Skip to main content

Evaluation of Genetically Engineered Crops Using Proteomics

  • Chapter
  • First Online:
Proteomics in Foods

Part of the book series: Food Microbiology and Food Safety ((RESDEV,volume 2))

  • 2967 Accesses

Abstract

Large-scale profiling techniques have been increasingly applied to the analysis of genetically engineered (GE) crop plants with regard to their food safety and nutritional equivalence. Although metabolomics are becoming the prevalent approach, proteomics are also used to detect unintended effects that may be triggered by insertion of a transgene. In this chapter we review 16 articles that used two-dimensional electrophoresis and (in most cases) peptide mass spectrometry as analytical methods for GE crops (grapevine, maize, pea, potato, rice, soybean, tomato, and wheat). Some relevant articles studying the laboratory model plant Arabidopsis thaliana are also summarized. These articles converge to show minimal unintended effects due to the transformation events. The transgenic genetic modification itself has less impact on protein content than conventional plant breeding or the environment. None of these papers has raised new safety concerns about marketed GE varieties. We also provide examples of two-dimensional electrophoresis protein analysis as an approach for detecting potential allergens in GE crop-derived food.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albo AG, Mila S, Digilio G, Motto M, Aime S, Corpillo D (2007) Proteomic analysis of a genetically modified maize flour carrying Cry1Ab gene and comparison to the corresponding wild-type. Maydica 52:443–455

    Google Scholar 

  • Balsamo GM, Cangahuala-Inocente GC, Bertoldo JB, Terenzi H, Aris AC (2011) Proteomic analysis of four Brazilian MON810 maize varieties and their four non-genetically-modified isogenic varieties. J Agric Food Chem 59:11553–11559

    Article  CAS  Google Scholar 

  • Barros ELS, Anttonen MJ, van Dijk JP, Röhlig RM, Kok EJ, Engel KH (2010) Comparison of two GM maize varieties with a near-isogenic non-GM variety using transcriptomics, proteomics and metabolomics. Plant Biotechnol J 8:436–451

    Article  CAS  Google Scholar 

  • Batista R, Oliveira M (2010) Plant natural variability may affect safety assessment data. Regul Toxicol Pharmacol 58:8–12

    Article  Google Scholar 

  • Batista R, Martins I, Jeno P, Ricardo CP, Oliveira MM (2007) A proteomic study to identify soya allergens – the human response to transgenic versus non-transgenic soya samples. Int Arch Allergy Immunol 144:29–38

    Article  CAS  Google Scholar 

  • Brandao AR, Barbosa HS, Arruda MAZ (2010) Image analysis of two dimensional gel electrophoresis for comparative proteomics of transgenic and non-transgenic soybean seeds. J Proteomics 73:1433–1440

    Article  CAS  Google Scholar 

  • Chen HC, Bodulovic G, Hall PJ, Moore A, Higgins TJV, Djordjevic MA, Rolfe BG (2009) Unintended changes in protein expression revealed by proteomic analysis of seeds from transgenic pea expressing a bean alpha-amylase inhibitor gene. Proteomics 9:4406–4415

    Article  CAS  Google Scholar 

  • Coll A, Nadal A, Palaudelmás M, Messeguer J, Mele E, Puigdoménech P, Pla M (2008) Lack of repeatable differential expression patterns between MON810 and comparable commercial varieties of maize. Plant Mol Biol 68:105–117

    Article  CAS  Google Scholar 

  • Coll A, Collado ANR, Capellades G, Messeguer J, Melé E, Palaudelmàs M, Pla M (2009) Gene expression profiles of MON810 and comparable non-GM maize varieties cultured in the field are more similar than are those of conventional lines. Transgenic Res 18:801–808

    Article  CAS  Google Scholar 

  • Coll A, Nadal A, Rossignol M, Puigdoménech P, Pla M (2010a) Proteomic analysis of MON810 and comparable non-GM maize varieties grown in agricultural fields. Transgenic Res 20:939–949

    Article  Google Scholar 

  • Coll A, Nadal A, Collado R, Capellades G, Kubista M, Messeguer J, Pla M (2010b) Natural variation explains most transcriptomic changes among maize plants of MON810 and comparable non-GM varieties subjected to two N-fertilization farming practices. Plant Mol Biol 73:349–362

    Article  CAS  Google Scholar 

  • Coll A, Nadal A, Rossignol M, Puigdomenech P, Pla M (2011) Proteomic analysis of MON810 and comparable non-GM maize varieties grown in agricultural fields. Transgenic Res 20:939–949

    Article  CAS  Google Scholar 

  • Corpillo D, Gardini G, Vaira AM, Basso M, Aime S, Accotto GP, Fasano M (2004) Proteomics as a tool to improve investigation of substantial equivalence in genetically modified organisms: the case of a virus-resistant tomato. Proteomics 4:193–200

    Article  CAS  Google Scholar 

  • Defernez M, Gunning YM, Parr AJ, Shepherd LVT, Davies HV, Colquhoun IJ (2004) NMR and HPLC-UV profiling of potatoes with genetic modifications to metabolic pathways. J Agric Food Chem 52:6075–6085

    Article  CAS  Google Scholar 

  • Di Carli M, Villani ME, Renzone G, Nardi L, Pasquo A, Franconi R, Scaloni A, Benvenuto E, Desiderio A (2009) Leaf proteome analysis of transgenic plants expressing antiviral antibodies. J Proteome Res 8:838–848

    Article  Google Scholar 

  • Islam N, Campbell PM, Higgins TJV, Hirano H, Akhurst RJ (2009) Transgenic peas expressing an alpha-amylase inhibitor gene from beans show altered expression and modification of endogenous proteins. Electrophoresis 30:1863–1868

    Article  CAS  Google Scholar 

  • Lehesranta Satu J, Davies HV, Shepherd LVT, Nunan N, McNicol JW, Auriola S, Koistinen KM, Suomalainen S, Kokko HI, Kärenlampi SO (2005) Comparison of tuber proteomes of potato varieties, landraces, and genetically modified lines. Plant Physiol 138:1690–1699

    Article  CAS  Google Scholar 

  • Nakamura R, Satoh R, Shimazaki T, Kasuga M, Yamaguchi-Shinozaki K, Kikuchi A, Watanabe KN, Teshima R (2010) Immunoproteomic and two-dimensional difference gel electrophoresis analysis of arabidopsis dehydration response element-binding protein 1A (DREB1A)-transgenic potato. Biol Pharma Bull 33:1418–1425

    Article  CAS  Google Scholar 

  • OECD (2006) An introduction to the food/feed safety consensus documents of the task force. In: Series on the safety of novel foods and feeds, No 14, 7–9. Paris: Organization for Economic Cooperation and Development

    Google Scholar 

  • Ren Y, Wang T, Peng Y, Xia B (2009a) Distinguishing transgenic from non-transgenic Arabidopsis plants by 1H NMR-based metabolic fingerprinting. J Genet Genomics 36:621–628

    Article  CAS  Google Scholar 

  • Ren Y, Jun L, Wang H, Li L, Peng Y, Qu LJ (2009b) A comparative proteomics approach detect unintended effects in transgenic Arabidopsis. J Genet Genomics 36:629–639

    Article  CAS  Google Scholar 

  • Ricroch A, Bergé J-B, Kuntz M (2011) Evaluation of genetically engineered crops using transcriptomic, proteomic and metabolomic profiling techniques. Plant Physio1 55:1752–1761

    Article  Google Scholar 

  • Ruebelt MC, Lipp M, Reynolds TL, Astwood JD, Engel K-H, Jany K-D (2006) Application of two-dimensional gel electrophoresis to interrogate alterations in the proteome of genetically modified crops. 2. Assessing natural variability. J Agric Food Chem 54:2162–2168

    Article  CAS  Google Scholar 

  • Satoh R, Nakamura R, Komatsu A, Oshima M, Teshima R (2011) Proteomic analysis of known and candidate rice allergens between non-transgenic and transgenic plants. Regul Toxicol Pharmacol 59:437–444

    Article  CAS  Google Scholar 

  • Sauvage F-X, Pradal M, Chatelet P, Tesniere C (2007) Proteome changes in leaves from grapevine (Vitis vinifera L.) transformed for alcohol dehydrogenase activity. J Agric Food Chem 55:2597–2603

    Article  CAS  Google Scholar 

  • Scossa F, Laudencia-Chingcuanco D, Anderson OD, Vensel WH, Lafiandra D, D’Ovidio R, Masci S (2008) Comparative proteomic and transcriptional profiling of a bread wheat cultivar and its derived transgenic line overexpressing a low molecular weight glutenin subunit gene in the endosperm. Proteomics 8:2948–2966

    Article  CAS  Google Scholar 

  • Shepherd LVT, McNicol JW, Razzo R, Taylor MA, Davies HV (2006) Assessing the potential for unintended effects in genetically modified potatoes perturbed in metabolic and developmental processes. Targeted analysis of key nutrients and anti-nutrients. Transgenic Res 15:409–425

    Article  CAS  Google Scholar 

  • Takahashi H, Hotta Y, Hayashi M, Kawai-Yamada M, Komatsu S, Uchimiya H (2005) High throughput metabolome and proteome analysis of transgenic rice plants (Oryza sativa L.). Plant Biotechnol 22:47–50

    Article  CAS  Google Scholar 

  • Wienkoop S, Baginsky S, Weckwerth W (2010) Arabidopsis thaliana as a model organism for plant proteome research. J Proteomics 73:2239–2248

    Article  CAS  Google Scholar 

  • Zolla L, Rinalducci S, Antonioli P, Righetti PG (2008) Proteomics as a complementary tool for identifying unintended side effects occurring in transgenic maize seeds as a result of genetic modifications. J Proteome Res 7:1850–1861

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Kuntz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ricroch, A.E., Kuntz, M. (2013). Evaluation of Genetically Engineered Crops Using Proteomics. In: Toldrá, F., Nollet, L. (eds) Proteomics in Foods. Food Microbiology and Food Safety, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5626-1_25

Download citation

Publish with us

Policies and ethics