Skip to main content

Continuum Damage-Healing Mechanics

  • Reference work entry
  • First Online:
Handbook of Damage Mechanics

Abstract

Microscale damage mechanisms, such as microcracks or microvoids, are well-known damage process zones for the formation of the macroscale cracks. The microscale defects, which are in the order of submicrons, will coalesce and branch within the course of the deformation and gradually form the macroscale damages. Healing of the microscale damages prohibits the formation of the macroscale defect zones and increases the life of the structures. Developing new healing strategies have become a hot research topic in the field of self-healing materials during recent years and many healing strategies have been proposed. In this chapter, the mathematics of healing is investigated within the continuum damage-healing mechanics (CDHM) framework. This aids smart material designers for the characterization of the coupled damage-healing process. Special emphasis is given on definition of new healing variables within the framework of CDHM. These novel damage-healing variables were formerly proposed by the authors and their performances have been examined in coupled damage-healing simulations (Voyiadjis et al., Int J Plast 27:1025–1044, 2011; Voyiadjis et al., Proc Roy Soc A Math Phys Eng Sci 468:163–183, 2012a; Voyiadjis et al., Int J Plast 28:21–45, 2012c). The proposed CDHM framework together with the developed thermodynamic consistent description of the microscale healing and damaging processes provide a well-structured method for accurately predicting the degradation and healing mechanisms in smart self-healing material systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J.A. Adam, A simplified model of wound healing (with particular reference to the critical size defect). Math. Comput. Model. 30(5–6), 23–32 (1999)

    Article  MathSciNet  Google Scholar 

  • B.A. Beiermann, M.W. Keller, N.R. Sottos, Self-healing flexible laminates for resealing of puncture damage. Smart Mater. Struct. 18(8), 085001 (2009)

    Article  Google Scholar 

  • I.P. Bond, R.S. Trask, H.R. Williams, Self-healing fiber-reinforced polymer composites. MRS Bull. 33, 770–774 (2008)

    Article  Google Scholar 

  • E. Brown, N. Sottos, S. White, Fracture testing of a self-healing polymer composite. Exp. Mech. 42(4), 372–379 (2002)

    Article  Google Scholar 

  • J.L. Chaboche, Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast. 5(3), 247–302 (1989)

    Article  MATH  Google Scholar 

  • J.L. Chaboche, On some modifications of kinematic hardening to improve the description of ratchetting effects. Int. J. Plast. 7(7), 661–678 (1991)

    Article  Google Scholar 

  • J.L. Chaboche, Cyclic viscoplastic constitutive equations, part I: a thermodynamically consistent formulation. J. Appl. Mech. 60(4), 813–821 (1993)

    Article  MATH  Google Scholar 

  • J.L. Chaboche, Thermodynamic formulation of constitutive equations and application to the viscoplasticity and viscoelasticity of metals and polymers. Int. J. Solids Struct. 34(18), 2239–2254 (1997)

    Article  MATH  Google Scholar 

  • J.L. Chaboche, A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24(10), 1642–1693 (2008)

    Article  MATH  Google Scholar 

  • N.R. Hansen, H.L. Schreyer, A thermodynamically consistent framework for theories of elastoplasticity coupled with damage. Int. J. Solids Struct. 31(3), 359–389 (1994)

    Article  MATH  Google Scholar 

  • S.A. Hayes, F.R. Jones, K. Marshiya, W. Zhang, A self-healing thermosetting composite material. Compos. A: Appl. Sci. Manuf. 38(4), 1116–1120 (2007a)

    Article  Google Scholar 

  • S.A. Hayes, W. Zhang, M. Branthwaite, F.R. Jones, Self-healing of damage in fibre-reinforced polymer-matrix composites. J. R. Soc. Interface 4(13), 381–387 (2007b)

    Article  Google Scholar 

  • M. John, G. Li. Self-healing of sandwich structures with grid stiffened shape memory polymer syntactic foam core. Smart Mater. Struct. 19(7), paper number 075013 (2010)

    Google Scholar 

  • L.M. Kachanov, On the creep fracture time. Izv Akad. Nauk USSR Otd. Tekh 8, 26–31 (1958)

    Google Scholar 

  • E.L. Kirkby, J.D. Rule, V.J. Michaud, N.R. Sottos, S.R. White, J.E. Månson, Embedded shape-memory alloy wires for improved performance of self-healing polymers. Adv. Funct. Mater. 18(15), 2253–2260 (2008)

    Article  Google Scholar 

  • E.L. Kirkby, V.J. Michaud, J.A.E. Månson, N.R. Sottos, S.R. White, Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires. Polymer 50(23), 5533–5538 (2009)

    Article  Google Scholar 

  • J. Lemaitre, Coupled elasto-plasticity and damage constitutive equations. Comput. Methods Appl. Mech. Eng. 51(1–3), 31–49 (1985)

    Article  MATH  Google Scholar 

  • J. Lemaitre, J.L. Chaboche, Mechanics of Solid Materials (Cambridge University Press, Cambridge, 1990)

    Book  MATH  Google Scholar 

  • J. Lemaitre, J. Dufailly, Damage measurements. Eng. Fract. Mech. 28(5–6), 643–661 (1987)

    Article  Google Scholar 

  • G. Li, M. John, A self-healing smart syntactic foam under multiple impacts. Compos. Sci. Technol. 68(15–16), 3337–3343 (2008)

    Article  Google Scholar 

  • G. Li, D. Nettles, Thermomechanical characterization of a shape memory polymer based self-repairing syntactic foam. Polymer 51(3), 755–762 (2010)

    Article  Google Scholar 

  • G. Li, A. Shojaei, A viscoplastic theory of shape memory polymer fibres with application to self-healing materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 468(2144), 2319–2346 (2012)

    Article  MathSciNet  Google Scholar 

  • G. Li, N. Uppu, Shape memory polymer based self-healing syntactic foam: 3-D confined thermomechanical characterization. Compos. Sci. Technol. 70(9), 1419–1427 (2010)

    Article  Google Scholar 

  • G. Li, H. Meng, J. Hu, Healable thermoset polymer composite embedded with stimuli-responsive fibres. J. R. Soc. Interface 9(77), 3279–3287 (2012)

    Article  Google Scholar 

  • Y.L. Liu, Y.W. Chen, Thermally reversible cross-linked polyamides with high toughness and self-repairing ability from maleimide- and furan-functionalized aromatic polyamides. Macromol. Chem. Phys. 208(2), 224–232 (2007)

    Article  Google Scholar 

  • S. Miao, M.L. Wang, H.L. Schreyer, Constitutive models for healing of materials with application to compaction of crushed rock salt. J. Eng. Mech. 121(10), 1122–1129 (1995)

    Article  Google Scholar 

  • S. Murakami, Mechanical modeling of material damage. J. Appl. Mech. 55(2), 280–286 (1988)

    Article  Google Scholar 

  • J. Nji, G. Li. A self-healing 3D woven fabric reinforced shape memory polymer composite for impact mitigation. Smart Mater. Struct. 19(3), paper number 035007 (2010a)

    Google Scholar 

  • J. Nji, G. Li, A biomimic shape memory polymer based self-healing particulate composite. Polymer 51(25), 6021–6029 (2010b)

    Article  Google Scholar 

  • J.W.C. Pang, I.P. Bond, A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Compos. Sci. Technol. 65(11–12), 1791–1799 (2005)

    Article  Google Scholar 

  • T.A. Plaisted, S. Nemat-Nasser, Quantitative evaluation of fracture, healing and re-healing of a reversibly cross-linked polymer. Acta Mater. 55(17), 5684–5696 (2007)

    Article  Google Scholar 

  • Y.N. Rabotnov, On the equations of state for creep, in The Progress in Applied Mechanics – The Prager Anniversary Volume (Macmillan, New York, 1963), pp. 307–315

    Google Scholar 

  • A. Shojaei, M. Eslami, H. Mahbadi, Cyclic loading of beams based on the Chaboche model. Int. J. Mech. Mater. Des. 6(3), 217–228 (2010)

    Article  Google Scholar 

  • A. Shojaei, G. Li, G.Z. Voyiadjis, Cyclic viscoplastic-viscodamage analysis of shape memory polymers fibers with application to self-healing smart materials. J. Appl. Mech. 80, 011014-1–011014-15 (2013)

    Google Scholar 

  • A.H.R.W. Simpson, T.N. Gardner, M. Evans, J. Kenwright, Stiffness, strength and healing assessment in different bone fractures – a simple mathematical model. Injury 31(10), 777–781 (2000)

    Article  Google Scholar 

  • K.S. Toohey, N.R. Sottos, J.A. Lewis, J.S. Moore, S.R. White, Self-healing materials with microvascular networks. Nat. Mater. 6(8), 581–585 (2007)

    Article  Google Scholar 

  • R.S. Trask, I.P. Bond, Biomimetic self-healing of advanced composite structures using hollow glass fibres. Smart Mater. Struct. 15(3), 704 (2006)

    Article  Google Scholar 

  • R.J. Varley, S. van der Zwaag, Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration. Acta Mater. 56(19), 5737–5750 (2008)

    Article  Google Scholar 

  • G.Z. Voyiadjis, P.I. Kattan, Damage mechanics with fabric tensors. Mech. Adv. Mater. Struct. 13(4), 285–301 (2006a)

    Article  Google Scholar 

  • G.Z. Voyiadjis, P. Kattan, Advances in Damage Mechanics: Metals and Metal Matrix Composites With an Introduction to Fabric Tensors, 2nd edn. (Elsevier, Oxford, 2006b), p. 742, ISBN: 0-08-044688-4

    Google Scholar 

  • G.Z. Voyiadjis, P.I. Kattan, Evolution of fabric tensors in damage mechanics of solids with micro-cracks: part I – theory and fundamental concepts. Mech. Res. Commun. 34(2), 145–154 (2007)

    Article  MATH  Google Scholar 

  • G.Z. Voyiadjis, P.I. Kattan, A comparative study of damage variables in continuum damage mechanics. Int. J. Damage Mech. 18(4), 315–340 (2009)

    Article  Google Scholar 

  • G.Z. Voyiadjis, P.I. Kattan, Z.N. Taqieddin, Continuum approach to damage mechanics of composite materials with fabric tensors. Int. J Damage Mech. 18(3), 301–329 (2007)

    Article  Google Scholar 

  • G.Z. Voyiadjis, P.I. Kattan, Mechanics of small damage in fiber-reinforced composite materials. Compos. Struct. 92(9), 2187–2193 (2010)

    Article  Google Scholar 

  • G.Z. Voyiadjis, A. Shojaei, G. Li. A thermodynamic consistent damage and healing model for self healing materials. Int. J. Plast. 27(7), 1025–1044 (2011)

    Google Scholar 

  • G.Z. Voyiadjis, A. Shojaei, G. Li, P.I. Kattan, A theory of anisotropic healing and damage mechanics of materials. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 468(2137), 163–183 (2012a). doi:10.1098/rspa.2011.0326

    Article  MathSciNet  MATH  Google Scholar 

  • G.Z. Voyiadjis, A. Shojaei, G. Li, A generalized coupled viscoplastic- viscodamage- viscohealing theory for glassy polymers. Int. J. Plast. 28(1), 21–45 (2012b)

    Article  Google Scholar 

  • G.Z. Voyiadjis, A. Shojaei, G. Li, P. Kattan, Continuum damage-healing mechanics with introduction to new healing variables. Int. J. Damage Mech. 21(3), 391–414 (2012c)

    Article  Google Scholar 

  • S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, S. Viswanathan, Autonomic healing of polymer composites. Nature 409(6822), 794–797 (2001)

    Article  Google Scholar 

  • H.R. Williams, R.S. Trask, I.P. Bond, Self-healing composite sandwich structures. Smart Mater. Struct. 16(4), 1198 (2007)

    Article  Google Scholar 

  • S. Yazdani, H.L. Schreyer, Combined plasticity and damage mechanics model for plain concrete. J. Eng. Mech. 116, 1435–1450 (1990)

    Article  Google Scholar 

  • M. Zako, N. Takano, Intelligent material systems using epoxy particles to repair microcracks and delamination damage in GFRP. J. Intell. Mater. Syst. Struct. 10(10), 836–841 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Z. Voyiadjis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Voyiadjis, G.Z., Shojaei, A. (2015). Continuum Damage-Healing Mechanics . In: Voyiadjis, G. (eds) Handbook of Damage Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5589-9_46

Download citation

Publish with us

Policies and ethics