Skip to main content

Assay Methodologies and Challenges

  • Chapter
  • First Online:
Antibody-Drug Conjugates and Immunotoxins

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Accurate characterization of antibody–drug conjugates (ADCs) is critical for development of an efficacious and safe therapeutic. Each component of an ADC, the antibody, linker, and drug, is important to achieve efficacy with minimal toxicity. The ability to detect, characterize, and quantify this multicomponent entity is critical for their successful optimization and development. Especially important is the ability to quantify ADCs in biological matrices such as serum or plasma. However, the design of reliable and accurate analytical and bioanalytical methods is complicated by the heterogeneity of ADCs. This chapter describes some of the general methods for characterization and quantitation of ADCs and highlights the particular assay challenges associated with these complex molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Antibody–drug conjugate

ADCC:

Antibody-dependent cell-mediated cytotoxicity

CDC:

Complement-dependent cytotoxicity

DAR:

Drug-to-antibody ratio

ELISA:

Enzyme-linked immunosorbent assay

HIC:

Hydrophobic interaction chromatography

MALDI:

Matrix-assisted laser desorption/ionization

MS:

Mass spectrometry

RP-HPLC:

Reversed-phase high-pressure liquid chromatography

TOF:

Time of flight

References

  1. King HD, Dubowchik GM, Mastalerz H et al (2002) Monoclonal antibody conjugates of ­doxorubicin prepared with branched peptide linkers: inhibition of aggregation by ­methoxytriethyleneglycol chains. J Med Chem 45:4336–4343

    Article  PubMed  CAS  Google Scholar 

  2. Hollander I, Kunz A, Hamann PR (2008) Selection of reaction additives used in the ­preparation of monomeric antibody-calicheamicin conjugates. Bioconjugate Chem 19:358–361

    Article  CAS  Google Scholar 

  3. Quiles S, Raisch KP, Sanford LL et al (2010) Synthesis and preliminary biological evaluation of high-drug-load paclitaxel-antibody conjugates for tumor-targeted chemotherapy. J Med Chem 53:586–594

    Article  PubMed  CAS  Google Scholar 

  4. Stephan JP, Chan P, Lee C et al (2008) Anti-CD22-MCC-DM1 and MC-MMAF conjugates: impact of assay format on pharmacokinetic parameters determination. Bioconjugate Chem 19:1673–1683

    Article  CAS  Google Scholar 

  5. Wakankar A, Chen Y, Gokarn Y et al (2011) Analytical methods for physicochemical ­characterization of antibody drug conjugates. Landes Biosci 3(2):161–172

    Google Scholar 

  6. Stephan JP, Kozak KR, Wong WL (2011) Challenges in developing bioanalytical assays for characterization of antibody-drug conjugates. Bioanalysis 3(6):677–700

    Article  PubMed  CAS  Google Scholar 

  7. Sun MM, Beam KS, Cerveny CG et al (2005) Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjugate Chem 16:1282–1290

    Article  CAS  Google Scholar 

  8. McDonagh CF, Turcott E, Westendorf L et al (2006) Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng Des Sel 19:299–307

    Article  PubMed  CAS  Google Scholar 

  9. Doronina SO, Toki BE, Torgov MY et al (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21:778–784

    Article  PubMed  CAS  Google Scholar 

  10. Hamblett KJ, Senter PD, Chace DF et al (2004) Effects of drug loading on the anti-tumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10:7063–7070

    Article  PubMed  CAS  Google Scholar 

  11. Erickson HK, Park PU, Widdison WC et al (2006) Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res 66:4426–4433

    Article  PubMed  CAS  Google Scholar 

  12. Junutula JR, Raab H, Clark S et al (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotech 26:925–932

    Article  CAS  Google Scholar 

  13. Hurwitz E, Levy R, Maron R et al (1975) The covalent binding of daunomycin and adriamycin to antibodies, with retention of both drug and antibody activities. Cancer Res 35:1175–1181

    PubMed  CAS  Google Scholar 

  14. Laguzza BC, Nichols CL, Briggs SL et al (1989) New antitumor monoclonal antibody-vinca conjugates LY203725 and related compounds: design, preparation, and representative in vivo activity. J Med Chem 32:548–555

    Article  PubMed  CAS  Google Scholar 

  15. Francisco JA, Cerveny CG, Meyer DL et al (2003) cAC10-Val-CitMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective anti-tumor activity. Blood 102:1458–1465

    Article  PubMed  CAS  Google Scholar 

  16. Fleming MS, Zhang W, Lambert JM et al (2005) A reversed-phase high-performance liquid chromatography method for analysis of monoclonal antibody-maytansinoid ­immunoconjugates. Anal Biochem 340:272–278

    Article  PubMed  CAS  Google Scholar 

  17. Doronina SO, Mendelsohn BA, Bovee TD et al (2006) Enhance activity of ­monomethylauristatin F through monoclonal antibody delivery: effect of linker technology on efficacy and toxicity. Bioconjugate Chem 17:114–124

    Article  CAS  Google Scholar 

  18. Sanderson RJ, Hering MA, James SF et al (2005) In vivo drug-linker stability of anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin Cancer Res 11:843–852

    PubMed  CAS  Google Scholar 

  19. Maeda E, Urakami K, Shimura K et al (2010) Charge heterogeneity of a therapeutic monoclonal antibody conjugated with a cytotoxic antitumor antibiotic, calicheamicin. J Chromatogr A 1217:7164–7171

    Article  PubMed  CAS  Google Scholar 

  20. Kunz A (2004) Calicheamycin derivative carrier conjugates, United States patent application publication pub. no. US 2004/0192900 A1

    Google Scholar 

  21. Cordoba AJ, Shyong BJ, Breen D et al (2005) Non-enzymatic hinge region fragmentation of antibodies in solution. J Chromatogr B Analyt Technol Biomed Life Sci 818:115–121

    Article  PubMed  CAS  Google Scholar 

  22. Lazar AC, Wang L, Blattler WA et al (2005) Analysis of the composition of immunoconjugates using size-exclusion chromatography coupled to mass spectrometry. Rapid Commun Mass Spectrom 19:1806–1814

    Article  PubMed  CAS  Google Scholar 

  23. Wakankar A, Feeney MB, Rivera J et al (2010) Physicochemical stability of the antibody-drug conjugate trastuzumab-DM1: changes due to modification and conjugation processes. Bioconjugate Chem 21(9):1588–1595

    Article  CAS  Google Scholar 

  24. Tsukazaki K, Hayman EG, Rusolahti E (1985) Effects of ricin A chain conjugates of monoclonal antibodies to human a-fetoprotein and placental alkaline phosphatase on antigen-producing tumor cells in culture. Cancer Res 45:1834–1838

    PubMed  CAS  Google Scholar 

  25. Dowell JA, Korth-Bradley J, Liu H et al (2001) Pharmacokinetics of gemtuzumab ozogamicin, an antibody-targeted chemotherapy agent for the treatment of patients with acute myeloid leukemia in first relapse. J Clin Pharmacol 41:1206–1214

    Article  PubMed  CAS  Google Scholar 

  26. Phillips GDL, Li G, Dugger DL et al (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 68:9280–9290

    Article  PubMed  CAS  Google Scholar 

  27. Pollack VA, Alvarez E, Tse KF et al (2007) Treatment parameters modulating regression of human melanoma xenografts by an antibody-drug conjugate (CR011-vcMMAE) targeting GPNMB. Cancer Chemother Pharmacol 60:423–435

    Article  PubMed  CAS  Google Scholar 

  28. Sznol M, Hamid O, Hwu P et al (2009) Pharmacokinetics of CR011-vcMMAE, an antibody-drug conjugate, in a phase I study of patients with advanced melanoma. Poster 2009 ASCO annual meeting. J Clin Oncol 27:15s (suppl; abstr 9063)

    Google Scholar 

  29. Henry MD, Wen S, Silva MD et al (2004) A Prostate-specific membrane antigen-targeted monoclonal antibody-chemotherapeutic conjugate designed for the treatment of prostate ­cancer. Cancer Res 64:7995–8001

    Article  PubMed  CAS  Google Scholar 

  30. McDonagh CF, Kim KM, Turcott E et al (2008) Engineered anti-CD70 antibody-drug conjugate with increased therapeutic index. Mol Cancer Ther 7:2913–2931

    Article  PubMed  CAS  Google Scholar 

  31. Alley SC, Benjamin DR, Jeffrey SC et al (2008) Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjugate Chem 19:759–765

    Article  CAS  Google Scholar 

  32. Boswell CA, Mundo EE, Zhang C et al (2011) Impact of drug conjugation on ­pharmacokinetics and tissue distribution of anti-STEAP1 antibody-drug conjugates in rats. Bioconjugate Chem 22:1994–2004

    Article  CAS  Google Scholar 

  33. Xie H, Audette C, Hoffee M et al (2004) Pharmacokinetics and biodistribution of the ­anti-tumor immunoconjugate, cantuzumab mertansine (huC242-DM1), and its two components in mice. J Pharmacol Exp Ther 308:1073–1082

    Article  PubMed  CAS  Google Scholar 

  34. Tolcher AW, Ochoa L, Hammond LA et al (2003) Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: a phase I, pharmacokinetic, and biologic correlative study. J Clin Oncol 21:211–222

    Article  PubMed  CAS  Google Scholar 

  35. Kovtun YV, Audette CA, Ye Y et al (2006) Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res 66:3214–3221

    Article  PubMed  CAS  Google Scholar 

  36. Advani A, Coiffier B, Czuczman MS et al (2010) Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell Non-Hodgkin’s Lymphoma: results of a phase I study. J Clin Oncol 28:2085–2093

    Article  PubMed  CAS  Google Scholar 

  37. Ferraiolo BL, Mohler MA (1994) Analytical methods for biotechnology products. In: Welling PG, Balant LP (eds) Pharmacokinetics of drugs, vol 110, Handbook of experimental pharmacology. Springer-Verlag, Berlin, New York

    Google Scholar 

  38. Sung J, Derwin D, Vemuri K et al (2010) In vitro plasma stability of human anti-CD70 antibody drug conjugate, MDX-1203. USA Association of American Cancer Research Abstract #2587

    Google Scholar 

  39. Hsieh FY, Tengstrand E, Li LY et al (2008) Toxicological protein biomarker analysis—an investigative one-week single dose intravenous infusion toxicity and toxicokinetic study in cynomolgus monkeys using an antibody–cytotoxic conjugate against ovarian. Pharm Res 25(6):1309–1317

    Article  PubMed  CAS  Google Scholar 

  40. Engert A, Diehl V, Schnell R et al (1997) A phase-I study of an anti-CD25 Ricin A-chain immunotoxin (RFT5-SMPT-dgA) in patients with refractory Hodgkin’s lymphoma. Blood 89(2):403–410

    PubMed  CAS  Google Scholar 

  41. Schnell R, Vitetta E, Schindler JB et al (2000) Treatment of refractory Hodgkin’s lymphoma patients with an anti-CD25 ricin A-chain immunotoxin. Leukemia 14:129–135

    Article  PubMed  CAS  Google Scholar 

  42. Dijoseph JF, Armellino DC, Boghaert ER et al (2004) Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for treatment of B-lymphoid malignancies. Blood 103:1807–1814

    Article  PubMed  CAS  Google Scholar 

  43. Xu K, Liu L, Saad OM et al (2011) Characterization of intact antibody-drug conjugates from plasma/serum in vivo by affinity capture capillary liquid chromatography-mass spectrometry. Anal Biochem 412(1):56–66

    Article  PubMed  CAS  Google Scholar 

  44. Shen B-Q, Xu K, Liu L et al (2012) Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol 30(2):184–189

    Article  PubMed  CAS  Google Scholar 

  45. Zhang Z, Pan H, Chen X (2009) Mass spectrometry for structural characterization of therapeutic antibodies. Mass Spectrom Rev 28:147–176

    Article  PubMed  CAS  Google Scholar 

  46. Wang L, Amphlett G, Blattler WA et al (2005) Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry. Protein Sci 14:2436–2446

    Article  PubMed  CAS  Google Scholar 

  47. Junutula JR, Flagella KM, Graham RA et al (2010) Engineered thio-trastuzumab-DM1 ­conjugate with an improved therapeutic index to target human epidermal growth factor ­receptor 2-positive breast cancer. Clin Cancer Res 16:4769–4778

    Article  PubMed  CAS  Google Scholar 

  48. Chih H-W, Gikanga B, Tang Y et al (2011) Identification of amino acid responsible for the release of free drug from an antibody-drug conjugate utilizing lysine-succinimidyl ester ­chemistry. J Pharm Sci 100(7):2518–2525

    Article  PubMed  CAS  Google Scholar 

  49. Xu K, Saad O, Baudys J et al (2007) Bioanalytical strategies for antibody drug conjugate (ADC) biopharmaceutical development: characterization of trastuzumab-MCC-DM1 in plasma by affinity mass spectrometry. AAPS National Biotechnology Conference. J Am Soc Mass Spec 18(5):S11–S15

    Article  Google Scholar 

  50. Siegel MM, Hollander IJ, Hamann PR et al (1991) Matrix-assisted UV-laser ­desorption/ionization mass spectrometric analysis of monoclonal antibodies for the determination of carbohydrate, conjugated chelator, and conjugated drug content. Anal Chem 63:2470–81

    Article  PubMed  CAS  Google Scholar 

  51. Safavy A, Bonner JA, Waksal HW et al (2003) Synthesis and biological evaluation of paclitaxel-C225 conjugate as a model for targeted drug delivery. Bioconjugate Chem 14:302–310

    Article  CAS  Google Scholar 

  52. Siegel MM, Tabei K, Kunz A et al (1997) Calicheamicin derivatives conjugated to monoclonal antibodies: determination of loading values and distributions by infrared and UV matrix-assisted laser desorption/ionization mass spectrometry and electrospray ionization mass spectrometry. Anal Chem 69:2716–2726

    Article  PubMed  CAS  Google Scholar 

  53. Lu SX, Takach EJ, Solomon M et al (2005) Mass spectral analyses of labile DOTA-NHS and heterogeneity determination of DOTA or DM1 conjugated anti-PSMA antibody for prostate cancer therapy. J Pharm Sci 94(4):788–797

    Article  PubMed  CAS  Google Scholar 

  54. Valliere-Douglass JF, McFee WA, Salas-Solano O (2012) Native intact mass determination of antibodies conjugated with monomethyl auristatin E and F at interchain cysteine residues. Anal Chem 84:2843–2849

    Article  PubMed  CAS  Google Scholar 

  55. Chari RV, Martell BA, Gross JL et al (1992) Immunoconjugates containing novel maytansinoids: promising anticancer drugs. Cancer Res 52:127–131

    PubMed  CAS  Google Scholar 

  56. Willner D, Trail PA, Hofstead SJ et al (1993) (6-Maleimidocaproyl)hydrazone of doxorubicin—a new derivative for the preparation of immunoconjugates of doxorubicin. Bioconjugate Chem 4:521–527

    Article  CAS  Google Scholar 

  57. Hinman LM, Hamann PR, Wallace R et al (1993) Preparation and characterization of ­monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Cancer Res 53:3336–3342

    PubMed  CAS  Google Scholar 

  58. Sharkey RM, Govindan SV, Cardillo TM et al (2012) Epratuzumab-SN-38: a new ­antibody-drug conjugate for the therapy of hematologic malignancies. Mol Cancer Ther 11:224–234

    Article  PubMed  CAS  Google Scholar 

  59. Lambert JM, Senter PD, Yay-Young A et al (1985) Purified immunotoxins that are reactive with human lymphoid cells. J Biol Chem 260:12035–12041

    PubMed  CAS  Google Scholar 

  60. Tai YT, Li XF, Catley L et al (2005) Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Res 65:11712–11720

    Article  PubMed  CAS  Google Scholar 

  61. DiJoseph JF, Dougher MM, Kalyandrug LB et al (2006) Antitumor efficacy of a combination of CMC-544 (inotuzumab ozogamicin), a CD22-targeted cytotoxic immunoconjugate of ­calicheamicin, and rituximab against non-Hodgkin’s B-cell lymphoma. Clin Cancer Res 12(1):242–249

    Article  PubMed  CAS  Google Scholar 

  62. Petrul HM, Schatz CA, Kopitz CC et al (2012) Therapeutic mechanism and efficacy of the antibody-drug conjugate BAY 79-4620 targeting human carbonic anhydrase 9. Molecular Cancer Ther 11:340–349

    Article  PubMed  CAS  Google Scholar 

  63. Kim KM, McDonagh CF, Westendorf L et al (2008) Anti-CD30 diabody-drug conjugates with potent anti-tumor activity. Mol Cancer Ther 7:2486–2497

    Article  PubMed  CAS  Google Scholar 

  64. Ingle G, Chan P, Elliott JM et al (2007) High CD21 expression inhibits internalization of ­anti-CD19 antibodies and cytotoxicity of an anti-CD19-drug conjugate. British J Haematol 140:46–58

    Google Scholar 

  65. Dornan D, Bennett F, Chen Y et al (2009) Therapeutic potential of an anti-CD79b ­antibody-drug conjugate, anti-CD79b-vc-MMAE, for the treatment of non-Hodgkin lymphoma. Blood 114(13):2721–2729

    Article  PubMed  CAS  Google Scholar 

  66. Ryan MC, Kostner H, Gordon KA et al (2010) Targeting pancreatic and ovarian carcinomas using the auristatin-based anti-CD70 antibody–drug conjugate SGN-75. British J Cancer 103:676–684

    Article  PubMed  CAS  Google Scholar 

  67. Erickson HK, Widdison WC, Mayo MF et al (2010) Tumor delivery and in vivo processing of disulfide-linked and thioether-linked antibody-maytansinoid conjugates. Bioconjugate Chem 21:84–92

    Article  PubMed  CAS  Google Scholar 

  68. Acchione M, Kwon H, Jochheim CM et al (2012) Impact of linker and conjugation chemistry on antigen binding, Fc receptor binding and thermal stability of model antibody-drug conjugates. mAbs 4(3):362–372

    Article  PubMed  CAS  Google Scholar 

  69. DiJoseph JF, Dougher MM, Armellino DC et al (2007) CD20-specific antibody-targeted ­chemotherapy of non-Hodgkin’s B-cell lymphoma using calicheamicin-conjugated rituximab. Cancer Immunol Immunother 56:1107–1117

    Article  PubMed  CAS  Google Scholar 

  70. McEarchern JA, Smith LM, McDonagh CF et al (2008) Preclinical characterization of ­SGN-70, a humanized antibody directed against CD70. Clin Cancer Res 14(23):7763–7772

    Article  PubMed  CAS  Google Scholar 

  71. Gazzano-Santoro H, Ralph P, Ryskamp TC et al (1997) A non-radioactive complement-dependent cytotoxicity assay for anti-CD20 monoclonal antibody. J Immunol Methods 202:163–171

    Article  PubMed  CAS  Google Scholar 

  72. Ferrone S, Cooper NR, Pellegrino MA et al (1971) The lymphocytotoxic reaction: the ­mechanism of rabbit complement action. J Immunol 107:939–947

    PubMed  CAS  Google Scholar 

  73. Junutula JR, Bhakta S, Raab H et al (2008) Rapid identification of reactive cysteine residues for site-specific labeling of antibody-Fabs. J Immunol Methods 332:41–52

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements 

We thank Cris Lewis, Hicham Alaoui, and Ola Saad for their useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine R. Kozak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kozak, K.R., Raab, H. (2013). Assay Methodologies and Challenges. In: Phillips, G. (eds) Antibody-Drug Conjugates and Immunotoxins. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5456-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5456-4_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5455-7

  • Online ISBN: 978-1-4614-5456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics