Skip to main content

The Role of Proteomics in the Discovery of Marker Proteins of Food Adulteration

  • Chapter
  • First Online:
Proteomics in Foods

Part of the book series: Food Microbiology and Food Safety ((RESDEV,volume 2))

Abstract

Food products are subjected to adulteration, with consequent nutritional or economic loss for consumers and with damage to the commercial reputation of producers and trade labels. Substances used for adulteration range from synthetic chemicals to poor-quality plant or animal materials added to food preparations. Currently, a variety of analytical methods can be exploited to determine the presence of undeclared or unexpected ingredients in food products. Although conventional analytical tools have good potential for detecting the synthetic adulterants of food and agricultural foodstuffs, these methods often fail to identify the addition of low-quality materials to higher-value products, as in the case of typical and Protected Denomination of Origin foods. In the last years, the application of the “omic” technologies in food science has assumed a leading role in the definition of the entire and detailed (bio)chemical composition of a food and its modification along the artisanal or industrial production chain to evaluate its technological properties. These developments are driven by the need to meet the instances of food industries, regulatory agencies, and consumers in order to guarantee food quality and authenticity. Although, in principle, any class of food constituents can be a marker of the food characteristics, more than other fractions, proteins retain the record of the treatment and processes a food undergoes from raw materials to end products. This chapter focuses on the application of the newly born proteomic technologies to the discovery and characterization of reliable molecular markers of food adulteration for the assessment of food quality, typicality, and authenticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

1D:

Mono-dimensional

2-D:

Two-dimensional

AQUA:

Absolute quantification

BLG:

Beta-lactoglobulin

CE:

Capillary electrophoresis

CID:

Collision-induced dissociation

CML:

Nε-carboxymethyl-lysine

CZE:

Capillary zone electrophoresis

DIGE:

Differential in-gel electrophoresis

ELISA:

Enzyme-linked immunosorbent assay

ESI:

Electrospray ionization

GC:

Gas chromatography

GMO:

Genetically modified organism

HPLC:

High-performance liquid chromatography

ICAT:

Isotope-coded affinity tag

IEF:

Isoelectric focusing

IEX:

Ion exchange

IT:

Ion trap

iTRAQ:

Isobaric tags for relative and absolute quantitation

LAL:

Lysinoalanine

LC:

Liquid chromatography

LMW:

Low molecular weight

LOD:

Limit of detection

LOQ:

Limit of quantification

MALDI:

Matrix-assisted laser desorption ionization

MM:

Mechanically recovered meat

MP:

Milk powders

MRM:

Multiple reaction monitoring

MS/MS and MSn :

Tandem mass spectrometry

MS:

Mass spectrometry

MudPIT:

Multidimensional protein identification technology

PAGE:

Polyacrylamide gel electrophoresis

PCR:

Polymerase chain reaction

PDO:

Protected denomination of origin: RP-HPLC: reverse-phase high-performance liquid chromatography

SDS:

Sodium dodecyl-sulphate

SILAC:

Stable isotope labeling with amino acids in cell culture

SIM:

Single ion monitoring

SRM:

Selected reaction monitoring

TOF:

Time-of-flight

UPLC-FT-ICR-MS:

Ultrahigh-pressure liquid chromatography high-resolution Fourier-transform ion cyclotron resonance mass spectrometry

References

  • Abdel Rahman MA, Lopata AL, Randel EW, Helleur JR (2010) Absolute quantification method and validation of airborne snow crab allergen tropomyosin using tandem mass spectrometry. Anal Chim Acta 681:49–55

    Article  CAS  Google Scholar 

  • Abdel Rahman MA, Kamath SD, Lopata AL, Robinson JJ, Helleur JR (2011) Biomolecular characterization of allergenic proteins in snow crab (Chionoecetes opilio) and de novo sequencing of the second allergen arginine kinase using tandem mass spectrometry. J Proteomics 74:231–241

    Article  CAS  Google Scholar 

  • Addeo F, Garro G, Intorcia N, Pellegrino L, Resmini P, Chianese L (1995) Gel electrophoresis and immunoblotting for the detection of casein proteolysis in cheese. J Dairy Res 62:297–309

    Article  CAS  Google Scholar 

  • Addeo F, Pizzano R, Nicolai MA, Caira S, Chianese L (2009) Fast isoelectric focusing and antipeptide antibodies for detecting bovine casein in adulterated water buffalo milk and derived mozzarella cheese. J Agric Food Chem 57:10063–10066

    Article  CAS  Google Scholar 

  • Alves G, Ogurtsov AY, Yu YK (2011) Assigning statistical significance to proteotypic peptides via database searches. J Proteomics 74:199–211

    Article  CAS  Google Scholar 

  • Angeletti R, Gioacchini AM, Seraglia R, Piro R, Traldi P (1998) The potential of matrix-assisted laser desorption/ionization mass spectrometry in the quality control of water buffalo mozzarella cheese. J Mass Spectrom 33:525–531

    Article  CAS  Google Scholar 

  • AOAC Official Method 998.10, Soy protein in raw and heat processed meat products, Enzyme-Linked Immunosorbent Assay, Official Methods of Analysis, 16th ed., Rev. 1996, 1997, 1998; AOAC International: Gaithersburg, MD.http://eoma.aoac.org/methods/info.asp?ID=16859

  • Arena S, Renzone G, Novi G, Paffetti A, Bernardini G, Santucci A, Scaloni A (2010) Modern proteomic methodologies for the characterization of lactosylation protein targets in milk. Proteomics 10:3414–3434

    Article  CAS  Google Scholar 

  • Barre A, Sordet C, Culerrier R, Rancé F, Didier A, Rougé P (2008) Vicilin allergens of peanut and tree nuts (walnut, hazelnut and cashew nut) share structurally related IgE-binding epitopes. Mol Immunol 45:1231–1240

    Article  CAS  Google Scholar 

  • Bauchart C, Chambon C, Mirand PP, Savary-Auzeloux I, Remond D, Morzel M (2007) Peptides in rainbow trout(Oncorhynchus mykiss) muscle subjected to ice storage and cooking. Food Chem 100:1566–1572

    Article  CAS  Google Scholar 

  • Birlouez-Aragon I, Pischetsrieder M, Leclere J, Morales FJ, Hasenkopf K, Kientsch-Engel R, Ducauze CJ, Rutledge D (2004) Assessment of protein glycation markers in infant formulas. Food Chem 87:253–259

    Article  CAS  Google Scholar 

  • Bobalova J, Chmelik J (2007) Proteomic identification of technologically modified proteins in malt by combination of protein fractionation using convective interaction media and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Chromatogr A 1163:80–85

    Article  CAS  Google Scholar 

  • Boehmer JL, DeGrasse JA, McFarland MA, Tall EA, Shefcheck KJ, Ward JL, Bannerman DD (2010) The proteomic advantage: label-free quantification of proteins expressed in bovine milk during experimentally induced coliform mastitis. Vet Immunol Immunopathol 138:252–266

    Article  CAS  Google Scholar 

  • Bohme K, Fernandez-No IC, Barros-Velazquez J, Gallardo JM, Canas B, Calo-Mata P (2010) Comparative analysis of protein extraction methods for the identification of seafood-borne pathogenic and spoilage bacteria by MALDI-TOF mass spectrometry. Anal Method 2:1941–1947

    Article  CAS  Google Scholar 

  • Brambilla F, Resta D, Isak I, Zanotti M, Arnoldi A (2009) A label-free internal standard method for the differential analysis of bioactive lupin proteins using nano HPLC-Chip coupled with Ion Trap mass spectrometry. Proteomics 9:272–286

    Article  CAS  Google Scholar 

  • Calabrese MG, Mamone G, Caira S, Ferranti P, Addeo F (2009) Quantitation of lysinoalanine in dairy products by liquid chromatography–mass spectrometry with selective ion monitoring. Food Chem 116:799–806

    Article  CAS  Google Scholar 

  • Careri M, Elviri L, Mangia A, Zagnoni I, Agrimonti C, Visioli G, Marmiroli N (2003) Analysis of protein profiles of genetically modified potato tubers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 17:479–483

    Article  CAS  Google Scholar 

  • Careri M, Costa A, Elviri L, Lagos JB, Mangia A, Terenghi M, Cereti A, Garoffo LP (2007) Use of specific peptide biomarkers for quantitative confirmation of hidden allergenic peanut proteins Ara h 2 and Ara h 3/4 for food control by liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 389:1901–1907

    Article  CAS  Google Scholar 

  • Careri M, Elviri L, Lagos JB, Mangia A, Speroni F, Terenghi M (2008) Selective and rapid immunomagnetic bead-based sample treatment for the liquid chromatography-electrospray ion-trap mass spectrometry detection of Ara h3/4 peanut protein in foods. J Chromatogr A 1206:89–94

    Article  CAS  Google Scholar 

  • Catinella S, Traldi P, Pinelli C, Dallaturca E, Marsillo R (1996) Matrix-assisted laser desorption/ionisation mass spectrometry in milk science. Rapid Commun Mass Spectrom 10:1629–1637

    Article  CAS  Google Scholar 

  • Chassaigne H, Nørgaard JV, Hengel AJ (2007) Proteomics-based approach to detect and identify major allergens in processed peanuts by capillary LC-Q-TOF (MS/MS). J Agric Food Chem 55:4461–4473

    Article  CAS  Google Scholar 

  • Chen RK, Chang LW, Chung YY, Lee MH, Ling YC (2004) Quantification of cow milk adulteration in goat milk using high-performance liquid chromatography with electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 18:1167–1171

    Article  CAS  Google Scholar 

  • Chianese L, Calabrese MG, Ferranti P, Mauriello R, Garro G, De Simone C, Quarto M, Addeo F, Cosenza G, Ramunno L (2010) Proteomic characterization of donkey milk caseome. J Chromatogr A 1217:4834–4840

    Article  CAS  Google Scholar 

  • Chichester CO (1986) Advances in food research. In: advances in food and nutrition research, Academic, Boston, pp 77–124

    Google Scholar 

  • Choi H, Fermin D, Nesvizhskii A (2008) Significance analysis of spectral count data in label-free shotgun proteomics. Mol Cell Proteomics 7:2373–2385

    Article  CAS  Google Scholar 

  • Cordewener JH, Luykx DM, Frankhuizen R, Bremer MG, Hooijerink H, America H (2009) Untargeted LC-Q-TOF mass spectrometry method for the detection of adulterations in skimmed-milk powder. J Sep Sci 32:1216–1223

    Article  CAS  Google Scholar 

  • Corpillo D, Gardini G, Vaira AM, Basso M, Aime S, Accotto GP, Fasano M (2004) Proteomics as a tool to improve investigation of substantial equivalence in genetically modified organisms: the case of a virus-resistant tomato. Proteomics 4:193–200

    Article  CAS  Google Scholar 

  • EC Council Regulation 2006 no. 509/2006 of 20 March 2006 on agricultural products and foodstuff as traditional specialties guaranteed. Off J Eur Union CE L 93, 31/03/06

    Google Scholar 

  • Cozzolino R, Passalacqua S, Salemi S, Malvagna P, Spina E, Garozzo D (2002) Identification of adulteration in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 36:1031–1037

    Article  Google Scholar 

  • Cuadros-Inostroza A, Giavalisco P, Hummel J, Eckardt A, Willmitzer L, Pena-Cortes H (2010) Discrimination of wine attributes by metabolome analysis. Anal Chem 82:3573–3580

    Article  CAS  Google Scholar 

  • Cuollo M, Caira S, Fierro O, Pinto G, Picariello G, Addeo F (2010) Toward milk speciation through the monitoring of casein proteotypic peptides. Rapid Commun Mass Spectrom 24:1687–1696

    Article  CAS  Google Scholar 

  • Czerwenka C, Maier I, Pittner F, Lindner W (2006) Investigation of the lactosylation of whey proteins by liquid chromatography-mass spectrometry. J Agric Food Chem 54:8874–8882

    Article  CAS  Google Scholar 

  • Czerwenka C, Maier I, Potocnik N, Pittner F, Lindner W (2007) Absolute quantitation of beta-lactoglobulin by protein liquid chromatography-mass spectrometry and its application to different milk products. Anal Chem 79:5165–5172

    Article  CAS  Google Scholar 

  • Davies H (2010) A role for “omics” technologies in food safety assessment. Food Control 21:1601–1610

    Article  Google Scholar 

  • Delatour T, Hegele J, Parisod V, Richoz J, Maurer S, Steven M, Buetler T (2009) Analysis of advanced glycation endproducts in dairy products by isotope dilution liquid chromatography-electrospray tandem mass spectrometry. The particular case of carboxymethyllysine. J Chromatogr A 1216:2371–2381

    Article  CAS  Google Scholar 

  • Di Luccia A, Picariello G, Cacace G, Scaloni A, Faccia M, Liuzzi V, Alviti G, Musso SS (2005) Proteomic analysis of water soluble and myofibrillar protein changes occurring in dry cured hams. Meat Sci 69:479–491

    Article  CAS  Google Scholar 

  • Di Luccia A, Picariello G, Trani A, Alviti G, Loizzo P, Faccia M, Addeo F (2009) Occurrence of beta-casein fragments in cold-stored and curdled river buffalo (Bubalus bubalis L.) milk. J Dairy Sci 92:1319–1329

    Article  CAS  Google Scholar 

  • Directive N 101/2001 of the European Parliament and of the Council on the approximation of the laws of the Member States relating to the labelling, presentation and advertising of foodstuffs. Official Journal of the European Communities, L310/19

    Google Scholar 

  • Erny GL, Cifuentes A (2007) Simplified 2-D CE-MS mapping: analysis of proteolytic digests. Electrophoresis 28:1335–1344

    Article  CAS  Google Scholar 

  • Erny GL, Marina ML, Cifuentes A (2007) Reproducible and efficient separation of aggregatable zein proteins by capillary zone electrophoresis using a volatile background electrolyte. Electrophoresis 28:2988–2997

    Article  CAS  Google Scholar 

  • Erny GL, Leon C, Marina ML, Cifuentes A (2008) Time of flight versus ion trap MS coupled to CE to analyse intact proteins. J Sep Sci 31:1810–1818

    Article  CAS  Google Scholar 

  • Fanton C, Delogu G, Maccioni E, Podda G, Seraglia R, Traldi P (1998) Matrix-assisted laser desorption/ionization mass spectrometry in the dairy industry 2. The protein fingerprint of ewe cheese and its application to detection of adulteration by bovine milk. Rapid Commun Mass Spectrom 12:1569–1573

    Article  CAS  Google Scholar 

  • Farid EA (2004) Testing of genetically modified organisms in foods. In: Farid EA (ed) 1560222735. ISBN-13: 9781560222736. CRC Press

    Google Scholar 

  • Fenaille F, Morgan F, Parisod V, Tabet JC, Guy PA (2004) Solid-state glycation of beta-lactoglobulin by lactose and galactose: localization of the modified amino acids using mass spectrometric techniques. J Mass Spectrom 39:16–28

    Article  CAS  Google Scholar 

  • Fernandez Ocana M, Fraser P, Patel RKP, Halket JM, Bramley PM (2007) Mass spectrometric detection of CP4 EPSPS in genetically modified soya and maize. Rapid Commun Mass Spectrom 21:319–328

    Article  CAS  Google Scholar 

  • Fernandez Ocana M, Fraser P, Patel RKP, Halket JM, Bramley PM (2009) Evaluation of stable isotope labelling strategies for the quantitation of CP4 EPSPS in genetically modified soy. Anal Chim Acta 634:75–82

    Article  CAS  Google Scholar 

  • Ferranti P (2005) In: Proceedings of the workshop on quality, salubrity and safety of some typical Italian Cheeses, National Research Council/Italian Ministry of University and Research, 5th May, Rome

    Google Scholar 

  • Ferranti P, Fabbrocino S, Cerulo MG, Bruno M, Serpe L, Gallo P (2008) Characterisation of biotoxins produced by a cyanobacteria bloom in Lake Averno using two LC-MS-based techniques. Food Addit Contam A 25:1530–1537

    Article  CAS  Google Scholar 

  • Ferranti P, Fabbrocino S, Nasi A, Caira S, Bruno M, Serpe L, Gallo P (2009) Liquid chromatography coupled to quadruple time-of-flight tandem mass spectrometry for microcystin analysis in freshwaters: method performances and characterisation of a novel variant of microcystin-RR. Rapid Commun Mass Spectrom 23:1328–1336

    Article  CAS  Google Scholar 

  • Ferranti P, Nasi A, Bruno M, Basile A, Serpe L, Gallo P (2011) A peptidomic approach for monitoring and characterising peptide cyanotoxins produced in Italian lakes by matrix-assisted laser desorption/ionisation and quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 25:1173–1183

    Article  CAS  Google Scholar 

  • Finnie C, Steenholdt T, Roda Noguera O, Knudsen S, Larsen J, Brinch-Pedersen H, Bach Holm P, Olsen O, Svensson B (2004) Environmental and transgene expression effects on the barley seed proteome. Phytochemistry 65:1619–1627

    Article  CAS  Google Scholar 

  • Fogliano V, Monti SM, Visconti A, Randazzo G, Facchiano AM, Colonna G, Ritieni A (1998) Identification of a beta-lactoglobulin lactosylation site. Biochim Biophys Acta 1388:295–304

    Article  CAS  Google Scholar 

  • French General Directorate for Fair Trading, Consumer Affairs and Fraud Control (DGCCRF) (2001) Activity reports of DGCCRF; 1997–1999; www.finances.gouv.fr/DGCCRF/activities/index-d.htm

  • Friedman M (1996) Food browning and its prevention: an overview. J Agric Food Chem 44:631–653

    Article  CAS  Google Scholar 

  • Friedman M (1999) Chemistry, biochemistry, nutrition, and microbiology of lysinoalanine, lanthionine, and histidinoalanine in food and other proteins. J Agric Food Chem 47:1295–1332

    Article  CAS  Google Scholar 

  • Gallien S, Duriez E, Domon B (2011) Selected reaction monitoring applied to proteomics. J Mass Spectrom 46:298–312

    Article  CAS  Google Scholar 

  • Gallo P, Fabbrocino S, Cerulo MG, Ferranti P, Bruno M, Serpe L (2009) Determination of cylindrospermopsin in freshwaters and fish tissue by liquid chromatography coupled to electrospray ion trap mass spectrometry. Rapid Commun Mass Spectrom 23:3279–3284

    Article  CAS  Google Scholar 

  • García-Cañas V, Cifuentes A (2008) Recent advances in the application of capillary electromigration methods for food analysis. Electrophoresis 29:294–309

    Article  CAS  Google Scholar 

  • Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100:6940–6945

    Article  CAS  Google Scholar 

  • Gingras AC, Gstaiger M, Braught B, Aebersold R (2007) Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8:645–654

    Article  CAS  Google Scholar 

  • Gorg A, Weiss W, Dunn MJ (2005) Current two-dimensional electrophoresis technology for proteomics. Proteomics 5:826–827

    Article  Google Scholar 

  • Gougeon RD, Lucio M, Frommberger M, Peyron D, Chassagne D, Alexandre H, Feuillat F, Voilley A, Cayot P, Gebefugi I, Hertkorn N, Schmitt-Kopplin P (2009) The chemodiversity of wines can reveal a metabologeography expression of cooperage oak wood. Proc Natl Acad Sci USA 106:9174–9179

    Article  CAS  Google Scholar 

  • Guy PA, Fenaille F (2006) Contribution of mass spectrometry to assess quality of milk-based products. Mass Spectrom Rev 25:290–326

    Article  CAS  Google Scholar 

  • Haselberg R, de Jong GJ, Somsen GW (2007) Capillary electrophoresis-mass spectrometry for the analysis of intact proteins. J Chromatogr A 1159:81–109

    Article  CAS  Google Scholar 

  • Hasenkopf K, Ubel B, Bordiehn T, Pischetsrieder M (2001) Determination of the Maillard product oxalic acidmonolysinylamide (OMA) in heated milk products by ELISA. Food 45:206–209

    CAS  Google Scholar 

  • Hau J, Bovetto L (2001) Characterisation of modified whey protein in milk ingredients by liquid ­chromatography coupled to electrospray ionization mass spectrometry. J Chromatogr A 926:105–112

    Article  CAS  Google Scholar 

  • Hegele J, Buetler T, Delatour T (2008) Comparative LC-MS/MS profiling of free and protein-bound early and advanced glycation-induced lysine modifications in dairy products. Anal Chim Acta 617:85–96

    Article  CAS  Google Scholar 

  • Henle T, Schwarzenbolz U, Klostermeyer H (1997) Detection and quantification of pentosidine in foods. Z Lebensm Unters Forsch A 204:95–98

    Article  CAS  Google Scholar 

  • Hernando A, Mujico JR, Mena MC, Lombardía M, Méndez E (2008) Measurement of wheat gluten and barley hordeins in contaminated oats from Europe, the United States and Canada by Sandwich R5 ELISA. Eur J Gastroenterol Hepatol 20:545–554

    Article  Google Scholar 

  • Herrero M, Garcıa-Canas V, Simo C, Cifuentes A (2010) Recent advances in the application of capillary electromigration methods for food analysis and foodomics. Electrophoresis 31:205–228

    Article  CAS  Google Scholar 

  • Hewedi MM, Kiesner C, Meissner K, Hartkopf J, Erbersdobler HJ (1994) Effects of UHT heating of milk in an experimental plant on several indicators of heat treatment. J Dairy Res 61:305–309

    Article  Google Scholar 

  • Hogarth CJ, Fitzpatrick JL, Nolan AM, Young FJ, Pitt A, Eckersall PD (2004) Differential protein composition of bovine whey: a comparison of whey from healthy animals and from those with clinical mastitis. Proteomics 4:2094–2100

    Article  CAS  Google Scholar 

  • Huber CG, Premstaller A, Kleindienst G (1999) Evaluation of volatile eluents and electrolytes for high-performance liquid chromatography-electrospray ionization mass spectrometry and capillary electrophoresis-electrospray ionization mass spectrometry of proteins. II. Capillary electrophoresis. J Chromatogr A 849:175–189

    Article  CAS  Google Scholar 

  • Islam N, Campbell PM, Higgins TJ, Hirano H, Akhurst RJ (2009) Transgenic peas expressing an alpha-amylase inhibitor gene from beans show altered expression and modification of endogenous proteins. Electrophoresis 30:1863–1868

    Article  CAS  Google Scholar 

  • Jégou S, Douliez JP, Mollé D, Boivin P, Marion D (2001) Evidence of the glycation and denaturation of LTP1 during the malting and brewing process. J Agric Food Chem 49:4942–4949

    Article  CAS  Google Scholar 

  • Johnson RS, Davis MT, Taylor JA, Patterson SD (2005) Informatics for protein identification by mass spectrometry. Methods 35:223–236

    Article  CAS  Google Scholar 

  • Jones AD, Tier CM, Wilkins JPG (1998) Analysis of the Maillard reaction products of beta-lactoglobulin and lactose in skimmed milk powder by capillary electrophoresis and electrospray mass spectrometry. J Chromatogr A 822:147–154

    Article  CAS  Google Scholar 

  • Koppelman SJ, Lakemond CM, Vlooswijk R, Hefle SL (2004) Detection of soy proteins in processed foods: literature overview and new experimental work. J AOAC Int 87:1398–1407

    CAS  Google Scholar 

  • Kuppannan K, Albers DR, Schafer BW, Dielman D, Young SA (2011) Quantification and characterization of maize lipid transfer protein, a food allergen, by liquid chromatography with ultraviolet and mass spectrometric detection. Anal Chem 83:516–524

    Article  CAS  Google Scholar 

  • Leitner A, Castro-Rubio F, Marina ML, Lindner W (2006) Identification of marker proteins for the adulteration of meat products with soybean proteins by multidimensional liquid chromatography-tandem mass spectrometry. J Proteome Res 5:2424–2430

    Article  CAS  Google Scholar 

  • Leonil J, Molle D, Fauquant J, Maubois JL, Pearce RJ, Bouhallab S (1997) Characterization by ionization mass spectrometry of lactosyl betalactoglobulin conjugates formed during heat treatment of milk and whey and identification of one lactose-binding site. J Dairy Sci 80:2270–2281

    Article  CAS  Google Scholar 

  • Liger-Belair G, Cilindre C, Gougeon RD, Lucio M, Jeandet P, Gebefugi I, Schmitt-Kopplin P (2009) Unraveling different chemical fingerprints between a champagne wine and its aerosols. Proc Natl Acad Sci USA 106:16545–16549

    Article  CAS  Google Scholar 

  • Liu H, Sadygov RG, Yates JR 3rd (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201

    Article  CAS  Google Scholar 

  • Losito I, Carbonara T, Monaci L, Palmisano F (2007) Evaluation of the thermal history of bovine milk from the lactosylation of whey proteins: an investigation by liquid chromatography-electrospray ionization mass spectrometry. Anal Bioanal Chem 389:2065–2074

    Article  CAS  Google Scholar 

  • Lum MR, Hirsch AM (2006) Molecular methods for the authentication of botanicals and detection of potential contaminants and adulterants. Acta Hort 720:59–72

    CAS  Google Scholar 

  • Luykx DM, Cordewener JH, Ferranti P, Frankhuizen R, Bremer MG, Hooijerink H, America H (2007) Identification of plant proteins in adulterated skimmed milk powder by high-performance liquid chromatography—mass spectrometry. J Chromatogr A 1164:189–197

    Article  CAS  Google Scholar 

  • Mallick P, Schirle M, Chen SS, Flory MR, Lee H, Martin D, Ranish J, Raught B, Schmitt R, Werner T, Kuster B, Aebersold R (2007) Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol 25:125–131

    Article  CAS  Google Scholar 

  • Mamone G, Picariello G, Caira S, Addeo F, Ferranti P (2009) Analysis of food proteins and peptides by mass spectrometry-based techniques. J Chromatogr A 1216:7130–7142

    Article  CAS  Google Scholar 

  • Mamone G, Picariello G, Addeo F, Ferranti P (2011) Proteomic analysis in allergy and intolerance to wheat products. Expert Rev Proteomics 8:95–115

    Article  CAS  Google Scholar 

  • Mann K, Mann M (2011) In-depth analysis of the chicken egg white proteome using an LTQ Orbitrap Velos. Proteome Sci 9:7–11

    Article  CAS  Google Scholar 

  • Marvin LF, Parisod V, Fay LB, Guy PA (2002) Characterization of lactosylated proteins of infant formula powders using two-dimensional gel electrophoresis and nanoelectrospray mass spectrometry. Electrophoresis 23:2505–2512

    Article  CAS  Google Scholar 

  • Mayya V, Han DK (2006) Proteomic applications of protein quantification by isotope-dilution mass spectrometry. Expert Rev Proteomics 3:597–610

    Article  CAS  Google Scholar 

  • Mazzeo MF, Giulio BD, Guerriero G, Ciarcia G, Malorni A, Russo GL, Siciliano RA (2008) Fish authentication by MALDI-TOF mass spectrometry. J Agric Food Chem 56:11071–11076

    Article  CAS  Google Scholar 

  • Meltretter J, Seeber S, Humeny A, Becker CM (2007) Sitespecific formation of Maillard, oxidation, and condensation products from whey proteins during reaction with lactose. J Agric Food Chem 55:6096–6103

    Article  CAS  Google Scholar 

  • Meltretter J, Becker CM, Pischetsrieder M (2008) Identification and site-specific relative quantification of beta-lactoglobulin modifications in heated milk and dairy products. J Agric Food Chem 56:5165–5171

    Article  CAS  Google Scholar 

  • Meltretter J, Birlouez-Aragon I, Becker CM, Pischetsrieder M (2009) Assessment of heat treatment of dairy products by MALDI-TOF-MS. Mol Nutr Food Res 53:1487–1495

    Article  CAS  Google Scholar 

  • Molle D, Morgan F, Bouhallab S, Leonil J (1998) Selective detection of lactolated peptides in hydrolysates by liquid chromatography/electrospray tandem mass spectrometry. Anal Biochem 259:152–161

    Article  CAS  Google Scholar 

  • Monaci L, van Hengel AJ (2007) Effect of heat treatment on the detection of intact bovine beta-lactoglobulins by LC mass spectrometry. J Agric Food Chem 55:2985–2992

    Article  CAS  Google Scholar 

  • Mora L, Sentandreu MA, Fraser PD, Toldrá F, Bramley PM (2009) Oligopeptides arising from the degradation of creatine kinase in Spanish dry-cured ham. J Agric Food Chem 57:8982–8988

    Article  CAS  Google Scholar 

  • Mora L, Sentandreu MA, Toldrá F (2011a) Intense degradation of myosin light chain isoforms in Spanish dry-cured ham. J Agric Food Chem 59:3884–3892

    Article  CAS  Google Scholar 

  • Mora L, Valero ML, Sánchez Del Pino MM, Sentandreu MA, Toldrá F (2011b) Small peptides released from muscle glycolytic enzymes during dry-cured ham processing. J Proteomics 74:442–450

    Article  CAS  Google Scholar 

  • Morgan F, Leonil J, Mollé D, Bouhallab S (1997) Nonenzymic lactosylation of bovine beta-lactoglobulin under mild heat treatment leads to structural heterogeneity of the glycoforms. Biochem Biophys Res Commun 236:413–417

    Article  CAS  Google Scholar 

  • Motoyama A, Xu T, Ruse CI, Wohlschlegel JA, Yates JR III (2007) Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides. Anal Chem 79:3623–3634

    Article  CAS  Google Scholar 

  • Muller L, Bartak P, Bednar P, Frysova I, Sevcık J, Lemr K (2008) Capillary electrophoresis-mass spectrometry – a fast and reliable tool for the monitoring of milk adulteration. Electrophoresis 29:2088–2093

    Article  CAS  Google Scholar 

  • Ono M, Shitashige M, Honda K, Isobe T, Kuwabara H, Matsuzuki H, Hirohashi S, Yamada T (2006) Label-free quantitative proteomics using large peptide data sets generated by nano-flow liquid chromatography and mass spectrometry. Mol Cell Proteomics 5:1338–1347

    Article  CAS  Google Scholar 

  • Palmisano G, Antonacci D, Larsen MR (2010) Glycoproteomic profile in wine: a ‘sweet’ molecular renaissance. J Proteome Res 9:6148–6159

    Article  CAS  Google Scholar 

  • Petit L, Pagny G, Baraige F, Nignol A, Zhang D, Fach P (2007) Characterization of genetically modified maize in weakly contaminated seed batches and identification of the origin of the adventitious contamination. Food Composition and Additive (Report). J AOAC Int 90(4):1098–1106

    Google Scholar 

  • Petry-Podgórska I, Zídková J, Flodrová D, Bobálová J (2010) 2D-HPLC and MALDI-TOF/TOF analysis of barley proteins glycated during brewing. J Chromatogr B 878:3143–3148

    Article  CAS  Google Scholar 

  • Picariello G, De Martino A, Mamone G, Ferranti P, Addeo F, Faccia M, Spagnamusso S, Di Luccia A (2006) Proteomic study of muscle sarcoplasmic proteins using AUT-PAGE/SDS-PAGE as two-dimensional gel electrophoresis. J Chromatogr B 833:101–108

    Article  CAS  Google Scholar 

  • Picariello G, Sacchi R, Addeo F (2007) One-step characterization of triacylglycerols from animal fat by MALDI-TOF MS. Eur J Lipid Sci Technol 109:511–524

    Article  CAS  Google Scholar 

  • Picariello G, Ferranti P, Caira S, Fierro O, Chianese L, Addeo F (2009a) Fast screening and quantitative evaluation of internally deleted goat alphas1-casein variants by mass spectrometric detection of the signature peptides. Rapid Commun Mass Spectrom 23:775–787

    Article  CAS  Google Scholar 

  • Picariello G, Paduano A, Sacchi R, Addeo F (2009b) Maldi-tof mass spectrometry profiling of polar and nonpolar fractions in heated vegetable oils. J Agric Food Chem 57:5391–5400

    Article  CAS  Google Scholar 

  • Picariello G, Mamone G, Addeo F, Ferranti P (2011) The frontiers of mass spectrometry-based techniques in food allergenomics. J Chromatogr A 1218:7386–7398

    Article  CAS  Google Scholar 

  • Picotti P, Rinner O, Stallmach R, Dautel F, Farrah T, Domon B, Wenschuh H, Aebersold R (2010) High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat Methods 7:43–46

    Article  CAS  Google Scholar 

  • Pietrogrande MC, Marchetti N, Dondi F, Righetti PG (2006) De- coding 2D-PAGE complex maps: relevance to proteomics. J Chromatogr B 833:51–62

    Article  CAS  Google Scholar 

  • Pineiro C, Barros-Velazquez J, Vazquez J, Figueras A, Gallardo JM (2003) Proteomics as a tool for the investigation of seafood and other marine products. J Proteome Res 2:127–135

    Article  CAS  Google Scholar 

  • Pinto G, Caira S, Cuollo M, Fierro O, Nicolai MA, Chianese L, Addeo F (2012) Lactosylated casein phosphopeptides as specific indicators of heated milks. Anal Bioanal Chem 402:1961–1972

    Article  CAS  Google Scholar 

  • Piraino P, Upadhyay VK, Rossano R, Riccio P, Parente E, Kelly AL, McSweeney PLH (2007) Use of mass spectrometry to characterize proteolysis in cheese. Food Chem 101:964–972

    Article  CAS  Google Scholar 

  • Pirisi A, Pinna G, Addis M, Piredda G, Mauriello R, De Pascale S, Caira S, Mamone G, Ferranti P, Addeo F, Chianese L (2007) Relationship between the enzymatic composition of lamb rennet paste and proteolytic, lipolytic pattern and texture of PDO Fiore Sardo ovine cheese. Int Dairy J 17:143–156

    Article  CAS  Google Scholar 

  • Rob H, de Jong GJ, Somsen GW (2007) Capillary electrophoresis-mass spectrometry for the analysis of intact proteins. J Chromatogr A 1159:81–109

    Article  CAS  Google Scholar 

  • Scaloni A, Perillo V, Franco P, Fedele E, Froio R, Ferrara L, Bergamo P (2002) Characterization of heat-induced lactosylation products in caseins by immunoenzymatic and mass spectrometric methodologies. Biochim Biophys Acta 1598:30–39

    Article  CAS  Google Scholar 

  • Schlosser G, Kacer P, Kuzma M, Szilágyi Z, Sorrentino A, Manzo C, Pizzano R, Malorni L, Pocsfalvi G (2007) Coupling immunomagnetic separation on magnetic beads with matrix-assisted laser desorption ionization-time of flight mass spectrometry for detection of staphylococcal enterotoxin B. Appl Environ Microbiol 73:6945–6952

    Article  CAS  Google Scholar 

  • Scossa F, Laudencia-Chingcuanco D, Anderson OD, Vensel WH, Lafiandra D, D’Ovidio R, Masci S (2008) Comparative proteomic and transcriptional profiling of a bread wheat cultivar and its derived transgenic line over expressing a low molecular weight glutenin subunit gene in the endosperm. Proteomics 8:2948–2966

    Article  CAS  Google Scholar 

  • Seal CJ, de Mul A, Eisenbrand G, Haverkort AJ, Franke K, Lalljie SP, Mykkänen H, Reimerdes E, Scholz G, Somoza V, Tuijtelaars S, van Boekel M, van Klaveren J, Wilcockson SJ, Wilms L (2008) Risk-benefit considerations of mitigation measures on acrylamide content of foods–a case study on potatoes, cereals and coffee. Br J Nutr 99:S1–S46

    Article  CAS  Google Scholar 

  • Sentandreu MA, Sentandreu E (2011) Peptide biomarkers as a way to determine meat authenticity. Meat Sci 89:280–285

    Article  CAS  Google Scholar 

  • Sentandreu MA, Armenteros M, Calvete JJ, Ouali A, Aristoy MC, Toldrá F (2007) Proteomic identification of actin-derived oligopeptides in dry-cured ham. J Agric Food Chem 55:3613–3619

    Article  CAS  Google Scholar 

  • Sentandreu MA, Fraser PD, Halket J, Patel R, Bramley PM (2010) A proteomic-based approach for detection of chicken in meat mixes. J Proteome Res 9:3374–3383

    Article  CAS  Google Scholar 

  • Siciliano R, Rega B, Amoresano A, Pucci P (2000) Modern mass spectrometric methodologies in monitoring milk quality. Anal Chem 72:408–415

    Article  CAS  Google Scholar 

  • Simó C, Gonzalez R, Barbas C, Cifuentes A (2005) Combining peptide modeling and capillary electrophoresis-mass spectrometry for characterization of enzymes cleavage patterns: recombinant versus natural bovine pepsin A. Anal Chem 77:7709–7716

    Article  CAS  Google Scholar 

  • Simó C, Domínguez-Vega E, Marina ML, García MC, Dinelli G, Cifuentes A (2010) CE-TOF MS analysis of complex protein hydrolyzates from genetically modified soybeans – a tool for foodomics. Electrophoresis 31:1175–1183

    Article  CAS  Google Scholar 

  • Simpson DC, Smith RD (2005) Combining capillary electrophoresis with mass spectrometry for applications in proteomics. Electrophoresis 26:1291–1305

    Article  CAS  Google Scholar 

  • Somma A, Ferranti P, Addeo F, Mauriello R, Chianese L (2008) Peptidomic approach based on combined capillary isoelectric focusing and mass spectrometry for the characterization of the plasmin primary products from bovine and water buffalo beta-casein. J Chromatogr A 1192:294–300

    Article  CAS  Google Scholar 

  • Sospedra I, Soler C, Mañes J, Soriano JM (2011) Analysis of staphylococcal enterotoxin A in milk by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Anal Bioanal Chem 400:1525–1531

    Article  CAS  Google Scholar 

  • Surowiec I, Koistinen KM, Fraser PD, Bramley PM (2011) Proteomic approach for the detection of chicken mechanically recovered meat. Meat Sci 89:233–237

    Article  CAS  Google Scholar 

  • Taylor JLS, Demyttenaere JCR, Abbaspour Tehrani K, Olave CA, Regniers L, Verschaeve L, Maes A, Elgorashi EE, van Staden J, De Kimpe N (2003) Genotoxicity of melanoidin fractions derived from a standard glucose/glycine model. J Agric Food Chem 52:318–323

    Article  CAS  Google Scholar 

  • Tessier B, Schweizer M, Fournier F, Framboisier X, Chevalot I, Vanderesse R, Harscoat C, Marc I (2005) Prediction of the amino acid composition of small peptides contained in a plant protein hydrolysate by LC-MS and CE-MS. Food Res Int 38:577–584

    Article  CAS  Google Scholar 

  • Ünlü M, Morgan M, Minden J (1997) Difference gel electrophoresis. A single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  Google Scholar 

  • Uribarri J, Tuttle KR (2006) Advanced glycation end products and nephrotoxicity of highprotein diets. Clin J Am Soc Nephrol 1:1293–1299

    Article  CAS  Google Scholar 

  • van Boekel MAJS (2006) Formation of flavour compounds in the Maillard reaction. Biotechnol Adv 24:230–233

    Article  CAS  Google Scholar 

  • van Boekel M, Fogliano V, Pellegrini N, Stanton C, Scholz G, Lalljie S, Somoza V, Knorr D, Jasti PR, Eisenbrand G (2010) A review on the beneficial aspects of food processing. Mol Nutr Food Res 54:1215–1247

    Article  CAS  Google Scholar 

  • Van den Bergh G, Arckens L (2004) Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics. Curr Opin Biotechnol 15:38–43

    Article  CAS  Google Scholar 

  • Washburn MP, Wolters D, Yates JR III (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  CAS  Google Scholar 

  • Westermeier R, Marouga R (2005) Protein detection methods in proteomics research. Biosci Rep 25:19–32

    Article  CAS  Google Scholar 

  • White JW, Winters K, Martin P, Rossmann A (1998) Stable carbon isotope ratio analysis of honey: validation of internal standard procedure for worldwide application. J Assoc Off Anal Chem 81:610–619

    CAS  Google Scholar 

  • Wilhelmsen EC (2004) Food adulteration. Food Sci Technol 138:2031–2056

    Article  CAS  Google Scholar 

  • Wilhelmsen EC (2006) Adulteration determination. In: Meyers RA (ed) Encyclopedia of analytical chemistry: applications, theory and instrumentation. Wiley, United States, p 14344

    Google Scholar 

  • Wu WW, Wang G, Baek SJ, Shen RF (2007) Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2-D gel- or LC-MALDI TOF/TOF. J Proteome Res 5:651–668

    Article  CAS  Google Scholar 

  • Yeboah FK, Alli I, Yaylayan VA, Yasuo K, Chowdhury SF, Purisima EO (2004) Effect of limited solid-state glycation on the conformation of lysozyme by ESI-MSMS peptide mapping and molecular modeling. Bioconjug Chem 15:27–34

    Article  CAS  Google Scholar 

  • Zídková J, Flodrová D, Bobálová J (2010) 2D-HPLC and MALDI-TOF/TOF analysis of barley proteins glycated during brewing. J Chromatogr B 878:3143–3148

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Ferranti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mamone, G., Picariello, G., Nitride, C., Addeo, F., Ferranti, P. (2013). The Role of Proteomics in the Discovery of Marker Proteins of Food Adulteration. In: Toldrá, F., Nollet, L. (eds) Proteomics in Foods. Food Microbiology and Food Safety, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5626-1_24

Download citation

Publish with us

Policies and ethics