Skip to main content

Addressing the Challenge of Autoimmunity in the Treatment of Diabetes with Stem Cells

  • Chapter
  • First Online:
The Immunological Barriers to Regenerative Medicine

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1114 Accesses

Abstract

Type 1 diabetes mellitus is a complex autoimmune disease process encompassing a number of stages, the most significant of which is the loss of immunological tolerance and the initiation of immune dysfunction resulting in the selective destruction of pancreatic β cells. Although exogenous insulin therapy has proven efficacious, it does not address the underlying cause of the disease. A treatment strategy encompassing immunosuppressive and β cell replacement therapy that will promote immunological tolerance, without toxicity or the induction of lymphopenia is required for treatment of patients with hypoglycaemic unawareness. Importantly, this combination strategy must harness a therapy that provides a replacement source of insulin producing β cells without toxic side-effects associated with long term immunosuppression and induces tolerance to the replacement β cells in order to prevent destruction by allo- and autoreactive T cells. Here we discuss the current immunosuppressive therapies and potential sources of replacement β cells and review the pitfalls in current combined immunosuppression and islet transplant therapy. Finally we examine possible combination strategies including stem cells that are likely to succeed in fulfilling the above criteria for the treatment of diabetes in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore DJ, Gregory JM, Kumah-Crystal YA et al (2009) Mitigating micro-and macro-vascular complications of diabetes beginning in adolescence. Vasc Health Risk Manag 5:1015–1031

    PubMed  CAS  Google Scholar 

  2. Patterson CC, Dahlquist GG, Gyurus E et al (2009) Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet 373:2027–2033

    Article  PubMed  Google Scholar 

  3. Powers AC (2008) Insulin therapy versus cell-based therapy for type 1 diabetes mellitus: what lies ahead? Nat Clin Pract Endocrinol Metab 4:664–665

    Article  PubMed  CAS  Google Scholar 

  4. Nejentsev S, Howson JM, Walker NM et al (2007) Localization of type 1 diabetes susceptibility to the MHC class I genes HLAHLA-B and HLA-A. Nature 450:887–892

    Article  PubMed  CAS  Google Scholar 

  5. Gianani R, Eisenbarth GS (2005) The stages of type 1A diabetes: 2005. Immunol Rev 204:232–249

    Article  PubMed  CAS  Google Scholar 

  6. Bruno G, Cerutti F, Merletti F et al (2005) Residual beta-cell function and male/female ratio are higher in incident young adults than in children: the registry of type 1 diabetes of the province of Turin, Italy, 1984–2000. Diabetes Care 28:312–317

    Article  PubMed  Google Scholar 

  7. Sabbah E, Savola K, Ebeling T et al (2000) Genetic, autoimmune, and clinical characteristics of childhood- and adult-onset type 1 diabetes. Diabetes Care 23:1326–1332

    Article  PubMed  CAS  Google Scholar 

  8. Valdes AM, Thomson G, Erlich HA et al (1999) Association between type 1 diabetes age of onset and HLAHLA among sibling pairs. Diabetes 48:1658–1661

    Article  PubMed  CAS  Google Scholar 

  9. Vendrame F, Pileggi A, Laughlin E et al (2010) Recurrence of type 1 diabetes after simultaneous pancreas-kidney transplantation, despite immunosuppression, is associated with autoantibodies and pathogenic autoreactive CD4 T-cells. Diabetes 59:947–957

    Article  PubMed  CAS  Google Scholar 

  10. Bougneres PF, Carel JC, Castano L et al (1988) Factors associated with early remission of type I diabetes in children treated with cyclosporine. N Engl J Med 318:663–670

    Article  PubMed  CAS  Google Scholar 

  11. Stiller CR, Dupre J, Gent M et al (1984) Effects of cyclosporine immunosuppression in insulin-dependent diabetes mellitus of recent onset. Science 223:1362–1367

    Article  PubMed  CAS  Google Scholar 

  12. Harrison LC, Colman PG, Dean B et al (1985) Increase in remission rate in newly diagnosed type I diabetic subjects treated with azathioprine. Diabetes 34:1306–1308

    Article  PubMed  CAS  Google Scholar 

  13. Silverstein J, Maclaren N, Riley W et al (1988) Immunosuppression with azathioprine and prednisone in recent-onset insulin-dependent diabetes mellitus. N Engl J Med 319:599–604

    Article  PubMed  CAS  Google Scholar 

  14. Eisenbarth GS, Srikanta S, Jackson R et al (1985) Anti-thymocyte globulin and prednisone immunotherapy of recent onset type 1 diabetes mellitus. Diabetes Res 2:271–276

    PubMed  CAS  Google Scholar 

  15. Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H et al (2009) Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med 361:2143–2152

    Article  PubMed  CAS  Google Scholar 

  16. Parving HH, Tarnow L, Nielsen FS et al (1999) Cyclosporine nephrotoxicity in type 1 diabetic patients. A 7-year follow-up study. Diabetes Care 22:478–483

    Article  PubMed  CAS  Google Scholar 

  17. Cicero A, Lappin JA (2010) Pancreas transplantation: experience at University of Texas, Houston. Transplant Proc 42:314–316

    Article  PubMed  CAS  Google Scholar 

  18. Shapiro AM, Lakey JR, Ryan EA et al (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230–238

    Article  PubMed  CAS  Google Scholar 

  19. Bergerot I, Ploix C, Petersen J et al (1997) A cholera toxoid-insulin conjugate as an oral vaccine against spontaneous autoimmune diabetes. Proc Natl Acad Sci USA 94:4610–4614

    Article  PubMed  CAS  Google Scholar 

  20. Daniel D, Wegmann DR (1996) Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9–23). Proc Natl Acad Sci USA 93:956–960

    Article  PubMed  CAS  Google Scholar 

  21. Harrison LC, Dempsey-Collier M, Kramer DR et al (1996) Aerosol insulin induces regulatory CD8 gamma delta T cells that prevent murine insulin-dependent diabetes. J Exp Med 184:2167–2174

    Article  PubMed  CAS  Google Scholar 

  22. Karounos DG, Bryson JS, Cohen DA (1997) Metabolically inactive insulin analog prevents type I diabetes in prediabetic NOD mice. J Clin Invest 100:1344–1348

    Article  PubMed  CAS  Google Scholar 

  23. Zhang ZJ, Davidson L, Eisenbarth G et al (1991) Suppression of diabetes in nonobese diabetic mice by oral administration of porcine insulin. Proc Natl Acad Sci USA 88:10252–10256

    Article  PubMed  CAS  Google Scholar 

  24. Goudy KS, Wang B, Tisch R (2008) Gene gun-mediated DNA vaccination enhances antigen-specific immunotherapy at a late preclinical stage of type 1 diabetes in nonobese diabetic mice. Clin Immunol 129:49–57

    Article  PubMed  CAS  Google Scholar 

  25. Kaufman DL, Clare-Salzler M, Tian J et al (1993) Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 366:69–72

    Article  PubMed  CAS  Google Scholar 

  26. Li AF, Escher A (2003) Intradermal or oral delivery of GAD-encoding genetic vaccines suppresses type 1 diabetes. DNA Cell Biol 22:227–232

    Article  PubMed  CAS  Google Scholar 

  27. Olcott AP, Tian J, Walker V et al (2005) Antigen-based therapies using ignored determinants of beta cell antigens can more effectively inhibit late-stage autoimmune disease in diabetes-prone mice. J Immunol 175:1991–1999

    PubMed  CAS  Google Scholar 

  28. Elias D, Cohen IR (1994) Peptide therapy for diabetes in NOD mice. Lancet 343:704–706

    Article  PubMed  CAS  Google Scholar 

  29. Elias D, Reshef T, Birk OS et al (1991) Vaccination against autoimmune mouse diabetes with a T-cell epitope of the human 65-kDa heat shock protein. Proc Natl Acad Sci USA 88:3088–3091

    Article  PubMed  CAS  Google Scholar 

  30. Pozzilli P, Pitocco D, Visalli N et al (2000) No effect of oral insulin on residual beta-cell function in recent-onset type I diabetes (the IMDIAB VII). IMDIAB group. Diabetologia 43:1000–1004

    Article  PubMed  CAS  Google Scholar 

  31. Walter M, Philotheou A, Bonnici F et al (2009) No effect of the altered peptide ligand NBI-6024 on beta-cell residual function and insulin needs in new-onset type 1 diabetes. Diabetes Care 32:2036–2040

    Article  PubMed  CAS  Google Scholar 

  32. Boitard C, Michie S, Serrurier P et al (1985) In vivo prevention of thyroid and pancreatic autoimmunity in the BB rat by antibody to class II major histocompatibility complex gene products. Proc Natl Acad Sci USA 82:6627–6631

    Article  PubMed  CAS  Google Scholar 

  33. Chatenoud L, Thervet E, Primo J et al (1994) Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc Natl Acad Sci USA 91:123–127

    Article  PubMed  CAS  Google Scholar 

  34. Hutchings P, O’Reilly L, Parish NM et al (1992) The use of a non-depleting anti-CD4 monoclonal antibody to re-establish tolerance to beta cells in NOD mice. Eur J Immunol 22:1913–1918

    Article  PubMed  CAS  Google Scholar 

  35. Lenschow DJ, Ho SC, Sattar H et al (1995) Differential effects of anti-B7-1 and anti-B7-2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse. J Exp Med 181:1145–1155

    Article  PubMed  CAS  Google Scholar 

  36. Molano RD, Berney T, Li H et al (2001) Prolonged islet graft survival in NOD mice by blockade of the CD40-CD154 pathway of T-cell costimulation. Diabetes 50:270–276

    Article  PubMed  CAS  Google Scholar 

  37. Sempe P, Bedossa P, Richard MF et al (1991) Anti-alpha/beta T cell receptor monoclonal antibody provides an efficient therapy for autoimmune diabetes in nonobese diabetic (NOD) mice. Eur J Immunol 21:1163–1169

    Article  PubMed  CAS  Google Scholar 

  38. Wang B, Gonzalez A, Benoist C et al (1996) The role of CD8+ T cells in the initiation of insulin-dependent diabetes mellitus. Eur J Immunol 26:1762–1769

    Article  PubMed  CAS  Google Scholar 

  39. Chatenoud L, Primo J, Bach JF (1997) CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J Immunol 158:2947–2954

    PubMed  CAS  Google Scholar 

  40. Herold KC, Gitelman SE, Masharani U et al (2005) A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 54:1763–1769

    Article  PubMed  CAS  Google Scholar 

  41. Herold KC, Hagopian W, Auger JA et al (2002) Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 346:1692–1698

    Article  PubMed  CAS  Google Scholar 

  42. Keymeulen B, Vandemeulebroucke E, Ziegler AG et al (2005) Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 352:2598–2608

    Article  PubMed  CAS  Google Scholar 

  43. Keymeulen B, Walter M, Mathieu C et al (2010) Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass. Diabetologia 53:614–623

    Article  PubMed  CAS  Google Scholar 

  44. Herold KC, Gitelman S, Greenbaum C et al (2009) Treatment of patients with new onset Type 1 diabetes with a single course of anti-CD3 mAb Teplizumab preserves insulin production for up to 5 years. Clin Immunol 132:166–173

    Article  PubMed  CAS  Google Scholar 

  45. Ablamunits V, Sherry NA, Kushner JA et al (2007) Autoimmunity and beta cell regeneration in mouse and human type 1 diabetes: the peace is not enough. Ann N Y Acad Sci 1103:19–32

    Article  PubMed  CAS  Google Scholar 

  46. Aoki CA, Borchers AT, Ridgway WM et al (2005) NOD mice and autoimmunity. Autoimmun Rev 4:373–379

    Article  PubMed  CAS  Google Scholar 

  47. Baecher-Allan C, Hafler DA (2006) Human regulatory T cells and their role in autoimmune disease. Immunol Rev 212:203–216

    Article  PubMed  CAS  Google Scholar 

  48. Homann D, von Herrath M (2004) Regulatory T cells and type 1 diabetes. Clin Immunol 112:202–209

    Article  PubMed  CAS  Google Scholar 

  49. Szypowska A, Stelmaszczyk-Emmel A, Demkow U, Luczynski W (2012) Low frequency of regulatory T cells in the peripheral blood of children with type 1 diabetes diagnosed under the age of five. Arch Immunol Ther Exp (Warsz) 60:307–313

    Article  CAS  Google Scholar 

  50. Dendrou CA, Wicker LS (2008) The IL-2/CD25 pathway determines susceptibility to T1D in humans and NOD mice. J Clin Immunol 28:685–696

    Article  PubMed  CAS  Google Scholar 

  51. You S, Leforban B, Garcia C et al (2007) Adaptive TGF-beta-dependent regulatory T cells control autoimmune diabetes and are a privileged target of anti-CD3 antibody treatment. Proc Natl Acad Sci USA 104:6335–6340

    Article  PubMed  CAS  Google Scholar 

  52. Gregori S, Giarratana N, Smiroldo S et al (2003) Dynamics of pathogenic and suppressor T cells in autoimmune diabetes development. J Immunol 171:4040–4047

    PubMed  CAS  Google Scholar 

  53. You S, Belghith M, Cobbold S et al (2005) Autoimmune diabetes onset results from qualitative rather than quantitative age-dependent changes in pathogenic T-cells. Diabetes 54:1415–1422

    Article  PubMed  CAS  Google Scholar 

  54. Lindley S, Dayan CM, Bishop A et al (2005) Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 54:92–99

    Article  PubMed  CAS  Google Scholar 

  55. Belghith M, Bluestone JA, Barriot S et al (2003) TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat Med 9:1202–1208

    Article  PubMed  CAS  Google Scholar 

  56. Pop SM, Wong CP, He Q et al (2007) The type and frequency of immunoregulatory CD4+ T-cells govern the efficacy of antigen-specific immunotherapy in nonobese diabetic mice. Diabetes 56:1395–1402

    Article  PubMed  CAS  Google Scholar 

  57. Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, Grabowska M, Techmanska I, Juscinska J, Wujtewicz MA, Witkowski P, Mlynarski W, Balcerska A, Mysliwska J, Trzonkowski P (2012) Administration of CD4+CD25highCD127- regulatory T cells preserves beta-cell function in type 1 diabetes in children. Diabetes Care

    Google Scholar 

  58. Tang Q, Henriksen KJ, Bi M et al (2004) In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199:1455–1465

    Article  PubMed  CAS  Google Scholar 

  59. Zhang Q, Shi S, Liu Y et al (2009) Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 183:7787–7798

    Article  PubMed  CAS  Google Scholar 

  60. Zappia E, Casazza S, Pedemonte E et al (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106:1755–1761

    Article  PubMed  CAS  Google Scholar 

  61. Augello A, Tasso R, Negrini SM et al (2007) Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum 56:1175–1186

    Article  PubMed  CAS  Google Scholar 

  62. Fiorina P, Jurewicz M, Augello A et al (2009) Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol 183:993–1004

    Article  PubMed  CAS  Google Scholar 

  63. Bassi EJ, Moraes-Vieira PM, Moreira Sa CS, Almeida DC, Vieira LM, Cunha CS, Hiyane MI, Basso AS, Pacheco-Silva A, Camara NO (2012) Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes

    Google Scholar 

  64. English K, French A, Wood KJ (2010) Mesenchymal stromal cells: facilitators of successful transplantation? Cell Stem Cell 7:431–442

    Article  PubMed  CAS  Google Scholar 

  65. Bartholomew A, Sturgeon C, Siatskas M et al (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48

    Article  PubMed  Google Scholar 

  66. Casiraghi F, Azzollini N, Cassis P et al (2008) Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J Immunol 181:3933–3946

    PubMed  CAS  Google Scholar 

  67. Le Blanc K, Frassoni F, Ball L et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586

    Article  PubMed  Google Scholar 

  68. Ding Y, Xu D, Feng G et al (2009) Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes 58:1797–1806

    Article  PubMed  CAS  Google Scholar 

  69. Ryan EA, Paty BW, Senior PA et al (2005) Five-year follow-up after clinical islet transplantation. Diabetes 54:2060–2069

    Article  PubMed  CAS  Google Scholar 

  70. Schroeder IS, Rolletschek A, Blyszczuk P et al (2006) Differentiation of mouse embryonic stem cells to insulin-producing cells. Nat Protoc 1:495–507

    Article  PubMed  CAS  Google Scholar 

  71. Soria B, Roche E, Berna G et al (2000) Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49:157–162

    Article  PubMed  CAS  Google Scholar 

  72. D’Amour KA, Bang AG, Eliazer S et al (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401

    Article  PubMed  Google Scholar 

  73. Kroon E, Martinson LA, Kadoya K et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452

    Article  PubMed  CAS  Google Scholar 

  74. Wu DC, Boyd AS, Wood KJ (2008) Embryonic stem cells and their differentiated derivatives have a fragile immune privilege but still represent novel targets of immune attack. Stem Cells 26:1939–1950

    Article  PubMed  Google Scholar 

  75. Boyd AS, Wu DC, Higashi Y et al (2008) A comparison of protocols used to generate insulin-producing cell clusters from mouse embryonic stem cells. Stem Cells 26:1128–1137

    Article  PubMed  CAS  Google Scholar 

  76. Boyd AS, Wood KJ (2010) Characteristics of the immune response and relative immune privilege at the incipient stages following transplantation of ES cell derived insulin-producing cell clusters. PLoS ONE 5:e10965

    Article  PubMed  Google Scholar 

  77. Boyd AS, Wood KJ (2009) Variation in MHC expression between undifferentiated mouse ES cells and ES cell-derived insulin-producing cell clusters. Transplantation 87:1300–1304

    Article  PubMed  CAS  Google Scholar 

  78. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  79. Tateishi K, He J, Taranova O et al (2008) Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 283:31601–31607

    Article  PubMed  CAS  Google Scholar 

  80. Maehr R, Chen S, Snitow M et al (2009) Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA 106:15768–15773

    Article  PubMed  CAS  Google Scholar 

  81. Hess D, Li L, Martin M et al (2003) Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21:763–770

    Article  PubMed  CAS  Google Scholar 

  82. Gabr MM, Sobh MM, Zakaria MM et al (2008) Transplantation of insulin-producing clusters derived from adult bone marrow stem cells to treat diabetes in rats. Exp Clin Transplant 6:236–243

    PubMed  Google Scholar 

  83. Oh SH, Muzzonigro TM, Bae SH et al (2004) Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest 84:607–617

    Article  PubMed  CAS  Google Scholar 

  84. Chao KC, Chao KF, Fu YS et al (2008) Islet-like clusters derived from mesenchymal stem cells in Wharton’s Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS ONE 3:e1451

    Article  PubMed  Google Scholar 

  85. Jacob F (1979) Cell surface and early stages of mouse embryogenesis. Curr Top Dev Biol 13:117–137

    Article  PubMed  CAS  Google Scholar 

  86. Zhao T, Zhang ZN, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215

    Article  PubMed  CAS  Google Scholar 

  87. Sibley RK, Sutherland DE, Goetz F et al (1985) Recurrent diabetes mellitus in the pancreas iso- and allograft. A light and electron microscopic and immunohistochemical analysis of four cases. Lab Invest 53:132–144

    PubMed  CAS  Google Scholar 

  88. Sutherland DE, Sibley R, Xu XZ et al (1984) Twin-to-twin pancreas transplantation: reversal and reenactment of the pathogenesis of type I diabetes. Trans Assoc Am Physicians 97:80–87

    PubMed  CAS  Google Scholar 

  89. Sibley RK, Sutherland DE (1987) Pancreas transplantation. An immunohistologic and histopathologic examination of 100 grafts. Am J Pathol 128:151–170

    PubMed  CAS  Google Scholar 

  90. Barthlott T, Kassiotis G, Stockinger B (2003) T cell regulation as a side effect of homeostasis and competition. J Exp Med 197:451–460

    Article  PubMed  CAS  Google Scholar 

  91. Marleau AM, Sarvetnick N (2005) T cell homeostasis in tolerance and immunity. J Leukoc Biol 78:575–584

    Article  PubMed  CAS  Google Scholar 

  92. Surh CD, Boyman O, Purton JF et al (2006) Homeostasis of memory T cells. Immunol Rev 211:154–163

    Article  PubMed  CAS  Google Scholar 

  93. Calzascia T, Pellegrini M, Lin A et al (2008) CD4 T cells, lymphopenia, and IL-7 in a multistep pathway to autoimmunity. Proc Natl Acad Sci USA 105:2999–3004

    Article  PubMed  CAS  Google Scholar 

  94. Wood K (2008) Outlook for longer-lasting islets. Nat Med 14:1156–1157

    Article  PubMed  CAS  Google Scholar 

  95. Monti P, Scirpoli M, Maffi P et al (2008) Islet transplantation in patients with autoimmune diabetes induces homeostatic cytokines that expand autoreactive memory T cells. J Clin Invest 118:1806–1814

    PubMed  CAS  Google Scholar 

  96. Long SA, Rieck M, Sanda S, Bollyky JB, Samuels PL, Goland R, Ahmann A, Rabinovitch A, Aggarwal S, Phippard D, Turka LA, Ehlers MR, Bianchine PJ, Boyle KD, Adah SA, Bluestone JA, Buckner JH, Greenbaum CJ (2012) Rapamycin/IL-2 combination therapy in patients with type 1 diabetes qaugments tregs yet transiently ibeta-cell function. Diabetes

    Google Scholar 

  97. Huurman VA, Hilbrands R, Pinkse GG et al (2008) Cellular islet autoimmunity associates with clinical outcome of islet cell transplantation. PLoS ONE 3:e2435

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen English .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

English, K., Wood, K.J. (2013). Addressing the Challenge of Autoimmunity in the Treatment of Diabetes with Stem Cells. In: Fairchild, P. (eds) The Immunological Barriers to Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5480-9_16

Download citation

Publish with us

Policies and ethics