Skip to main content

Immunobiology of β-Cell Destruction

  • Chapter
  • First Online:
Diabetes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 771))

Abstract

Type 1 diabetes is a chronic disease characterized by severe insulin deficiency and hyperglycemia, due to autoimmune destruction of pancreatic islets of Langerhans. A susceptible genetic background is necessary, but not sufficient, for the development of the disease. Epidemiological and clinical observationsunderscore the importance of environmental factors as triggers of type 1 diabetes, currently under investigation. Islet-specific autoantibodies precede clinical onset by months to years and are established tools for risk prediction, yet minor players in the pathogenesis of the disease. Many efforts have been made to elucidate disease-relevant defects in the key immune effectors of islet destruction, from the early failure of specific tolerance to the vicious circle of destructive insulitis. However, the events triggering islet auto immunity as well as the transition to overt diabetes are still largely unknown, making prevention and treatment strategies still a challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson MA. Eisenbarth GS. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 2001; 358:2 1-229.

    Google Scholar 

  2. Committee AE. Report of the expert committee on the diagnosis and Classification of diabetes mellitus. Diabetes Care 1997; 20:1183–1197.

    Article  Google Scholar 

  3. Haller M.T. Atkinson MA, Schatz D. Type 1 diabetes mellitus: etiology, presentation and management. Pediatr Clin North Am 2005; 52:1553–1578.

    Article  PubMed  Google Scholar 

  4. Onkamo P, Vaananen S, Karvonen M et al. Worldwide increase in incidence of Type I diabetes —the analysis of the data on published incidence trends. Diabetologia 1999; 42:1395–1403.

    Article  CAS  PubMed  Google Scholar 

  5. Patterson CC, Dahlquist GG, Gyurus E et al. Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005-20: a multicentre prospective registration study. Lancet 2009; 373:2027–2033.

    Article  PubMed  Google Scholar 

  6. Kyvik KO, Green A, Beck-Nielsen II. Concordance rates of insulin dependent diabetes mellitus: apopulation based study of young Danish twins. BMJ 1995; 311:913–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Concannon P, Rich SS, Nepom GT. Genetics of type 1A diabetes. N Engl J Med 2009; 360:1646–1654.

    Article  CAS  PubMed  Google Scholar 

  8. Marron MP, Raffel LJ, Garchon ID et al. Insulin-dependent diabetes mellitus (IDDM) is associated with CTLA4 polymorphisms in multiple ethnic groups. Hum Mol Genet 1997; 6: 1275–1282.

    Article  CAS  PubMed  Google Scholar 

  9. Zhemakova A, Alizadeh BZ. Bevova M et al. Novel association in chromosome 4q27 region with rheumatoid arthritis and confirmation of type 1 diabetes point to a general risk locus for autoimmune diseases. Am J Hum Genet 2007; 81:1284–1288.

    Article  CAS  Google Scholar 

  10. Lowe CE, Cooper JD, Brusko T et al. Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat Genet 2007; 39:1074–1082.

    Article  CAS  PubMed  Google Scholar 

  11. Liu S, Wang H, Jin Y et al. IFIH1 polymorphisms are significantly associated with type 1 diabetes and IFIH1 gene expression in peripheral blood mononuclear cells. Hum Mol Genet 2009; 18:358–365.

    Article  CAS  PubMed  Google Scholar 

  12. Moore F, Colli ML, Cnop M et al. PTPN2, a candidate gene for type 1 diabetes, modulates interferon-gamma-induced pancreatic beta-cell apoptosis. Diabetes 2009; 58:1283–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barrett JC, Clayton DG, Concannon P et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 2009; 41(6):703–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Knip M, Veijola R, Virtanen SM et al. Environmental triggers and determinants of type 1 diabetes. Diabetes 2005; 54Suppl 2:S125–136.

    Article  CAS  PubMed  Google Scholar 

  15. Karvonen M, Viik-Kajander M, Moltchanova E et al. Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group. Diabetes Care 2000; 23:1516–1526.

    Article  CAS  PubMed  Google Scholar 

  16. Kondrashova A, Rcunancn A, Romanov A et al. A six-fold gradient in the incidence of type 1 diabetes at the eastern border of Finland. Ann Med 2005; 37:67–72.

    Article  PubMed  Google Scholar 

  17. Soltesz G, Patterson CC, Dahlquist G. Worldwide childhood type 1 diabetes incidence—what can we learn from epidemiology? Pediatr Diabetes 2007; 8(Suppl 6):6–14.

    Article  PubMed  Google Scholar 

  18. Delli AJ, Lindblad B, Carlssou A et al. Type 1 diabetes patients born to immigrants to Sweden increase their native diabetes risk and differ from Swedish patients in HLA types and islet autoantibodies. Pediatr Diabetes 2010; 11:513–520.

    Article  PubMed  Google Scholar 

  19. Akerbloin HK, Vaarala O, Hyoty H et al. Environmental factors in the etiology of type 1 diabetes. Am J Med Genet 2002; 115:18–29.

    Article  Google Scholar 

  20. EURODIAB. Infections and vaccinations as risk factors for childhood type I (insulin-dependent) diabetes mellitus: a multicentre case-control investigation. EURODIAB Substudy 2 Study Group. Diabetologia 2000; 43:47–53.

    Article  Google Scholar 

  21. Vaarala O. Environmental causes: dietary causes. Endocrinol Metab Clin North Am 2004; 33:17–26, vii.

    Article  CAS  PubMed  Google Scholar 

  22. The Environmental Determinants of Diabetes in the Young (TEDDY) Study. Ann NY Acad Sci 2008; 1150:1–13.

    Article  Google Scholar 

  23. Bottazzo GF, Dean BM, McNally JM et al. In situ characterization of autoimmune phenomena and expression of I1LA molecules in the pancreas in diabetic insulitis. N Engl J Med 1985; 313:353–360.

    Article  CAS  PubMed  Google Scholar 

  24. In’t Veld P, Lievens D, De Grilse J et al. Screening for insulitis in adult autoantibody-positive organ donors. Diabetes 2007; 56:2400–2404.

    Article  CAS  Google Scholar 

  25. Bach JF. Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr Rev 1994; 15:516–542.

    Article  CAS  PubMed  Google Scholar 

  26. Kim HS, Lee MS. Role of innate immunity in triggering and tuning of autoimmune diabetes. Curr Mol Med 2009; 9:30–44.

    Article  CAS  PubMed  Google Scholar 

  27. Knip M, Siljander H. Autoimmune mechanisms in type 1 diabetes. Autoimmun Rev 2008; 7:550–557.

    Article  CAS  PubMed  Google Scholar 

  28. van Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology and therapeutic strategies. Physiol Rev 91:79–118.

    Google Scholar 

  29. Rich SS, Akolkar B, Concannon P et al. Results of the MHC fine mapping workshop. Diabetes Obes Metab 2009; 11(Suppl l):108–109.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Noble JA, V aides AM, Cook M et al. The role of FILA class II genes in insulin-dependent diabetes mellitus: Molecular analysis of 180 Caucasian, multiplex families. American Journal of Human Genetics 1996; 59:1134–1148.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kockum I, Sanjeevi CB, Eastman S et al. Complex interaction between HLA DR and DQ in conferring risk for childhood type 1 diabetes. Eur J Immunogenet 1999; 26:361–372.

    Article  CAS  PubMed  Google Scholar 

  32. Graham J, Hagopiau W A, Kockum I et al. Genetic effects on age-dependent onset and islet cell autoantibody markers in type 1 diabetes. Diabetes 2002; 51:1346–1355.

    Article  CAS  PubMed  Google Scholar 

  33. Fourlanos S, Varney MD. Tait BD et al. The rising incidence of type 1 diabetes is accounted for by cases with lower-risk human leukocyte antigen genotypes. Diabetes Care 2008; 31:1546–1549.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Graham J, Kockum I, Sanjeevi CB et al. Negative association between type 1 diabetes and HLA DQBl*0602-DQA1*0102 is attenuated with age at onset. Swedish Childhood Diabetes Study Group. Eur J Immunogenet 1999; 26:117–127.

    Article  CAS  PubMed  Google Scholar 

  35. Moustakas AK, Papadopoulos GK. Molecular properties of HLA-DQ alleles conferring susceptibility to or protection from insulin-dependent diabetes mellitus: keys to the fate of islet beta-cells. Am J Med Genet 2002; 115:37–47.

    Article  PubMed  Google Scholar 

  36. Sadeharju K, Knip M, Hiltunen M et al. The HLA-DR phenotype modulates the humoral immune response to enterovirus antigens. Diabetologia 2003; 46:1100–1105.

    Article  CAS  PubMed  Google Scholar 

  37. Nejentsev S, Howson JM, Walker NM et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 2007; 450:887–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gambelunghe G, Ghaderi M, Cosentino A et al. Association of MHC Class I chain-related A (MIC-A) gene polymorphism with Type I diabetes. Diabetologia 2000; 43:507–514.

    Article  CAS  PubMed  Google Scholar 

  39. Onengut-Gumuscu S, Ewens KG, Spielman RS et al. A functional polymorphism (1858C/T) in the PTPN22 gene is linked and associated with type I diabetes in multiplex families. Genes Immun 2004; 5:678–680.

    Article  CAS  PubMed  Google Scholar 

  40. Pugliese A, Zeller M, Fernandez A. Jr. et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet 1997; 15:293–297.

    Article  CAS  PubMed  Google Scholar 

  41. Steck AK, Liu SY, McFann K et al. Association of the PTPN22/LYP gene with type 1 diabetes. Pediatr Diabetes 2006; 7:274–278.

    Article  PubMed  Google Scholar 

  42. Hermann R, Lipponen K, Kiviniemi M et al. Lymphoid tyrosine phosphatase (LYP/PTPN22) Arg620Trp variant regulates insulin autoimmunity and progression to type 1 diabetes. Diabetologia 2006; 49:1198–1208.

    Article  CAS  PubMed  Google Scholar 

  43. Grant SF, Qu HQ, Bradfield IP et al. Follow-up analysis of genome-wide association data identifies novel loci for type 1 diabetes. Diabetes 2009; 58:290–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cooper JD, Walker NM, Healy BC et al. Analysis of 55 autoimmune disease and type II diabetes loci: further confirmation of chromosomes 4q27, 12ql3.2 and 12q24.13 as type I diabetes loci and support for a new locus, 12ql3.3-ql4.1. Genes Immun 2009; 10Suppl l:S95–120.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hakonarson H, Qu HQ, Bradfield IP et al. A novel susceptibility locus for type 1 diabetes on Chrl2ql3 identified by a genome-wide association study. Diabetes 2008; 57:1143–1146.

    Article  CAS  PubMed  Google Scholar 

  46. Hakonarson II, Grant SF, Bradfield JP et al. A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature 2007; 448:591–594.

    Article  CAS  PubMed  Google Scholar 

  47. Lehmann P, Sercarz E, Forsthuber T et al. Determinant spreading and the dynamics of the autoimmune T-cell repertoire. Immunology Today 1993; 14:203–208.

    Article  CAS  PubMed  Google Scholar 

  48. Reijonen H, Elliott JF, van Endert P et al. Differential presentation of glutamic acid decarboxylasc 65 (GAD65) T-cell epitopes among HLA-DRB1 *0401-positive individuals. J Immunol 1999; 163:1674–1681.

    CAS  PubMed  Google Scholar 

  49. Nerup J, Andersen OO. Bendixen G et al. Anti-pancreatic, cellular hypersensitivity in diabetes mellitus. Experimental induction of anti-pancreatic, cellular hypersensitivity and associated morphological B-cell changes in the rat. Acta Allergol 1973; 28:231–249.

    Article  CAS  PubMed  Google Scholar 

  50. Eisenbarth GS, Jeffrey J. The natural history of type 1A diabetes. Arq Bras Endocrinol Metabol 2008; 52:146–155.

    Article  PubMed  Google Scholar 

  51. Dromey JA, Weenink SM, Peters GH et al. Mapping of epitopes for autoantibodies to the type 1 diabetes autoantigen IA-2 by peptide phage display and molecular modeling: overlap of antibody and T-cell determinants. J Immunol 2004; 172:4084–4090.

    Article  CAS  PubMed  Google Scholar 

  52. Endo T, Takizawa S, Tanaka S et al. Amylase alpha-2A autoantibodies: novel marker of autoimmune pancreatitis and fulminant type 1 diabetes. Diabetes 2009; 58:732–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pupilli C, Giannini S, Marchetti P et al. Autoantibodies to CD38 (ADP-ribosyl cyclase/cyclic ADP ribose hydrolase) in Caucasian patients with diabetes: effects on insulin release from human islets. Diabetes 1999; 48:2309–2315.

    Article  CAS  PubMed  Google Scholar 

  54. Ozawa Y, Kasuga A, Nomaguchi H et al. Detection of autoantibodies to the pancreatic islet heat shock protein 60 in insulin-dependent diabetes mellitus. J Autoimmun 1999; 9:517–524.

    Article  Google Scholar 

  55. Abulafia-Lapid R, Gillis D, Yosef O et al. T cells and autoantibodies to human HSP70 in type 1 diabetes in children. J Autoimmun 2003; 20:313–321.

    Article  CAS  PubMed  Google Scholar 

  56. Qin H, Mahon JL, Atkinson MA et al Type 1 diabetes alters anti-hsp90 autoantibody isotype. J Autoimmun 2003; 20:237–245.

    Article  CAS  PubMed  Google Scholar 

  57. Martin S, Kardorf J, Schulte B et al Autoantibodies to the islet antigen ICA69 occur in IDDM and in rheumatoid arthritis. Diabetologia 1995; 38:351–355.

    Article  CAS  PubMed  Google Scholar 

  58. Jarchum I, Nichol L, Trucco M et al. Identification of novel IGRP epitopes targeted in type 1 diabetes patients. Clin Immunol 2008; 127:359–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kasimiotis H, Fida S, Rowley MJ et al. Antibodies to SOX13 (ICA12) are associated with type 1 diabetes. Autoimmunity 2001; 33:95–101.

    Article  CAS  PubMed  Google Scholar 

  60. Hawkes CJ, Wasmeier C. Christie MR et al. Identification of the 37-kDa antigen in IDDM as a tyrosine phosphatase-like protein (phogrin) related to IA-2. Diabetes 1996; 45:1187–1192.

    Article  CAS  PubMed  Google Scholar 

  61. Hirai H, Miura J, Hu Y et al. Selective screening of secretory vesicle-associated proteins for autoantigens in type 1 diabetes: VAMP2 and NPY are new minor autoantigens. Clin Immunol 2008; 127:366–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Banga JP, Moore JK, Duhindan N et al. Modulation of antigen presentation by autoreactive B cell clones specific for GAD65 from a type I diabetic patient. Clin Exp Immunol 2004; 135:74–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Weenink SM, Lo J, Stephenson CR et al. Autoantibodies and associated T-cell responses to determinants within the 831–860 region of the autoantigen IA-2 in Type 1 diabetes. J Autoimmun 2009; 33:147–54.

    Article  CAS  PubMed  Google Scholar 

  64. Jaume JC, Parry SL, Madec AM et al. Suppressive effect of glutamic acid decarboxylase 65-specific autoimmune B-lymphocytes on processing of T-cell determinants located within the antibody epitope. J Immunol 2002; 169:665–672.

    Article  CAS  PubMed  Google Scholar 

  65. Ziegler AG, Hummel M, Schenker M et al. Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB Study. Diabetes 999; 48:460-468.

    Article  CAS  PubMed  Google Scholar 

  66. Eisenbarth GS. Prediction of type 1 diabetes: the natural history of the prediabetic period. Adv Exp Med Biol 2004; 552:268–290.

    PubMed  Google Scholar 

  67. Bottazzo GF, Florin-Christensen A, Doniach D. Islet-cell antibodies in diabetes mellitus with autoimmune poly-endocrine deficiencies. Lancet 1974; 2:1279–1283.

    Article  CAS  PubMed  Google Scholar 

  68. Torn C, Mueller PW, Schlosser M et al. Diabetes Antibody Standardization Program: evaluation of assays for autoantibodies to glutamic acid decarboxylase and islet antigen-2. Diabetologia 2008; 51:846–852.

    Article  CAS  PubMed  Google Scholar 

  69. Baekkeskov S, Aanstoot HJ, Christgau S et al. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 1990; 347:151–156.

    Article  CAS  PubMed  Google Scholar 

  70. Schranz DB, Lernmark A. Immunology in diabetes: an update. Diabetes Metab Rev 1998; 14:3–29.

    CAS  Google Scholar 

  71. Christie MR, Genovese S, Cassidy D et al. Antibodies to islet 37kantigen, but notto glutamate decarboxylase, discriminate rapid progression to IDDM in endocrine autoimmunity. Diabetes 1994; 43:1254–1259.

    Article  CAS  PubMed  Google Scholar 

  72. Richter W, Shi Y, Baekkeskov S. Autoreactive epitopes defined by diabetes-associated human monoclonal antibodies are localized in the middle and C-tenninal domains of the smallerform of glutamate decarboxylase. Proc Natl Acad Sci USA 1993; 90:2832–2836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kobayashi T, Tanaka S, Okubo M et al. Unique epitopes of glutamic acid decarboxylase autoantibodies in slowly progressive type 1 diabetes. J Clin Endocrinol Metab 2003; 88:4768–4775.

    Article  CAS  PubMed  Google Scholar 

  74. Reijonen II, Daniels TL, Lernmark A et al. GAD65-specific autoantibodies enhance the presentation of an immunodominant T-cell epitope from GAD65. Diabetes 2000; 49:1621–1626.

    Article  CAS  PubMed  Google Scholar 

  75. Oak S, Gilliam LK, Landin-Olsson M et al. The lack of anti-idiotypic antibodies, not the presence of the corresponding autoantibodies to glutamate decarboxylase, defines type 1 diabetes. Proc Natl Acad Sci USA 2008; 105:5471–5476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ortqvist E. Brooks-Worrell B, Lynch K et al. Changes in GAD65Ab-specific antiidiotypic antibody levels correlate with changes in C-peptide levels and progression to islet cell autoimmunity. J Clin Endocrinol Metab 1995:E310–318.

    Article  Google Scholar 

  77. Palmer JP. Insulin autoantibodies: their role in the pathogenesis of IDDM. Diabetes Metab Rev 1987; 3:1005–1015.

    Article  CAS  PubMed  Google Scholar 

  78. Eisenbarth GS, Moriyama H, Robles DT et al. Insulin autoimmunity: prediction/precipitation/prevention type 1A diabetes. Autoimmun Rev 2002; 1:139–145.

    Article  CAS  PubMed  Google Scholar 

  79. Kukko +M, Kimpimaki T, Korhonen S et al. Dynamics of diabetes-associated autoantibodies in young children with human leukocyte antigen-conferred risk of type 1 diabetes recruited from the general population. J Clin Endocrinol Metab 2005; 90:2712–2717.

    Article  CAS  PubMed  Google Scholar 

  80. Brooks-Worrell BM, Nielson D, Palmer JP. Insulin autoantibodies and insulin antibodies have similar binding characteristics. Proc Assoc Am Physicians 1999; 111:92–96.

    Article  CAS  PubMed  Google Scholar 

  81. Lan MS, Wasserfall C, Maclaren NK et al. IA-2. a transmembrane protein of the protein tyrosine phosphatase family, is a major autoantigen in insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 1996; 93:6367–6370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Saeki K, Zhu M, Kubosaki A et al. Targeted disruption of the protein tyrosine phosphatase-like molecule IA-2 results in alterations in glucose tolerance tests and insulin secretion. Diabetes 2002; 51:1842–1850.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang B, Lan MS, Notkins AL. Autoantibodies to IA-2 in IDDM: location of major antigenic determinants. Diabetes 1997; 46:40–43.

    Article  PubMed  Google Scholar 

  84. Wenzlau JM, Juhl K, Yul L et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci USA 2007; 104:17040–17045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vaziri-Sani F, Oak S, Radtke J et al. ZnT8 autoantibody titers in type 1 diabetes patients decline rapidly after clinical onset. Autoimmunity 2010; 43:598–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yu L, Rewers M, Gianani R et al. Anti islet autoantibodies usually develop sequentially rather than simultaneously. J Clin Endocrinol Metab 1996; 81:4264–4267.

    CAS  PubMed  Google Scholar 

  87. Knip M. Kukko M, Kulmala P et al. Humoral beta-cell autoimmunity in relation to HLA-defined disease susceptibility in preclinical and clinical type 1 diabetes. Am J Med Genet 2002; 115:48–54.

    Article  PubMed  Google Scholar 

  88. Wasserfall CH, Atkinson MA. Autoantibody markers for the diagnosis and prediction of type 1 diabetes. Autoimmun Rev 2006; 5:424–428.

    Article  CAS  PubMed  Google Scholar 

  89. Verge CF, Gianani R. Kawasaki F et al. Number of autoantibodies (against insulin, GAD or ICA512/ IA2) rather than particular autoantibody specificities determines risk of type I diabetes. J Autoimmun 1996; 9:379–383.

    Article  CAS  PubMed  Google Scholar 

  90. Pinkse GG, Tysma OH, Bergen CA et al. Autoreactive CD8 T-cells associated with beta cell destruction in type 1 diabetes. Proc Natl Acad Sci USA 2005; 102:18425–18430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Roep BO, Atkinson MA, van Endert PM et al. Autoreactive T-cell responses in insulin-dependent (Type 1) diabetes mellitus. Report of the first international workshop for standardization of T-cell assays. J Autoimmun 1999; 13:267–282.

    Article  CAS  PubMed  Google Scholar 

  92. Mallone R, Nepom GT. Targeting T-lymphocytes for immune monitoring and intervention in autoimmune diabetes. Am J Ther 2005; 12:534–550.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Nagata M, Kotani R, Moriyama II et al. Detection of autoreactive T-cells in type 1 diabetes using coded autoantigens and an immunoglobulin-free cytokine ELISPOT assay: report from the fourth immunology of diabetes society T-cell workshop. Ann N Y Acad Sci 2004; 1037:10–15.

    Article  CAS  PubMed  Google Scholar 

  94. Mallone R, Nepom GT. MHC Class II tetramers and the pursuit of antigen-specific T-cells: define, deviate, delete. Clin Immunol 2004; 110:232–242.

    Article  CAS  PubMed  Google Scholar 

  95. Baker C, Petrichde Marquesini LG, Bishop AJ et al. Human CD8 responses to a complete epitope set from preproinsulin: implications for approaches to epitope discovery. J Clin Immunol 2008; 28:350–360.

    Article  CAS  PubMed  Google Scholar 

  96. Panina-Bordignon P, Lang R, van Endert PM et al. Cytotoxic T-cells specific for glutamic acid decarboxylase in autoimmune diabetes. J Exp Med 1995; 181:1923–1927.

    Article  CAS  PubMed  Google Scholar 

  97. Toma A. Laika T. Haddouk S et al. Recognition of human proinsulin leader sequence by class I-restricted T-cells in HLA-A*0201 transgenic mice and in human type 1 diabetes. Diabetes 2009; 58:394–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mannering SI, Pang SH, Williamson NA et al. The A-chain of insulin is a hot-spot for CD4+ T-cell epitopes in human type 1 diabetes. Clin Exp Immunol 2009; 156:226–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Di Lorenzo TP, Peakman M, Roep BO. Translational mini-review series on type 1 diabetes: Systematic analysis of T-cell epitopes in autoimmune diabetes. Clin Exp Immunol 2007; 148:1–16.

    Article  Google Scholar 

  100. Herold KC. Brooks-Worrell B. Palmer J et al. Validity and reprodueibility of measurement of islet autoreactivity by T-cell assays in subjects with early type 1 diabetes. Diabetes 2009; 58:2588–2595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Oling V, Marttila J, Honen J et al. GAD65-and proinsulin-specific CD4+ T-cells detected by MHC class II tetramers in peripheral blood of type 1 diabetes patients andat-risk subjects. J Autoimmun 2005; 25:235–243.

    Article  PubMed  CAS  Google Scholar 

  102. Reijonen H, Novak. EJ, Kochik S et al. Detection of GAD65-specific T-cells by major histocompatibility complex class II tetramers in type 1 diabetic patients and at-risk subjects. Diabetes 2002; 51:1375–1382.

    Article  CAS  PubMed  Google Scholar 

  103. Arif S, Tree TI, Astill TP et al. Autoreactive T-cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest 2004; 113:451–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yang J, Danke N, Roti M et al. CD4+ T cells from type 1 diabetic and healthy subjects exhibit different thresholds of activation to a naturally processed proinsulin epitope. J Autoimmun 2008; 31:30–41.

    Article  PubMed  CAS  Google Scholar 

  105. Viglietta V, Kent SC, Orban T et al. GAD65-reactive T cells are activated in patients with autoimmune type la diabetes. J Clin Invest 2002; 109:895–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Danke NA, Yang J, Greenbaum C et al. Comparative study of GAD65-specific CD4+ T-cells in healthy and type 1 diabetic subjects. J Autoimmun 2005; 25:303–311.

    Article  CAS  PubMed  Google Scholar 

  107. Monti P, Scirpoli M, Rigamonti A et al. Evidence for in vivo primed and expanded autoreactive T cells as a specific feature of patients with type 1 diabetes. J Immunol 2007; 179:5785–5792.

    Article  CAS  PubMed  Google Scholar 

  108. Lindley S, Dayan CM, Bishop A et al. Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 2005; 54:92–99.

    Article  CAS  PubMed  Google Scholar 

  109. Summers KL, Marleau AM, Mahon JL et al. Reduced IFN-alpha secretion by blood dendritic cells in human diabetes. Clin Immunol 2006; 121:81–89.

    Article  CAS  PubMed  Google Scholar 

  110. Vuckovic S, Withers G, Harris M et al. Decreased blood dendritic cell counts in type 1 diabetic children. Clin Immunol 2007; 123:281–288.

    Article  CAS  PubMed  Google Scholar 

  111. Mollah ZU, Pai S, Moore C et al. Abnormal NF-kappa B function characterizes human type 1 diabetes dendritic cells and monocytes. J Immunol 2008; 180:3166–3175.

    Article  CAS  PubMed  Google Scholar 

  112. Meyers AJ, Shah RR, Gottlieb PA et al. Altered Toll-like receptor signaling pathways in human type 1 diabetes. J Mol Med (Berl) 2010; 88:1221–1231.

    Article  CAS  Google Scholar 

  113. Skarsvik S, Tiittanen M, Lindström A et al. Poor in vitro maturation and pro-inflammatory cytokine response of dendritic cells in children at genetic risk of type 1 diabetes. Scand.I Immunol 2004; 60:647–652.

    Article  CAS  Google Scholar 

  114. Allen JS, Pang K, Skowera A et al. Plasmacytoid dendritic cells are proportionally expanded at diagnosis of type 1 diabetes and enhance islet autoantigen presentation to T-cells through immune complex capture. Diabetes 2009; 58:138–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nicoletti F, Conget I. Di Mauro M et al. Serum concentrations of the interferon-gamma-inducible chemokine IP-10/CXCL10 are augmented in both newly diagnosed Type I diabetes mellitus patients and subjects at risk of developing the disease. Diabetologia 2002; 45:1107–1110.

    Article  CAS  PubMed  Google Scholar 

  116. Lampeter ER. Kishimoto TK. Rothlein R et al. Elevated levels ofcirculating adhesion molecules in IDDM patients and in subjects at risk for IDDM. Diabetes 1992; 41:1668–1671.

    Article  CAS  PubMed  Google Scholar 

  117. Rodacki M, Svoren B, Butty V et al. Altered natural killer cells in type 1 diabetic patients. Diabetes 2007; 56:177–185.

    Article  CAS  PubMed  Google Scholar 

  118. Kis J, Engelmann P. Farkas K et al Reduced CD4-subset and Th1 bias of the human iNKT cells in Type 1 diabetes mellitus. J Leukoc Biol 2007; 81:654–662.

    Article  CAS  PubMed  Google Scholar 

  119. Chentoufi AA, Binder NR, Berka N et al. Advances in type I diabetes associated tolerance mechanisms. Scand J Immunol 2008; 68:1–11.

    Article  CAS  PubMed  Google Scholar 

  120. Venanzi ES, Benoist C, Mathis D. Good riddance: Thymocyte clonal deletion prevents autoimmunity. Curr Opin Immunol 2004; 16:197–202.

    Article  CAS  PubMed  Google Scholar 

  121. Mathis D, Benoist C. Aire. Annu Rev Immunol 2009; 27:287–312.

    Article  CAS  PubMed  Google Scholar 

  122. Diez J, Park Y, Zeller M et al. Differential splicing of the IA-2 mRNA in pancreas and lymphoid organs as a permissive genetic mechanism for autoimmunity against the IA-2 type 1 diabetes autoantigen. Diabetes 2001; 50:895–900.

    Article  CAS  PubMed  Google Scholar 

  123. Lieberman SM, DiLorenzo TP. A comprehensive guide to antibody and T-cell responses in type 1 diabetes. Tissue Antigens 2003; 62:359–377.

    Article  CAS  PubMed  Google Scholar 

  124. Pugliese A, Brown D. Garza D et al. Sell-antigen-presenting cells expressing diabetes-associated autoantigens exist in both thymus and peripheral lymphoid organs. J Clin Invest 2001; 107:555–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wardemann H, Nussenzweig MC. B-ccll self-tolerance in humans. Adv Immunol 2007; 95:83–110.

    Article  CAS  PubMed  Google Scholar 

  126. Dustin ML. T-cell activation through immunological synapses andkinapses. Immunol Rev 2008; 221:77–89.

    Article  CAS  PubMed  Google Scholar 

  127. Linsley PS, Ledbetter JA. The role of the CD28 receptor during T-cell responses to antigen. Annu Rev Immunol 1993; 11:191–212.

    Article  CAS  PubMed  Google Scholar 

  128. Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 2007; 19:813–824.

    Article  CAS  PubMed  Google Scholar 

  129. Walunas TL, Bakker CY, Bluestone JA. CTLA-4 ligation blocks CD28-dependent T-cell activation. J Exp Med 1996; 183:2541–2550.

    Article  CAS  PubMed  Google Scholar 

  130. Kristiansen OP. Larsen ZM. Pociot F. CTLA-4 in autoimmune diseases—a general susceptibility gene to autoimmunity? Genes Immun 2000; 1:170–184.

    Article  CAS  PubMed  Google Scholar 

  131. Bour-Jordan H, Esensten JH, Martinez-Llordella M et al. Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/B7 family. Immunol Rev 2011; 241:180–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Steinman RM. Dendritic cells: understanding immunogenicity. Eur J Immunol 2007; 37Suppl l:S53–60.

    Article  CAS  PubMed  Google Scholar 

  133. Tisch R, Wang B. Role of plasmacytoid dendritic cells in type 1 diabetes: friend or foe? Diabetes 2009; 58:12–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rock KL, Shen L. Cross-presentation: underlying mechanisms and role in immune surveillance. Immunol Rev 2005; 207:166–183.

    Article  CAS  PubMed  Google Scholar 

  135. Garcia CA, Prabakar KR, Diez J et al. Dendritic cells in human thymus and periphery display a proinsulin epitope in a transcription-dependent, capture-independent fashion. J Immunol 2005; 175:2111–2122.

    Article  CAS  PubMed  Google Scholar 

  136. Wallet MA, Sen P, Tisch R. Immunoregulation of dendritic cells. Clin Med Res 2005; 3:166–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rutella S, Danese S, Leone G. Tolerogenic dendritic cells: cytokine modulation comes of age. Blood 2006; 108:1435–1440.

    Article  CAS  PubMed  Google Scholar 

  138. Yamazaki S, Inaba K, Tarbell KV et al. Dendritic cells expand antigen-specific Foxp3+ CD25+ CD4+ regulatory T-cells including suppressors of alloreactivity. Immunol Rev 2006; 212:314–329.

    Article  CAS  PubMed  Google Scholar 

  139. Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 2004; 4:762–774.

    Article  CAS  PubMed  Google Scholar 

  140. Sakaguchi S, Miyara M, Costantino CMet al. FOXP3+ regulatory T-cells in the human immune system. Nat Rev Immunol 2010; 10:490–500.

    Article  CAS  PubMed  Google Scholar 

  141. Tang Q. Bluestone JA. The Foxp3+ regulatory T-cell: a jack of all trades, master of regulation. Nat Immunol 2008; 9:239–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Shevach EM. From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity 2006; 25:195–201.

    Article  CAS  PubMed  Google Scholar 

  143. Roncarolo MG, Gregori S, Battaglia M et al. Interleukin-10-secreting type 1 regulatory T-cells in rodents and humans. Immunol Rev 2006; 212:28–50.

    Article  CAS  PubMed  Google Scholar 

  144. Moore KW, de Waal Malefyt R, Coffman RL et al. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19:683–765.

    Article  CAS  PubMed  Google Scholar 

  145. Tree TI, Roep BO, Peakman M. A mini meta-analysis of studies on CD4+CD25+ T-cells in human type 1 diabetes: report of the Immunology of Diabetes Society T-Cell Workshop. Ann N Y Acad Sci 2006; 1079:9–18.

    Article  PubMed  Google Scholar 

  146. Brusko T, Wasserfall C, McGrail K et al. No alterations in the frequency of FOXP3+ regulatory T-cells in type 1 diabetes. Diabetes 2007; 56:604–612.

    Article  CAS  PubMed  Google Scholar 

  147. Roep BO, Kleijwegt FS, van Halteren AG et al. Islet inflammation and CXCL10 in recent-onset type 1 diabetes. Clin Exp Immunol 2010; 159:338–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Holm BC, Svensson J, Akesson C et al. Evidence for immunological priming and increased frequency of CD4+ CD25+ cord blood T-cells in children born to mothers with type 1 diabetes. Clin Exp Immunol 2006; 146:493–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kronenberg M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 2005; 23:877–900.

    Article  CAS  PubMed  Google Scholar 

  150. Dufour FD. Silveira PA, Baxter AG. Interactions between B-lymphocytes and type 1 NKT cells in autoimmune diabetes. J Immunotoxicol 2008; 5:249–257.

    Article  CAS  PubMed  Google Scholar 

  151. Bauer S, Groh V, Wu J et al. Activation of NK cells and T-cells by NKG2D, a receptor for stress-inducible MICA. Science 1999; 285:727–729.

    Article  CAS  PubMed  Google Scholar 

  152. Kukreja A, Cost G, Marker J et al. Multiple immuno-regulatory defects in type-1 diabetes. J Clin Invest 2002; 109:131–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lee PT, Putnam A, Benlagha K et al. Testing the NKT cell hypothesis of human IDDM pathogenesis. J Clin Invest 2002; 110:793–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Oikawa Y, Shimada A, Yamada S et al. High frequency of vα.24(+) vbeta 11(+) T-cells observed in type 1 diabetes. Diabetes Care 2002; 25:1818–1823.

    Article  PubMed  Google Scholar 

  155. Rodacki M, Milech A, de Oliveira JE. NK cells and type 1 diabetes. Clin Dev Immunol 2006; 13:101–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998; 392:86–89.

    Article  CAS  PubMed  Google Scholar 

  157. Lernmark A, Kloppel G, Stenger D et al. Heterogeneity of islet pathology in two infants with recent onset diabetes mellitus. Virchows Arch 1995; 425:631–640.

    Article  CAS  PubMed  Google Scholar 

  158. Dinarello CA. Historical insights into cytokines. Eur J Immunol 2007; 37Suppl l:S34–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Eizirik DL, Colli ML. Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol 2009; 5:219–226.

    Article  CAS  PubMed  Google Scholar 

  160. Lipman TH, Chang Y, Murphy KM. The epidemiology of type 1 diabetes in children in Philadelphia 1990–1994: evidence of an epidemic. Diabetes Care 2002; 25:1969–1975.

    Article  PubMed  Google Scholar 

  161. Clements GB, Galbraith DN, Taylor KW. Coxsackie B virus infection and onset of childhood diabetes [see comments]. Lancet 1995; 346:221–223.

    Article  CAS  PubMed  Google Scholar 

  162. McIntosh ED. Menser MA. A fifty-year follow-up of congenital rubella. Lancet 1992; 340:414–415.

    Article  CAS  PubMed  Google Scholar 

  163. DeStefano F, Mullooly JP, Okoro CA et al. Childhood vaccinations, vaccination timing and risk of type 1 diabetes mellitus. Pediatrics 2001; 108:E112.

    Article  CAS  PubMed  Google Scholar 

  164. Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 2002; 347:911–920.

    Article  PubMed  Google Scholar 

  165. Jun HS, Yoon JW. A new look at viruses in type 1 diabetes. Diabetes Metab Res Rev 2003; 19:8–31.

    Article  CAS  PubMed  Google Scholar 

  166. van der Werf N, Kroese FG, Rozing J et al. Viral infections as potential triggers of type 1 diabetes. Diabetes Metab Res Rev 2007; 23:169–183.

    Article  CAS  Google Scholar 

  167. Oikarinen S, Martiskainen M, Tauriainen Set al. Enterovirus RNA in blood is linked to the development of type 1 diabetes. Diabetes 2011; 60:276–279.

    Article  CAS  PubMed  Google Scholar 

  168. Richardson SJ, Willcox A, Bone AJ et al. The prevalence of entero viral capsid protein vp1immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia 2009; 52:1143–1151.

    Article  CAS  PubMed  Google Scholar 

  169. Oikarinen M, Tauriainen S, Honkanen T et al. Detection of enteroviruses in the intestine oftype 1 diabetic patients. Clin Exp Immunol 2008; 151:71–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Salminen K, Sadeharju K, Lonnrot M et al. Enterovirus infections are associated with the induction of beta-cell autoimmunity in a prospective birth cohort study. J Med Virol 2003; 69:91–98.

    Article  PubMed  Google Scholar 

  171. Coppieters KT, von Herrath MG. Histopathology oftype 1 diabetes: old paradigms and new insights. Rev Diabet Stud 2009; 6:85–96.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Blomqvist M. Juhela S. Erkkila S et al. Rotavirus infections and development of diabetes-associated autoantibodies during the first 2 years of life. Clin Exp Immunol 2002; 128:511–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hultcrantz M, Huhn MH, Wolf M et al. Interferons induce an antiviral state in human pancreatic islet cells. Virology 2007; 367:92–101.

    Article  CAS  PubMed  Google Scholar 

  174. Cavallo MG, Baroni MG, Toto A et al. Viral infection induces cytokine release by beta islet cells. Immunology 1992; 75:664–668.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Oldstone MB. Molecular and cellular mechanisms, pathogenesis and treatment of insulin-dependent diabetes obtained through study of a transgenic model of molecular mimicry. Cuit Top Microbiol Immunol 2005; 296:65–87.

    CAS  Google Scholar 

  176. Atkinson MA, Bowman MA, Campbell L et al. Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J Clin Invest 1994; 94:2125–2129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Honeyman MC, Stone NL, Harrison LC. T-cell epitopes in type 1 diabetes autoantigentyrosine phosphatase IA-2: potential for mimicry with rotavirus and other environmental agents. Mol Med 1998; 4:231–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Karounos DG. Wolinsky JS, Thomas JW. Monoclonal antibody to rubella virus capsid protein recognizes a beta-cell antigen. J Immunol 1993; 150:3080–3085.

    CAS  PubMed  Google Scholar 

  179. Filippi CM, von Hcrrath MG. Viral trigger for type 1 diabetes: pros and cons. Diabetes 2008; 57:2863–2871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Myers MA, Mackay IR, Rowley MJ et al. Dietary microbial toxins and type 1 diabetes—a new meaning for seed and soil. Diabetologia 2001; 44:1199–2000.

    Article  CAS  PubMed  Google Scholar 

  181. Virtanen SM, Jaakkola L, Rasanen L et al. Nitrate and nitrite intake and the risk for type 1 diabetes in Finnish children. Diabt. Med 1994; 11:656–662.

    Article  CAS  Google Scholar 

  182. Dahlquist GG, Blom LG, Persson LA et al. Dietary factors and the risk of developing insulin dependent diabetes in childhood. BMJ 1990; 300:1302–1306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Virtanen SM, Rasanen L, Aro A et al. Feeding in infancy and the risk of type 1 diabetes mellitus in Finnish children. The ‘Childhood Diabetes in Finland’ Study Group. Diabet Med 1992; 9:815–819.

    Article  CAS  PubMed  Google Scholar 

  184. Ziegler AG, Schtnid S, Huber D et al. Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA 2003; 290:1721–1728.

    Article  CAS  PubMed  Google Scholar 

  185. Gerstein HC. Cow’s milk exposure and type I diabetes mellitus. Acritical overview of the clinical literature. Diabetes Care 1994; 17:13–19.

    Article  CAS  PubMed  Google Scholar 

  186. Martin JM, Trink B, Daneman D et al. Milk proteins in the etiology of insulin-dependent diabetes mellitus (IDDM). Ann Med 1991; 23:447–452.

    Article  CAS  PubMed  Google Scholar 

  187. Dahlquist G, Frisk G, Ivarsson SA et al. Indications that maternal coxsackie B virus infection during pregnancy is a risk factor for childhood-onset IDDM. Diabetologia 1995; 38:1371–1373.

    Article  CAS  PubMed  Google Scholar 

  188. Fuchtenbusch M, Irnstetter A, Jager G et al. No evidence l’or an association of coxsackie virus infections during pregnancy and early childhood with development of islet autoantibodies in offspring of mothers or fathers with type 1 diabetes. J Autoimmun 2001; 17:333–340.

    Article  CAS  PubMed  Google Scholar 

  189. Stanley HM, Norris JM, Barriga K et al. Is presence of islet autoantibodies at birth associated with development of persistent islet autoimmunity? The Diabetes Autoimmunity Study in the Young (DAISY). Diabetes Care 2004; 27:497–502.

    Article  CAS  PubMed  Google Scholar 

  190. Elfving M, Lindberg B, Lynch K et al. Number of islet autoantibodies present in newly diagnosed type 1 diabetes children born to nondiabetic mothers is affected by islet autoantibodies present at birth. Pediatr Diabetes 2008; 9:127–134.

    Article  PubMed  Google Scholar 

  191. Gutcher I, Becher B. APC-derived cytokines and T-cell polarization in autoimmune inflammation. J Clin Invest 2007; 117:1119–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Dong C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 2008; 8:337–348.

    Article  CAS  PubMed  Google Scholar 

  193. Delon J, Germain RN. Information transfer at the immunological synapse. Curr Biol 2000; 10:R923–933.

    Article  CAS  PubMed  Google Scholar 

  194. Grewal IS, Flavell RA. CD40andCD154 in cell-mediated immunity. Annu Rev Immunol 1998; 16:111–135.

    Article  CAS  PubMed  Google Scholar 

  195. Parker DC. T-cell-dependent B cell activation. Annu Rev Immunol 1993; 11:331–360.

    Article  CAS  PubMed  Google Scholar 

  196. Sutherland DER, Sibley RK. Xu X-Z et al. Twin-to twin pancreas transplantation: reversal and reenactment of the pathogenesis of type I diabetes. Trans Assoc Am Phys 1984; 97:80–87.

    CAS  PubMed  Google Scholar 

  197. Uno S, Imagawa A, Okita K et al. Macrophages and dendritic cells infiltrating islets with or without beta cells produce tumour necrosis factor-a in patients with recent-onset type 1 diabetes. Diabetologia 2007; 50:596–601.

    Article  CAS  PubMed  Google Scholar 

  198. Willcox A, Richardson SJ, Bone AJ et al. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol 2009; 155:173–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Itoh N, Hanafusa T, Miyazaki A et al. Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. J Clin Invest 1993; 92:2313–2322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. von Andrian UH, Mackay CR. T-cell function and migration. Two sides of the same coin. N Engl J Med 2000; 343:1020–1034.

    Article  Google Scholar 

  201. Dudda JC. Martin SF. Tissue targeting of T-cells by DCs and microenvironments. Trends Immunol 2004; 25:417–421.

    Article  CAS  PubMed  Google Scholar 

  202. Hannincn A, Jalkancn S, Salmi M et al. Macrophages, T-cell receptorusage and endothelial cell activation in the pancreas at the onset of insulin-dependent diabetes mellitus. J Clin Invest 1992; 90:1901–1910.

    Article  Google Scholar 

  203. Greening JE, Tree TI, Kotowicz KT et al. Processing and presentation of the islet autoantigen GAD by vascular endothelial cells promotes transmigration of autoreactive T-cells. Diabetes 2003; 52:717–725.

    Article  CAS  PubMed  Google Scholar 

  204. McMurray RW. Adhesion molecules in autoimmune disease. Semin Arthritis Rheum 1996; 25:215–233.

    Article  CAS  PubMed  Google Scholar 

  205. Hogg N, Leitinger B. Shape and shift changes related to the function of leukocyte integrins LFA-1 and Mac-1. J Leukoc Biol 2001; 69:893–898.

    CAS  PubMed  Google Scholar 

  206. Nobile C, Lind M, Miro F et al. Cognate CD4+ T-cell-dendritic cell interactions induce migration of immature dendritic cells through dissolution of their podosomes. Blood 2008;111:3579–3590.

    Article  CAS  PubMed  Google Scholar 

  207. Han B, Serra P, Yamanouchi J et al. Developmental control of CD8 T-cell-avidity maturation in autoimmune diabetes. J Clin Invest 2005; 115:1879–1887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Dobersen MJ. Humoral autoimmunity in insulin-dependent (type I) diabetes mellitus. Acurrent assessment. Surv Immunol Res 1982; 1329–338.

    Google Scholar 

  209. Martin S, Wolf-Eichbaum D, Duinkcrkcn G et al. Development of type 1 diabetes despite severe hereditary B-lymphocyte deficiency. N Engl J Med 2001; 345:1036–1040.

    Article  CAS  PubMed  Google Scholar 

  210. Pescovitz MD, Greenbaum CJ. Krause-Steinrauf H et al. Rituximab, B-lymphocyte depletion and preservation of beta-cell function. N Engl J Med 2009; 361:2143–2152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Myers CD. Role of B cell antigen processing and presentation in the humoral immune response. FASEB J 1991; 5:2547–2553.

    Article  CAS  PubMed  Google Scholar 

  212. Wallberg M, Green EA. Are B cells a potential target for therapeutic intervention in the classical T-cell-mediated autoimmune disease type 1 diabetes? Inflamm Allergy Drug Targets 2009; 8:130–138.

    Article  CAS  PubMed  Google Scholar 

  213. Eizirik DL, Mandrup-Poulsen T. A choice of death—the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 2001; 44:2115–2133.

    Article  CAS  PubMed  Google Scholar 

  214. Eizirik DL, Kutlu B, Rasschaert J et al. Use of microarray analysis to unveil transcription factor and gene networks contributing to Beta cell dysfunction and apoptosis. Ann N Y Acad Sci 2003; 1005:55–74.

    Article  CAS  PubMed  Google Scholar 

  215. Bendtzen K, Mandrup-Poulsen T, Nerup J et al. Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans. Science 1986; 232:1545–1547.

    Article  CAS  PubMed  Google Scholar 

  216. Amush M, Heitmeier MR, Scarim AL et al. IL-1 produced and released endogenously within human islets inhibits beta cell function. J Clin Invest 1998; 102:516–526.

    Article  Google Scholar 

  217. Thomas HE, Darwichc R, Corbett JA et al. Interleukin-1 plus γ-interferon-induced pancreatic beta-cell dysfunction is mediated by beta-cell nitric oxide production. Diabetes 2002; 51:311–316.

    Article  CAS  PubMed  Google Scholar 

  218. Yoon JW,.Jun HS. Autoimmune destruction of pancreatic beta cells. Am J Ther 2005; 12:580–591.

    Article  PubMed  Google Scholar 

  219. Moriwaki M, Itoh N, Miyagawa J et al. Fas and Fas ligand expression in inflamed islets in pancreas sections of patients with recent-onset Type I diabetes mellitus. Diabetologia 1999; 42:1332–1340.

    Article  CAS  PubMed  Google Scholar 

  220. Skowera A, Ell is RJ, Varela-Calvino R et al. CTLs are targetedto kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. J Clin Invest 2008; 118:3390–3402.

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Planas R, Pujol-Borrell R, Vives-Pi M. Global gene expression changes in type 1 diabetes: insights into autoimmune response in the target organ and in the periphery. Immunol Lett 2010; 133:–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

La Torre, D. (2013). Immunobiology of β-Cell Destruction. In: Ahmad, S.I. (eds) Diabetes. Advances in Experimental Medicine and Biology, vol 771. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5441-0_16

Download citation

Publish with us

Policies and ethics