Skip to main content

Principles of Nuclear Cardiology Imaging

  • Chapter
  • First Online:
Atlas of Nuclear Cardiology

Abstract

Nuclear cardiology imaging is solidly based on many branches of science and engineering, including nuclear, optical, and mathematical physics; electrical and mechanical engineering; chemistry; and biology. This chapter uses principles from these scientific fields to provide an understanding of both the signals used and the imaging system that captures these signals. These principles have been simplified to fit the scope of this atlas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chandra R. Introductory physics of nuclear medicine. Philadelphia: Lea and Febiger; 1992.

    Google Scholar 

  2. Christensen EE, Curry TS, Dowdey JE. An introduction to the physics of diagnostic radiology. 2nd ed. Philadelphia: Lea and Febiger; 1978. p. 159.

    Google Scholar 

  3. Powsner RA, Powsner ER. Essentials of nuclear medicine physics. Malden: Blackwell Science; 1998.

    Google Scholar 

  4. Hubble JH, Seltzer SM. Tables of x-ray mass attenuation coefficients, and mass energy-absorption coefficients. Gaithersburg: National Institute of Standards and Technology; 1996. Available at: http://physics.nist.gov/PhysRefData/XrayMassCoef/tab1.html. Accessed Jan 2012.

    Google Scholar 

  5. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. Philadelphia: WB Saunders; 2003.

    Google Scholar 

  6. Beller GA, Bergmann SR. Myocardial perfusion imaging agents: SPECT and PET. J Nucl Cardiol. 2004;11:71–86.

    Article  PubMed  Google Scholar 

  7. Saha GB. Fundamentals of nuclear pharmacy. New York: Springer; 2003.

    Google Scholar 

  8. Anger HO. Scintillation camera with multichannel collimators. J Nucl Med. 1964;5:515–31.

    PubMed  CAS  Google Scholar 

  9. Maublant JC, Peycelon P, Kwiatkowski F, et al. Comparison between 180° and 360° data collection in technetium-99m MIBI SPECT of the myocardium. J Nucl Med. 1989;30:295–300.

    PubMed  CAS  Google Scholar 

  10. Hoffman EJ. 180° compared to 360° sampling in SPECT. J Nucl Med. 1982;23:745–6.

    PubMed  CAS  Google Scholar 

  11. Knesaurek K, King MA, Glick SJ, Penney BC. Investigation of causes of geometric distortion in 180° and 360° angular sampling in SPECT. J Nucl Med. 1989;30:1666–75.

    PubMed  CAS  Google Scholar 

  12. Garcia EV, Galt JR, Cullom SJ, Faber TL. Principles of myocardial perfusion SPECT imaging. North Billerica: DuPont Pharma; 1994. p. 30.

    Google Scholar 

  13. Galt JR, Garcia EV, Robbins WL. Effects of myocardial wall thickness on SPECT quantification. IEEE Trans Med Imaging. 1990;9:144–50.

    Article  PubMed  CAS  Google Scholar 

  14. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging. 1982;1:113–22.

    Article  PubMed  CAS  Google Scholar 

  15. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.

    Article  PubMed  CAS  Google Scholar 

  16. Jaszczak RJ, Greer KL, Floyd Jr CE, et al. Improved SPECT quantification using compensation for scattered photons. J Nucl Med. 1984;25:893–900.

    PubMed  CAS  Google Scholar 

  17. Ogawa K, Ichihara T, Kubo A. Accurate scatter correction in single photon emission CT. Ann Nucl Med Sci. 1994;7:145–50.

    Google Scholar 

  18. Glick SJ, Penney BC, King MA, et al. Noniterative compensation for the distance-dependent detector response and photon attenuation in SPECT imaging. IEEE Trans Med Imaging. 1994;13:363–74.

    Article  PubMed  CAS  Google Scholar 

  19. Zeng GL, Gullberg GT, Tsui BM, et al. Three-dimensional iterative reconstruction algorithms with attenuation and geometric point response correction. IEEE Trans Med Imaging. 1990;22:1475–9.

    Google Scholar 

  20. Smith WH, Kastner RJ, Calnon DA, et al. Quantitative gated single-photon emission computed tomography imaging: a counts-based method for display and measurement of regional and global ventricular systolic function. J Nucl Cardiol. 1997;4:451–63.

    Article  PubMed  CAS  Google Scholar 

  21. Machac J, Chen H, Almeida OD, et al. Comparison of 2D and high dose and low dose 3D gated myocardial Rb-82 PET imaging [abstract]. J Nucl Med. 2002;43:777.

    Google Scholar 

  22. Schelbert HR, Beanlands R, Bengel F, et al. ASNC PET myocardial glucose metabolism and perfusion imaging guidelines: part II guideline for interpretation and reporting. J Nucl Cardiol. 2003;10:557–71.

    Article  PubMed  Google Scholar 

  23. DePuey EG, Garcia EV, editors. Updated imaging guidelines for nuclear cardiology procedures (part 1). J Nucl Cardiol. 2001;8:G1–58.

    Google Scholar 

  24. Nichols KJ, Galt JR. Quality control for SPECT imaging. In: DePuey EG, Garcia EV, Berman DS, editors. Cardiac SPECT imaging. 2nd ed. New York: Lippincott Williams & Wilkins; 2001. p. 17–39.

    Google Scholar 

  25. DePuey EG. Artifacts in SPECT myocardial perfusion imaging. In: DePuey EG, Garcia EV, Berman DS, editors. Cardiac SPECT imaging. 2nd ed. New York: Lippincott Williams & Wilkins; 2001. p. 349.

    Google Scholar 

  26. DePuey EG, Garcia EV. Optimal specificity of thallium-201 SPECT through recognition of imaging artifacts. J Nucl Med. 1989;30:441–9.

    PubMed  CAS  Google Scholar 

  27. Geckle WJ, Frank YL, Links JM, et al. Correction for patient motion and organ movement in SPECT: application to exercise thallium-201 cardiac imaging. J Nucl Med. 1988;29:441–50.

    PubMed  CAS  Google Scholar 

  28. Di Carli MF, Hachamovich R. New technology for noninvasive evaluation of coronary artery disease. Circulation. 2007;115:1464–80.

    Article  PubMed  Google Scholar 

  29. Faber TL, Santana CA, Garcia EV, et al. Three-dimensional fusion of coronary arteries with myocardial perfusion distributions: clinical validation. J Nucl Med. 2004;45:745–53.

    PubMed  Google Scholar 

  30. Rispler S, Keidar Z, Ghersin E, et al. Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J Am Coll Cardiol. 2007;49:1059–67.

    Article  PubMed  Google Scholar 

  31. Santana CA, Garcia EV, Faber TL, et al. Diagnostic performance of fusion of myocardial perfusion and computed tomography coronary angiography. J Nucl Cardiol. 2009;16:201–11.

    Article  PubMed  Google Scholar 

  32. Gaemperli O, Schepis T, Husman L, et al. Cardiac image fusion from stand-alone SPECT and CT: clinical experience. J Nucl Med. 2007;48:696–703.

    Article  PubMed  Google Scholar 

  33. Faber TL, Arepalli CD, Nye JA, et al. Second generation fusion of myocardial perfusion distributions with coronary artery data from CT angiography. J Nucl Cardiol. 2010;17(4):4–722 (abstr).

    Google Scholar 

  34. Garcia EV, Faber TL. New trends in camera and software technology in nuclear cardiology. Cardiol Clin. 2009;27:227–36.

    Article  PubMed  Google Scholar 

  35. Garcia EV, Faber TL, Esteves FP. Cardiac dedicated ultrafast SPECT cameras: new designs and clinical implications. J Nucl Med. 2011;52:210–7.

    Article  PubMed  Google Scholar 

  36. Borges-Neto S, Pagnanelli RA, Shaw LK, et al. Clinical results of a novel wide beam reconstruction method for shortening scan time of Tc-99m cardiac SPECT perfusion studies. J Nucl Cardiol. 2007;14:555–65.

    Article  PubMed  Google Scholar 

  37. DePuey EG, Gadraju R, Clark J, et al. Ordered subset expectation maximization and wide beam reconstruction “half-time” gated myocardial perfusion SPECT functional imaging: a comparison to “full-time” filtered backprojection. J Nucl Cardiol. 2008;15:547–63.

    Article  PubMed  Google Scholar 

  38. Sharir T, Slomka PJ, Berman DS. Solid-state SPECT technology: fast and furious. J Nucl Cardiol. 2010;17:890–6.

    Article  PubMed  Google Scholar 

  39. Maddahi J, Mendez R, Mahmarian J, et al. Prospective multi-center evaluation of rapid gated SPECT myocardial perfusion upright imaging. J Nucl Cardiol. 2009;16:351–7.

    Article  PubMed  Google Scholar 

  40. Sharir T, Ben-Haim S, Merzon K, et al. High-speed myocardial perfusion imaging: initial clinical comparison with conventional dual detector anger camera imaging. JACC Cardiovasc Imaging. 2008;1:156–63.

    Article  PubMed  Google Scholar 

  41. Sharir T, Slomka PJ, Hayes SW, et al. Multicenter trial of high-speed versus conventional single-photon emission computed tomography imaging: quantitative results of myocardial perfusion and left ventricular function. J Am Coll Cardiol. 2010;55:1965–74.

    Article  PubMed  Google Scholar 

  42. Ben-Haim S, Hutton BF, Van Grantberg D. Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera. Eur J Nucl Med Mol Imaging. 2010;37:1710–21.

    Article  PubMed  Google Scholar 

  43. Garcia EV, Tsukerman L, Keidar Z. A new solid state ultra fast cardiac multi-detector SPECT system. J Nucl Cardiol. 2008;15:S3 (abstr).

    Article  Google Scholar 

  44. Esteves FP, Raggi P, Folks RD, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras. J Nucl Cardiol. 2009;16:927–34.

    Article  PubMed  Google Scholar 

  45. Buechel RR, Herzog BA, Husmann L, et al. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: first clinical validation. Eur J Nucl Med Mol Imaging. 2010;37:773–8.

    Article  PubMed  Google Scholar 

  46. Herzog BA, Buechel RR, Katz R, et al. Nuclear myocardial perfusion imaging with a cadmium-zinc-telluride detector technique: optimized protocol for scan time reduction. J Nucl Med. 2010;51:46–51.

    Article  PubMed  Google Scholar 

  47. Cerqueira MD, Allman KC, Ficaro EP, et al. Recommendations for reducing radiation exposure in myocardial perfusion imaging. J Nucl Cardiol. 2010;17:709–18.

    Article  PubMed  Google Scholar 

  48. Herzog BA, Buechel RR, Husmann L, et al. Validation of CT attenuation correction for high-speed myocardial perfusion imaging using a novel cadmium-zinc-telluride detector technique. J Nucl Med. 2010;51:1539–44.

    Article  PubMed  Google Scholar 

  49. Pazhenkottil AP, Husmann L, Kaufmann PA. Cardiac hybrid imaging with high-speed single-photon emission computed tomography/CT camera to detect ischaemia and coronary artery obstruction. Heart. 2010;96:2050. doi:10.1136/hrt.2010.201996.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Garcia, E.V., Galt, J.R., Faber, T.L., Chen, J. (2013). Principles of Nuclear Cardiology Imaging. In: Dilsizian, V., Narula, J. (eds) Atlas of Nuclear Cardiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5551-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5551-6_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5549-3

  • Online ISBN: 978-1-4614-5551-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics