Skip to main content

Introduction to Autonomy for Marine Robots

  • Chapter
  • First Online:
Marine Robot Autonomy

Abstract

An unmanned underwater vehicle (UUV) or autonomous underwater vehicle (AUV) is a marine robot [1] used for a wide range of oceanographic and military tasks including underwater surveys, inspection of submerged structures, tracking oceanographic features, undersea mapping, laying undersea cable, searching for downed aircraft, and finding naval sea mines, to name but a few. An unmanned surface vehicle (USV) is also categorized as a marine robot; however, most of this book is concerned with UUVs. In terms of physical shape, UUVs can be the traditional torpedo-shaped bodies as shown in Fig. 1 or an underwater glider such as that seen in Fig. 2. At the lowest level of control, UUVs operate with closed-loop control for basic actions such as maintaining depth, pitch, roll, and heading. As an extension to this capability, UUVs can also line-follow between a series of waypoints while logging data from mission sensors, as well as sensors that monitor the UUV status and functionality. Such basic actions can be grouped into behaviours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roberts GN, Sutton R (eds) (2006) Advances in unmanned marine vehicles. Institution of Electrical Engineers, Michael Faraday House, Six Hills Way, Stevenage, UK

    Google Scholar 

  2. Brooks R, (1986) A robust layered control system for a mobile robot IEEE J Robotics and Automation, RA-2:14–23

    MathSciNet  Google Scholar 

  3. Herman M, Hong T, Swetz S, Oskard D (1988) Planning and world modelling for autonomous undersea vehicles. In: Proceedings of 3rd international symposium on intelligent control, Arlington, Virginia

    Google Scholar 

  4. Seto ML (2010) An agent to optimally re-distribute control in an underactuated AUV. Int J Intell Defence Support Syst 4(1):3–19

    Article  Google Scholar 

  5. Seto ML (2011) Autonomous mission-planning with energy constraints for AUVs with side scan sonars. In: Proceedings of IEEE international conference machine learning and applications

    Google Scholar 

  6. Hudson J (2011) Three-dimensional path-planning for a communications and navigations aid working cooperatively with autonomous underwater vehicles. In: Proceedings of autonomous intelligent systems conference, Povoa de Varzim, Portugal, p 12

    Google Scholar 

  7. Li H, Popa A, Thibault C, Seto M (2010) A software framework for multi-agent control of multiple AUVs for underwater MCM. In: Proceedings of IEEE autonomous intelligent systems conference, Povoa de Varzim, Portugal

    Google Scholar 

  8. Carlesi N, Fabien M, Jouvencel B, Ferber J (2011) Generic architecture for multi-AUV cooperation based on a multi-agent reactive organizational approach. In: Proceedings of 2011 IEE/RSJ international conference intelligent robots and systems, p 7

    Google Scholar 

  9. Benjamin M, Schmidt H, Newman PM, Leonard JJ (2010) Nested autonomy for unmanned marine vehicles with MOOs-IvP. J Field Robotics 27(6):834–875

    Article  Google Scholar 

  10. Patron P, Miguelanez E, Cartwright J, Petillot YR (2008) Semantic knowledge-based representation for improving situational awareness in service oriented agents of autonomous underwater vehicles. In: Proceedings of 2008 MTS/IEEE oceans 2008 Conference, Quebec City, Canada

    Google Scholar 

  11. McGann C, Py F, Rajan K et al. (2008) A deliberative architecture for AUV control. In: Proceedings of International Conference on Robotics and Automation, CA, USA

    Google Scholar 

  12. Curcio J, Schneider T, Benjamin M, Patrikalakis A (2008) Autonomous surface craft provide flexibility to remote adaptive oceanographic sampling and modeling. In: Proceedings of MTS/IEEE Oceans 2008 Conference, Quebec City, Canada

    Google Scholar 

  13. Zaychik-Moffit V, Franke JL et al (2006) Mixed-initiative adjustable autonomy in multi-vehicle operations. In: Proceedings of 2006 AUVSI unmanned systems North America, US, Orlando

    Google Scholar 

  14. Havelund K, Lowry M, Penix J (1998) Formal analysis of a space craft controller using SPIN. In: Proceedings of 4th international SPIN workshop, Paris, France

    Google Scholar 

  15. Bernard DE, Gamble EB et al. (2000) Deep space 1 technology validation report – remote agent experiment. In: Technical Report NASA Ames

    Google Scholar 

  16. Jonsson A, Morris P, Muscettola N, Rajan K, Smith B (2000) Planning in interplanetary space: theory and practice. In: Proceedings of Conference on Artificial Intelligence Planning Systems 2000, pp. 177–186

    Google Scholar 

  17. Bresina J, Golden K, Smith DE, Washington R (1999) Increased flexibility and robustness of mars rover. In: Proceedings of 5th international symposium on ai, robotics, and automation in space, ESTEC, Noordwijk, Netherlands

    Google Scholar 

  18. Bresina J, Washington R (2001) Robustness via run-time adaptation of contingent plans. In: Proceedings of AAAI-2001 spring symposium: robust autonomy, Stanford, USA

    Google Scholar 

  19. Matthews W (2008) Computer takes over to land stricken aircraft. C4ISR – Magazine of Net-Centric Warfare

    Google Scholar 

  20. Blackburn M (2002) Autonomy and intelligence – a question of definitions. In: Proceedings of ONR-UCLA autonomous intelligent networks and systems symposium, Los Angeles, USA.

    Google Scholar 

  21. Barber KS, Martin CE (2000) Autonomy as decision-making control. In: Proceedings of 7th international workshop on agent theories, architectures, and languages, USA, Boston

    Google Scholar 

  22. Lin P, Bekey G Abney K (2008) Autonomous military robotics: risk, ethics, and design. Department of the Navy, Office of Naval Research (#N00014–07–1–1152 and N0001408–1–1209)

    Google Scholar 

  23. Standard Guide for Unmanned Undersea Vehicles (UUV) Autonomy and Control. ASTM F2541–06.

    Google Scholar 

  24. Carlesi N, Michel F, Jouvencel B, Ferber J (2011) Generic architecture for multi-auv cooperation based on a multi-agent reactive organizational approach. In: Proceedings international conference on intelligent robots and systems, pp 5041–5047

    Google Scholar 

  25. McGann C, Py F, Rajan K, Thomas H, Henthorn R, McEwen R (2008) A deliberative architecture for AUV control. In: Proceedings of 2008 IEEE international conference robotics and automation, pp 1049–1054

    Google Scholar 

  26. Tangirala S, Kumar R, Bhattacharyya S, O'Connor M, Holloway LE (2005) Hybrid-model based hierarchical mission control architecture for autonomous underwater vehicles. In: Proceedings of 2005 American control conference, p 6

    Google Scholar 

  27. Teck TY, Chitre M, Vadakkepat P (2010) Hierarchical agent-based command and control system for autonomous underwater vehicles. In: Proceedings of 2010 international conference autonomous and intelligent systems, p 6

    Google Scholar 

  28. Goldberg D (2011) Huxley: a flexible robot control architecture for autonomous underwater vehicles. In: Proceedings of IEEE oceans 2011-Spain Conference, p 10

    Google Scholar 

  29. Eickstedt DP, Sideleau SR (2010) The backseat control architecture for autonomous robotic vehicles: a case study with the IVER2 AUV. Mar Tech Soc J 44(4):42–54

    Article  Google Scholar 

  30. ONR's Uninhabited Combat Air Vehicles Program (2000) Naval Studies Board, National Research Council, p 58

    Google Scholar 

  31. Huang H, Pavek K, Albus J, Messina E (2005) Autonomy levels for unmanned systems (ALFUS) framework: an update. In: 2005 SPIE Defense and Security Symposium, Florida, p 10

    Google Scholar 

  32. Naval Studies Board (2005) Autonomous Vehicles in Support of Naval Operations. The National Academies Press, Washington, DC, p 257

    Google Scholar 

  33. Krogstad TR, Wiig M, Cleophas P, Midtgaard O (2011) Autonomous object identification in mine countermeasure missions. In: Proc. 2011 oceans conference, p 9

    Google Scholar 

  34. Patron P Miguelanez E, Petillot YR, Lane DM, Salvi J (2008) Adaptive mission plan diagnosis and repair for fault recovery in autonomous underwater vehicles. In: Proceedings of oceans 2008 conference, p 9

    Google Scholar 

  35. Miguelanez E, Patron P, Brown KE, Petillot YR, Lane DM (2011) Semantic knowledge-based framework to improve the situation awareness of autonomous underwater vehicles. IEEE Trans Knowl Data Eng 23(5):759–773

    Article  Google Scholar 

  36. The Navy unmanned surface vehicle (USV) master plan. Department of the Navy – USA, 2007

    Google Scholar 

  37. The Navy unmanned undersea vehicle (UUV) master plan. Department of the Navy – USA, 2004

    Google Scholar 

  38. Button RW Kamp J, Curtin TB, Dryden J (2009) A survey of missions for unmanned undersea vehicles. Sponsored by the US, RAND Corporation, Navy

    Google Scholar 

  39. Naval mine warfare: operational and technical challenges for naval forces. Committee for Mine Warfare Assessment, Naval Studies Board, National Research Council, 2001

    Google Scholar 

  40. von Alt C, Allen B, Austin T, Forrester N, Goldsborough R, Purcell M, Stokey R (2001) Hunting for mines with REMUS: a high performance, affordable, free swimming underwater robot. In: Proceedings of MTS/IEEE 2001 oceans conference and exhibition, vol 1, pp 117–122

    Google Scholar 

  41. Stokey R, Austin R, Allen B, Forrester N, Gifford E, Goldsborough R, Packard G, Purcell M, von Alt C (2001) Very shallow water mine countermeasures using the REMUS AUV: a practical approach yielding accurate results. In: Proceedings of MTS/IEEE 2001 oceans conference and exhibition, vol. 1, pp 149–156

    Google Scholar 

  42. Stokey R, Austin R, Allen B, Forrester N, Gifford E, Goldsborough R, Packard G, Purcell M, von Alt C (2001) Very shallow water mine countermeasures using the REMUS AUV: a practical approach yielding accurate results. In: Proceedings of MTS/IEEE 2001 oceans conference and exhibition, vol 1, pp 149–156

    Google Scholar 

  43. von Alt C (2003) REMUS 100 transportable mine countermeasure package. In: Proceedings of oceans 2003 conference, vol 4, pp 1925–1930

    Google Scholar 

  44. Giger G, Kandemir M, Dzielski J (2008) A graphical mission planning tool for use in mine counter measure operations. In: Proceedings of MTS/IEEE oceans 2008 conference, pp 1–11

    Google Scholar 

  45. Stokey RP, Roupe A, von Alt C, Allen B, Forrester N, Austin R, Goldsborough R, Purcell M, Jaffe M, Packard G, Kukulya A (2005) Developments of the REMUS 600 autonomous underwater vehicle. In: Proceedings of MTS/IEEE oceans 2005 conference, vol 2, pp 1301–1304

    Google Scholar 

  46. Fallon MF, Kaess M, Johannsson H, Leonard JJ (2011) Efficient AUV navigation fusing acoustic ranging and side-scan sonar. In: Proceedings of 2011 IEEE international conference robotics and automation, pp 2398–2405

    Google Scholar 

  47. Kukulya A, Plueddemann A, Austin R, Stokey R, Purcell M, Allen B, Littlefield R, Freitag L, Koski P, Gallimore E, Kemp J, Newhall K, Pietro J (2010) Under-ice operations with a REMUS-100 AUV in the Arctic. In: Proceedings of 2010 IEEE/OES autonomous under water vehicles, pp 1–8

    Google Scholar 

  48. Plueddemann AJ, Packard G, Lord J, Whelan S (2008) Observing Arctic coastal hydrography using the REMUS AUV. In: Proceedings of autonomous under water vehicle 2008 conference, p 4

    Google Scholar 

  49. Levine ER, Goodman L, Lubke C (2008) AUV based swell characterization. In: Proceedings of IEEE/OES autonomous under water vehicles conference, p 6

    Google Scholar 

  50. Goodman L, Levine ER (2010) Subsurface observations of surface waves from an autonomous underwater vehicle. IEEE J Oceanic Eng 35(4):779–784

    Article  Google Scholar 

  51. McCarthy K (2003) REMUS - a role model for AUV technology transfer. Int Ocean Syst 7(6):22–23

    Google Scholar 

  52. Hagen P, Hegrenaes O, Jalving B, Midtgaard O, Wiig M, Hagen K (2008) Making AUVs truly autonomous. In: Inzartsev AV (ed) Underwater vehicles. I_Tech, Vienna, Austria, p 582

    Google Scholar 

  53. Carreno S, Wilson P, Ridao P, Petillot Y (2010) A survey on terrain based navigation. In: Proceedings of the MTS/IEEE oceans 2010 conference, p 7

    Google Scholar 

  54. Yang TC, Yang W (2008) Low probability of detection underwater acoustic communications for mobile platforms. In: Proceedings of oceans 2008 Conference, p 6

    Google Scholar 

  55. Munk W (2002) Oceanography, 15(1), pp. 135–141

    Google Scholar 

  56. Jones C, Creed E, Glenn S, Kerfoot J, Kohut J, Mugdal C, Schofield O (2005) Slocum glider – a component of operational oceanography. In: Symposium on unmanned untethered submersible technology, 21–24 Aug 2005, Durham, NH, USA

    Google Scholar 

  57. Huntsberger T, Woodward G (2011) Intelligent autonomy for unmanned surface and underwater vehicles. In: Proceedings of oceans 2011 conference, p 10

    Google Scholar 

  58. Robinson AR (ed) (1983) Eddies in marine science. Springer, Berlin

    Google Scholar 

  59. Munk WF, Worcester PF Ocean acoustic tomography: the sense of excitement and discovery remains,. Oceanography, pp 8–10

    Google Scholar 

  60. Schofield O, Kohut J, Aragon D, Creed L, Graver J, Haldeman C, Kerfoot J, Roarty H, Jones C, Webb D, Glenn SM (2007) Slocum gliders: robust and ready. J Field Robotics 24(6):1–14

    Article  Google Scholar 

  61. Anderson D (2004) The growing problem of harmful algae. Oceanus 43(2):1–5

    Google Scholar 

  62. Cronin D, Landrum GW, Sharp K (2008) Application of autonomous underwater vehicle systems in distributed ocean observing networks. In: Proceedings of oceans 2008, p 3

    Google Scholar 

  63. Sandwell DT (1990) Geophysical applications of satellite altimetryReviews of Geophysics Supplement 132–137

    Google Scholar 

  64. Science at sea: meeting future oceanographic goals with a robust academic research fleet (2005) Committee on Evolution of the National Oceanographic Research Fleet, Ocean Studies Board, National Research Council of the National Academies, p 121

    Google Scholar 

  65. Rudnick DL, Perry MJ (eds) (2003) Autonomous and lagrangian platforms and sensors - workshop report, p 64. www.geo-prose.com/ALPS

  66. Fifty Years of Ocean Discovery: National Science Foundation (1950:2000). Ocean Studies Board National Research Council, National Academy of Sciences, 2000

    Google Scholar 

  67. Yilmaz NK, Evangelinos C, Lermusiaux PFJ, Patrikalakis NM (2008) Path planning of autonomous underwater vehicles for adaptive sampling using mixed integer linear programming. IEEE J Oceanic Eng 33(4):522–537

    Article  Google Scholar 

  68. Cannell CJ, Stilwell DJ, Austin JA (2004) A simulation tool to support the development of adaptive sampling algorithms for multiple autonomous underwater vehicles. In: Proceedings of 2004 IEEE/OES autonomous underwater vehicles conference, pp 127–133

    Google Scholar 

  69. Eickstedt DP, Benjamin MR, Wang D, Curcio J, Schmidt H (2007) Behavior based adaptive control for autonomous oceanographic sampling. In: Proceedings of 2007 IEEE international conference on robotics and automation, Rome, Italy, pp 4245–4250

    Google Scholar 

  70. Ho C, Mora A, Saripalli S (2012) An evaluation of sampling path strategies for an autonomous underwater vehicle. In: Proceedings of 2012 IEEE international conference on robotics and automation, p 6

    Google Scholar 

  71. Balasuriya A, Petillo S, Schmidt H, Benjamin M (2010) Behavior-based planning and prosecution architecture for autonomous underwater vehicles in ocean observatories. In: Proceedings of 2010 IEEE oceans 2010 conference, Sidney, Australia, p 5

    Google Scholar 

  72. Cruz NA, Matos AC (2010) Adaptive sampling of thermoclines with autonomous underwater vehicles. In: Proceedings of oceans 2010 Conference, p 6

    Google Scholar 

  73. Woithe HC, Ulrich K (2011) A lightweight scripting engine for the slocum glider. In: Proceedings of 2011 oceans Conference, p 7

    Google Scholar 

  74. Gottlieb J, Graham R, Maughan T, Py F, Elkaim G, Rajan K (2012) An experimental momentum-based front detection method for autonomous underwater vehicles. In: Proceedings of 2012 IEEE international conference robotics and automation, p 6

    Google Scholar 

  75. Farrell JA, Pang S, Li W (2005) Chemical plume tracing via an autonomous underwater vehicle. IEEE J Oceanic Eng 30(2):15

    Article  Google Scholar 

  76. Zhang Y, McEwen RS, Ryan JP, Bellingham JG (2010) Design and tests of an adaptive triggering method for capturing peak samples in a thin phytoplankton layer by an autonomous underwater vehicle. IEEE J Oceanic Eng 35(4):12

    Google Scholar 

  77. Camilli R (2007) Characterizing marine hydrocarbons with in-situ mass spectrometry. In: Proceedings of oceans 2007 Conference, p 7

    Google Scholar 

  78. Jakuba MV, Steinberg D, Kinsey JC, Yoerger DR, Camilli R, Pizarro O, Williams SB (2011) Toward automatic classification of chemical sensor data from autonomous underwater vehicles. In: Proceedings of 2011 IEEE/RSJ international conference on intelligent robots and systems, p 6

    Google Scholar 

  79. Tokekar P, Bhadauria D, Studenski A, Isler V (2010) A robotic system for monitoring carp in Minnesota lakes. J Field Robotics, Special Issue on Maritime Autonomy Part 1 27(6): 779–789

    Google Scholar 

  80. Rigby P, Pizarro O, Williams SB (2010) Toward adaptive benthic habitat mapping using Gaussian process classification. J Field Robotics, Special Issue on Maritime Autonomy, Part. 1 27(6):741–758

    Google Scholar 

  81. Dassatti A, van der Schaar M, Guerrini P, Zaugg S, Houegnigan L, Maguer A, Andre M (2011) On-board underwater glider real-time acoustic environment sensing. In: Proceedings of oceans 2011, Spain, p 8

    Google Scholar 

  82. Wang D, Lermusiaux PFJ, Haley PJ, Eickstedt DP, Leslie WG, Schmidt H (2009) Acoustically focused adaptive sampling and on-board routing for marine rapid environmental assessment. J Marine Syst 78(S1):S393–S407

    Article  Google Scholar 

  83. Heaney KD, Duda TF (2005) Non-linear optimization of multi-vehicle ocean sampling networks for cost-effective ocean prediction systems. In: Proceedings of oceans 2006, Asia-Pacific, p 5

    Google Scholar 

  84. Fiorelli E, Leonard NE, Bhatta P, Paley DA, Bachmayer R, Frantantoni DM (2006) Multi-AUV control and adaptive sampling. IEEE J Oceanic Eng, 31(4):14

    Article  Google Scholar 

  85. Popa DO, Sanderson AC, Komerska RJ, Mupparapu SS, Blidberg DR, Chappel SG (2004) Adaptive sampling algorithms for multiple autonomous underwater vehicles. In Proceedings of 2004 IEEE/OES autonomous underwater vehicles conference, pp 108–118

    Google Scholar 

  86. Woithe HC, Kremer U (2011) Using slocum gliders for coordinated spatial sampling. In: Proceedings of 2011 oceans conference, Spain, p 6

    Google Scholar 

  87. Leonard NE, Paley DA, Davis RE, Fratantoni DM, Lekien F, Zhang F (2010) Coordinated control of an underwater glider fleet: An adaptive ocean sampling field experiment in Monterey Bay. J Field Robotics 27(6):718–740

    Article  Google Scholar 

  88. Balanis CA (1973) Advanced engineering electromagnetics. John Wiley & Sons, New York

    Google Scholar 

  89. Liu L, Zhou S, Cui J (2008) Prospects and problems of wireless communication for underwater sensor networks. Wiley WCMC Special Issue on Underwater Sensor Networks, 8(8):877–994

    Google Scholar 

  90. Preisig J (2006) Acoustic propagation considerations for underwater acoustic communications network development. In: Proceedings of WUWnet 2006,p 5

    Google Scholar 

  91. Preisig J (2005) Performance analysis of adaptive equalization for coherent acoustic communications in the time-varying ocean environment. J Acoust Soc Am 118(1):263–278

    Article  Google Scholar 

  92. Chitre M, Shahabudeen S, Stojanovic M (2008) Underwater acoustic communications and networking: recent advances and future challenges. J Marine Tech Soc, 42(1):103–116

    Article  Google Scholar 

  93. Dahl PH (2004) Forward scattering from the sea surface and the van Cittert-Zernike theorem. J Acoust Soc Am 115(2):2067–2080

    Article  MathSciNet  Google Scholar 

  94. Stojanovic M (2006) On the relationship between capacity and distance in an underwater acoustic communication channel. In: Proceedings of first ACM international workshop on underwater networks/MobiCom conference, Los Angeles, CA

    Google Scholar 

  95. Kilfoyle D, Baggeroer AB (2000) The state of the art in underwater acoustic telemetry. IEEE J Oceanic Engineering 25(1): 4–27.

    Article  Google Scholar 

  96. National Research Council (NRC) (2003) Ocean noise and marine mammals. National Academies Press, Washington, DC

    Google Scholar 

  97. Soltzing C, Lane DM (2010) Improving the coordination efficiency of limited communication multi-AUV operations using a multi-agent architecture. J Field Robotics 27(4):412–429

    Article  Google Scholar 

  98. Nicosevici T, Garcia R, Carreras M, Villanueva M (2004) A review of sensor fusion techniques for underwater vehicle navigation. In: Proceedings of MTS/IEEE 2004 oceans conference, p 6

    Google Scholar 

  99. Whitcomb LL, Yoerger DR, Singh H (1999) Combined doppler/LBL based navigation of underwater vehicles. In: Proceedings of international symposium on unmanned untethered submersible technology, Durham, NH

    Google Scholar 

  100. Donovan GT (2011) Development and testing of a real-time terrain navigation method for AUVs. In: Proceedings of oceans 2011 conference, p 9

    Google Scholar 

  101. Thrun S, Burgard W, Fox D (2006) Probabilistic robotics. The MIT Press, Cambridge

    Google Scholar 

  102. Grewal MS, Weill LR, Andrews AP (2007) Global positioning systems, inertial navigation, and integration, Ch 8, 2nd edn. Wiley, New York

    Book  Google Scholar 

  103. Brown RG, Hwang PYC (1996) Introduction to random signals and applied Kalman filtering with MATLAB exercises and solutions,Ch 5–7, 3rd edn. Wiley, New York

    Google Scholar 

  104. Philip DRC (2003) An evaluation of USBL and SBL acoustic systems and optimisation of methods of calibration - Part I. Hydrographic J 108:18–25

    Google Scholar 

  105. Tan HP, Diamant R, Seah WKG, Waldmeyer M (2011) A survey of techniques and challenges in underwater localization. J Ocean Eng 38(14–15):1663–1676

    Google Scholar 

  106. Crosbie B, Anderson M, Wolbrecht E, Canning J, Edwards D (2010) Synchronous navigation of AUVs using WHOI micro-modem 13-bit communications. In: Proceedings of oceans 2010 conference, p 5

    Google Scholar 

  107. Thomson D (2005) True redundant acoustic dynamic positioning sensors. In: Marine technology society dynamic positioning conference

    Google Scholar 

  108. Freitag L, Grund M, Singh S, Partan J, Koski P, Ball K (2005) The WHOI micro-modem: an acoustic communications and navigation system for multiple platforms. In: Proceedings of MTS/IEEE oceans 2005 conference, vol 2, pp 1086–1092

    Google Scholar 

  109. Gallimore E, Partan J, Vaughn I, Singh S, Shusta J, Freitag L (2010) The WHOI micromodem-2: a scalable system for acoustic communications and networking. In: Proceedings of oceans 2010 conference, pp 1–7

    Google Scholar 

  110. Singh S, Webster S, Freitag L, Whitcomb L, Ball K, Bailey J Taylor C (2009) Acoustic communication performance of the WHOI micro-modem in sea trials of the NEREUS vehicle to 11,000 m depth. In: Proceedings of MTS/IEEE oceans 2009 conference, Biloxi, USA, p 6

    Google Scholar 

  111. Singh S, Grund M, Bingham B, Eustice R, Singh H, Freitag L (2006) Underwater acoustic navigation with the WHOI micro-modem. In: Proceedings of oceans 2006 conference, p 4

    Google Scholar 

  112. Eustice R, Whitcomb L, Singh H, Grund H (2006) Recent advances in synchronous-clock one-way-travel-time acoustic navigation. In: Proceedings of oceans 2006 conference, p 6

    Google Scholar 

  113. Jalving B, Gade K, Hagen OK, Vestgard K (2003) A toolbox of aiding techniques for the HUGIN AUV integrated inertial navigation system. In: Proceedings of MTS/IEEE oceans 2003 conference, vol 2, pp 1146–11153

    Google Scholar 

  114. Miller PA, Farrell JA, Zhao Y, Djapic V (2010) Autonomous underwater vehicle navigation. J Oceanic Eng 35(2):663–678

    Article  Google Scholar 

  115. Kinsey JC, Eustice RM, Whitcomb LL (2006) A survey of underwater vehicle navigation: recent advances and new challenges. In: Proceedings of IFAC conf. on Manoeuvering and control of marine craft, p 12

    Google Scholar 

  116. Stutters L, Liu H, Tiltman C, Brown DJ (2008) Navigation technologies for autonomous underwater vehicles. IEEE Trans Syst, Man and Cybernetics - Part C.: Appl Rev 38(4): 581–589

    Google Scholar 

  117. Bingham B (2008) Navigating autonomous underwater vehicles. In: Underwater Vehicles, Ed. by Alexander Inartzev, ISBN 978-953-7619-49-7, pp. 582, December 2008, I-Tech, Vienna, Austria

    Google Scholar 

  118. Kaminski C, Crees T, Ferguson J, Forrest A, Williams J, Hopkin D, Heard G (2010) Twelve days under-ice - an historic AUV deployment in the Canadian Arctic. In: Proceedings of IEEE/OES AUV 2012 conference, p 8

    Google Scholar 

  119. ISE - Build your Own AUV Design Info (2010)

    Google Scholar 

  120. Fernandez-Perdomo E, Cabrera-Gamez J, Hernandez-Sosa D, Isern-Gonz´alez J, Domınguez-Brito AC, Redondo A, Coca J, Ramos AG, Fanjul EA, Garcıa M (2010) Path planning for gliders using regional ocean models: application of Pinzon path planner with the ESEOAT model and the RU-27 trans-Atlantic flight data. In: Proceedings of oceans 2010, Sidney, Australia, p 10

    Google Scholar 

  121. Davis RE, Eriksen CC, and Jones CP (2002) Autonomous buoyancy-driven underwater gliders. In: Griffiths G (ed) Technology and applications of autonomous underwater vehicles. Taylor and Francis, London

    Google Scholar 

  122. Hawley JG, Reader GT (1992) A knowledge-based aid for the selection of autonomous underwater vehicle energy systems. In: Proceedings of 1992 symposium on autonomous underwater vehicle technology, pp 177–180

    Google Scholar 

  123. Abu Sharkh SM, Griffiths G, Webb AD (2003) Power sources for unmanned underwater vehicles. In: Griffiths G (ed) Technology and applications of autonomous underwater vehicle. Taylor & Francis, London, pp 19–35. ISBN 0–415–30154–8

    Google Scholar 

  124. Hasvold O, Johansen KH (2002) The alkaline aluminum hydrogen peroxide semi-fuel cell for the HUGIN 3000 autonomous underwater vehicle. In: Proceedings of 2002 workshop on autonomous underwater vehicles, pp 89–94

    Google Scholar 

  125. Yamamoto L, Aoki T, Tsukioka S, Yoshida H, Hyakudome T, Sawa T et al. (2004) Fuel cell system of AUV Urashima. In: Proceedings of MTS/IEEE oceans 2004 conference, pp 1732–1737

    Google Scholar 

  126. Tarascon JM (2010) Review - key challenges in future Li-Battery research. Phil Trans R Soc A 368:3226–3241

    Article  Google Scholar 

  127. Storkersen N, Hasvold O (2004) Power sources for AUVs. In: Proceedings of science and defence conference, Brest, France, p 5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Seto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seto, M.L., Paull, L., Saeedi, S. (2013). Introduction to Autonomy for Marine Robots. In: Seto, M. (eds) Marine Robot Autonomy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5659-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5659-9_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5658-2

  • Online ISBN: 978-1-4614-5659-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics