/bes/reports/files/EES_rpt.pdf

  • Hagenmuller P, Van Gool W (eds) (1978) Solid electrolytes. Academic, New York

    Google Scholar 

  • Huggins RA (2009) Advanced batteries. Springer, New York

    Google Scholar 

  • Maier J (2004) Physical chemistry of ionic materials. Wiley, Chichester

    Book  Google Scholar 

  • Rieger PH (1994) Electrochemistry, vol 2. Chapman and Hall, New York

    Book  Google Scholar 

  • Wakihara M, Yamamoto O (eds) (1998) Lithium ion batteries. VCH, Weinheim

    Google Scholar 

  • Zhang SS (ed) (2007) Advanced materials and methods for lithium-ion batteries. Transworld Research Network, Trivandrum

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Goodenough .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goodenough, J.B. (2013). Battery Components, Active Materials for. In: Brodd, R. (eds) Batteries for Sustainability. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5791-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5791-6_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5790-9

  • Online ISBN: 978-1-4614-5791-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics