Skip to main content

Preclinical and Clinical Development of Synthetic iNKT-Cell Glycolipid Agonists as Vaccine Adjuvants

  • Chapter
  • First Online:
Novel Immune Potentiators and Delivery Technologies for Next Generation Vaccines
  • 1204 Accesses

Abstract

NKT cells are a separate lineage of T lymphocytes that co-express receptors for the T-cell and natural killer (NK) cell lineages. Most NKT cells express a semi-invariant T-cell receptor (TCR), Vα14-Jα18 paired with Vβ8.2, Vβ7 or Vβ2 in mice and Vα24-Jα18/Vβ11 in human [1–5]. These cells are referred to as iNKT cells type I NKT cells, or NKT cells, in contrast to type II NKT cells comprising the remaining NKT cells expressing non-invariant TCR [6]. These cells share phenotypic and functional characteristics of T and NK cells. The phenotype of NKT cells expresses a T-cell receptor αβ (TCRαβ), the CD4 or the CD8 co-receptor or neither of them [double-negative (DN) phenotype], the NK1.1 marker, and some Ly49 receptors [7–10]. Emerging evidence indicates that CD4+ and CD4 iNKT cell subsets are functionally distinct [11–13]. The distribution of iNKT cells has been well studied in mice, and less well in human. Murine iNKT cells represent approximately 0.5 % of the T-cell population in the blood and peripheral lymph nodes (LN), and up to 30 % of T cells in the liver, and this population appears to be times less frequent in humans. However, high and low expressers are found in humans and mice [14–17].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bendelac A, Matzinger P, Seder RA, Paul WE, Schwartz RH (1992) Activation events during thymic selection. J Exp Med 175(3):731–742

    Article  PubMed  CAS  Google Scholar 

  2. Bendelac A, Schwartz RH (1991) CD4+ and CD8+ T cells acquire specific lymphokine secretion potentials during thymic maturation. Nature 353(6339):68–71

    Article  PubMed  CAS  Google Scholar 

  3. Dellabona P, Padovan E, Casorati G, Brockhaus M, Lanzavecchia A (1994) An invariant V alpha 24-J alpha Q/V beta 11T cell receptor is expressed in all individuals by clonally expanded CD4−8− T cells. J Exp Med 180(3):1171–1176

    Article  PubMed  CAS  Google Scholar 

  4. Hayakawa K, Lin BT, Hardy RR (1992) Murine thymic CD4+ T cell subsets: a subset (Thy0) that secretes diverse cytokines and overexpresses the V beta 8T cell receptor gene family. J Exp Med 176(1):269–274

    Article  PubMed  CAS  Google Scholar 

  5. Porcelli S, Yockey CE, Brenner MB, Balk SP (1993) Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4−8− alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med 178(1):1–16

    Article  PubMed  CAS  Google Scholar 

  6. Godfrey DI, Kronenberg M (2004) Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 114(10):1379–1388

    PubMed  CAS  Google Scholar 

  7. Bendelac A (1995) Mouse NK1+ T cells. Curr Opin Immunol 7(3):367–374

    Article  PubMed  CAS  Google Scholar 

  8. Bendelac A, Rivera MN, Park SH, Roark JH (1997) Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 15:535–562

    Article  PubMed  CAS  Google Scholar 

  9. MacDonald HR (1995) NK1.1+ T cell receptor-alpha/beta  +  cells: new clues to their origin, specificity, and function. J Exp Med 182(3):633–638

    Article  PubMed  CAS  Google Scholar 

  10. Ortaldo JR, Winkler-Pickett R, Mason AT, Mason LH (1998) The Ly-49 family: regulation of cytotoxicity and cytokine production in murine CD3+ cells. J Immunol 160(3):1158–1165

    PubMed  CAS  Google Scholar 

  11. Gumperz JE, Miyake S, Yamamura T, Brenner MB (2002) Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 195(5):625–636

    Article  PubMed  CAS  Google Scholar 

  12. Lee PT, Benlagha K, Teyton L, Bendelac A (2002) Distinct functional lineages of human V(alpha)24 natural killer T cells. J Exp Med 195(5):637–641

    Article  PubMed  CAS  Google Scholar 

  13. Crowe NY, Coquet JM, Berzins SP et al (2005) Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med 202(9):1279–1288

    Article  PubMed  CAS  Google Scholar 

  14. Yoshimoto T, Bendelac A, Hu-Li J, Paul WE (1995) Defective IgE production by SJL mice is linked to the absence of CD4+, NK1.1+ T cells that promptly produce interleukin 4. Proc Natl Acad Sci USA 92(25):11931–11934

    Article  PubMed  CAS  Google Scholar 

  15. Gombert JM, Herbelin A, Tancrède-Bohin E, Dy M, Carnaud C, Bach JF (1996) Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur J Immunol 26(12):2989–2998

    Article  PubMed  CAS  Google Scholar 

  16. Baxter AG, Kinder SJ, Hammond KJ, Scollay R, Godfrey DI (1997) Association between alphabetaTCR+CD4−CD8− T-cell deficiency and IDDM in NOD/Lt mice. Diabetes 46(4): 572–582

    Article  PubMed  CAS  Google Scholar 

  17. Lee PT, Putnam A, Benlagha K, Teyton L, Gottlieb PA, Bendelac A (2002) Testing the NKT cell hypothesis of human IDDM pathogenesis. J Clin Invest 110(6):793–800

    PubMed  CAS  Google Scholar 

  18. Van Kaer L (2004) Regulation of immune responses by CD1d-restricted natural killer T cells. Immunol Res 30(2):139–153

    Article  PubMed  Google Scholar 

  19. Kawano T, Cui J, Koezuka Y et al (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278(5343):1626–1629

    Article  PubMed  CAS  Google Scholar 

  20. Coquet JM, Chakravarti S, Kyparissoudis K et al (2008) Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4−NK1.1− NKT cell population. Proc Natl Acad Sci USA 105(32):11287–11292

    Article  PubMed  CAS  Google Scholar 

  21. Rogers PR, Matsumoto A, Naidenko O, Kronenberg M, Mikayama T, Kato S (2004) Expansion of human Valpha24+ NKT cells by repeated stimulation with KRN7000. J Immunol Methods 285(2):197–214

    Article  PubMed  CAS  Google Scholar 

  22. Parekh VV, Wilson MT, Olivares-Villagómez D et al (2005) Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest 115(9):2572–2583

    Article  PubMed  CAS  Google Scholar 

  23. Uldrich AP, Crowe NY, Kyparissoudis K et al (2005) NKT cell stimulation with glycolipid antigen in vivo: costimulation-dependent expansion, Bim-dependent contraction, and hyporesponsiveness to further antigenic challenge. J Immunol 175(5):3092–3101

    PubMed  CAS  Google Scholar 

  24. Galli G, Pittoni P, Tonti E et al (2007) Invariant NKT cells sustain specific B cell responses and memory. Proc Natl Acad Sci USA 104(10):3984–3989

    Article  PubMed  CAS  Google Scholar 

  25. Zajonc DM, Cantu C, Mattner J et al (2005) Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor. Nat Immunol 6(8):810–818

    Article  PubMed  CAS  Google Scholar 

  26. Koch M, Stronge VS, Shepherd D et al (2005) The crystal structure of human CD1d with and without alpha-galactosylceramide. Nat Immunol 6(8):819–826

    Article  PubMed  CAS  Google Scholar 

  27. Borg NA, Wun KS, Kjer-Nielsen L et al (2007) CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448(7149):44–49

    Article  PubMed  CAS  Google Scholar 

  28. Kim D, Hung CF, Wu TC, Park YM (2010) DNA vaccine with α-galactosylceramide at prime phase enhances anti-tumor immunity after boosting with antigen-expressing dendritic cells. Vaccine 28(45):7297–7305

    Article  PubMed  CAS  Google Scholar 

  29. Choi YS, Hoory T, Monie A, Wu A, Connolly D, Hung CF (2008) alpha-Galactosylceramide enhances the protective and therapeutic effects of tumor cell based vaccines for ovarian tumors. Vaccine 26(46):5855–5863

    Article  PubMed  CAS  Google Scholar 

  30. Adotevi O, Vingert B, Freyburger L et al (2007) B subunit of Shiga toxin-based vaccines synergize with alpha-galactosylceramide to break tolerance against self antigen and elicit antiviral immunity. J Immunol 179(5):3371–3379

    PubMed  CAS  Google Scholar 

  31. Huang Y, Chen A, Li X et al (2008) Enhancement of HIV DNA vaccine immunogenicity by the NKT cell ligand, alpha-galactosylceramide. Vaccine 26(15):1807–1816

    Article  PubMed  CAS  Google Scholar 

  32. Gonzalez-Aseguinolaza G, Van Kaer L, Bergmann CC et al (2002) Natural killer T cell ligand alpha-galactosylceramide enhances protective immunity induced by malaria vaccines. J Exp Med 195(5):617–624

    Article  PubMed  CAS  Google Scholar 

  33. Devera TS, Aye LM, Lang GA, Joshi SK, Ballard JD, Lang ML (2010) CD1d-dependent B-cell help by NK-like T cells leads to enhanced and sustained production of Bacillus anthracis lethal toxin-neutralizing antibodies. Infect Immun 78(4):1610–1617

    Article  PubMed  CAS  Google Scholar 

  34. Lindqvist M, Persson J, Thörn K, Harandi AM (2009) The mucosal adjuvant effect of alpha-galactosylceramide for induction of protective immunity to sexually transmitted viral infection. J Immunol 182(10):6435–6443

    Article  PubMed  CAS  Google Scholar 

  35. Youn HJ, Ko SY, Lee KA et al (2007) A single intranasal immunization with inactivated influenza virus and alpha-galactosylceramide induces long-term protective immunity without redirecting antigen to the central nervous system. Vaccine 25(28):5189–5198

    Article  PubMed  CAS  Google Scholar 

  36. Miller DS, Finnie J, Bowden TR et al (2011) Preclinical efficacy studies of influenza A haemagglutinin precursor cleavage loop peptides as a potential vaccine. J Gen Virol 92(Pt 5): 1152–1161

    Article  PubMed  CAS  Google Scholar 

  37. Noda K, Kodama S, Umemoto S, Abe N, Hirano T, Suzuki M (2010) Nasal vaccination with P6 outer membrane protein and alpha-galactosylceramide induces nontypeable Haemophilus influenzae-specific protective immunity associated with NKT cell activation and dendritic cell expansion in nasopharynx. Vaccine 28(31):5068–5074

    Article  PubMed  CAS  Google Scholar 

  38. Guillonneau C, Mintern JD, Hubert FX et al (2009) Combined NKT cell activation and influenza virus vaccination boosts memory CTL generation and protective immunity. Proc Natl Acad Sci USA 106(9):3330–3335

    Article  PubMed  CAS  Google Scholar 

  39. Giaccone G, Punt C, Ando Y et al (2002) A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 8(12):3702–3709

    PubMed  CAS  Google Scholar 

  40. Woltman AM, Ter Borg MJ, Binda RS et al (2009) Alpha-galactosylceramide in chronic hepatitis B infection: results from a randomized placebo-controlled Phase I/II trial. Antivir Ther 14(6):809–818

    Article  PubMed  CAS  Google Scholar 

  41. Veldt BJ, van der Vliet HJ, von Blomberg BM et al (2007) Randomized placebo controlled phase I/II trial of alpha-galactosylceramide for the treatment of chronic hepatitis C. J Hepatol 47(3):356–365

    Article  PubMed  CAS  Google Scholar 

  42. Shimizu K, Goto A, Fukui M, Taniguchi M, Fujii S (2007) Tumor cells loaded with alpha-galactosylceramide induce innate NKT and NK cell-dependent resistance to tumor implantation in mice. J Immunol 178(5):2853–2861

    PubMed  CAS  Google Scholar 

  43. Shimizu K, Kurosawa Y, Taniguchi M, Steinman RM, Fujii S (2007) Cross-presentation of glycolipid from tumor cells loaded with alpha-galactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells. J Exp Med 204(11):2641–2653

    Article  PubMed  CAS  Google Scholar 

  44. Shimizu K, Hidaka M, Bickham K et al (2010) Human leukemic cells loaded with alpha-galactosylceramide (alpha-GalCer) activate murine NKT cells in situ. Int J Hematol 92(1): 152–160

    Article  PubMed  CAS  Google Scholar 

  45. Ko HJ, Lee JM, Kim YJ, Kim YS, Lee KA, Kang CY (2009) Immunosuppressive myeloid-derived suppressor cells can be converted into immunogenic APCs with the help of activated NKT cells: an alternative cell-based antitumor vaccine. J Immunol 182(4):1818–1828

    Article  PubMed  CAS  Google Scholar 

  46. Chung Y, Kim BS, Kim YJ et al (2006) CD1d-restricted T cells license B cells to generate long-lasting cytotoxic antitumor immunity in vivo. Cancer Res 66(13):6843–6850

    Article  PubMed  CAS  Google Scholar 

  47. Kim YJ, Ko HJ, Kim YS et al (2008) alpha-Galactosylceramide-loaded, antigen-expressing B cells prime a wide spectrum of antitumor immunity. Int J Cancer 122(12):2774–2783

    Article  PubMed  CAS  Google Scholar 

  48. Fujii S, Goto A, Shimizu K (2009) Antigen mRNA-transfected, allogeneic fibroblasts loaded with NKT-cell ligand confer antitumor immunity. Blood 113(18):4262–4272

    Article  PubMed  CAS  Google Scholar 

  49. Venkataswamy MM, Baena A, Goldberg MF et al (2009) Incorporation of NKT cell-activating glycolipids enhances immunogenicity and vaccine efficacy of Mycobacterium bovis bacillus Calmette-Guerin. J Immunol 183(3):1644–1656

    Article  PubMed  CAS  Google Scholar 

  50. Matsuyoshi H, Hirata S, Yoshitake Y et al (2005) Therapeutic effect of alpha-galactosylceramide-loaded dendritic cells genetically engineered to express SLC/CCL21 along with tumor antigen against peritoneally disseminated tumor cells. Cancer Sci 96(12):889–896

    Article  PubMed  CAS  Google Scholar 

  51. Fukushima S, Hirata S, Motomura Y et al (2009) Multiple antigen-targeted immunotherapy with alpha-galactosylceramide-loaded and genetically engineered dendritic cells derived from embryonic stem cells. J Immunother 32(3):219–231

    Article  PubMed  CAS  Google Scholar 

  52. Fujii S, Shimizu K, Kronenberg M, Steinman RM (2002) Prolonged IFN-gamma-producing NKT response induced with alpha-galactosylceramide-loaded DCs. Nat Immunol 3(9):867–874

    Article  PubMed  CAS  Google Scholar 

  53. Nagaraj S, Ziske C, Strehl J, Messmer D, Sauerbruch T, Schmidt-Wolf IG (2006) Dendritic cells pulsed with alpha-galactosylceramide induce anti-tumor immunity against pancreatic cancer in vivo. Int Immunol 18(8):1279–1283

    Article  PubMed  CAS  Google Scholar 

  54. Enomoto N, Nagata T, Suda T et al (2007) Immunization with dendritic cells loaded with alpha-galactosylceramide at priming phase, but not at boosting phase, enhances cytotoxic T lymphocyte activity against infection by intracellular bacteria. FEMS Immunol Med Microbiol 51(2):350–362

    Article  PubMed  CAS  Google Scholar 

  55. Shimizu K, Fujii S (2009) DC therapy induces long-term NK reactivity to tumors via host DC. Eur J Immunol 39(2):457–468

    Article  PubMed  CAS  Google Scholar 

  56. Ishikawa A, Motohashi S, Ishikawa E et al (2005) A phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 11(5):1910–1917

    Article  PubMed  CAS  Google Scholar 

  57. Chang D, Osman K, Connolly J et al (2005) Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 201(9):1503–1517

    Article  PubMed  CAS  Google Scholar 

  58. Motohashi S, Nagato K, Kunii N et al (2009) A phase I-II study of alpha-galactosylceramide-pulsed IL-2/GM-CSF-cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer. J Immunol 182(4):2492–2501

    Article  PubMed  CAS  Google Scholar 

  59. Uchida T, Horiguchi S, Tanaka Y et al (2008) Phase I study of alpha-galactosylceramide-pulsed antigen presenting cells administration to the nasal submucosa in unresectable or recurrent head and neck cancer. Cancer Immunol Immunother 57(3):337–345

    Article  PubMed  CAS  Google Scholar 

  60. Silk JD, Hermans IF, Gileadi U et al (2004) Utilizing the adjuvant properties of CD1d-dependent NK T cells in T cell-mediated immunotherapy. J Clin Invest 114(12):1800–1811

    PubMed  CAS  Google Scholar 

  61. Hermans IF, Silk JD, Gileadi U et al (2007) Dendritic cell function can be modulated through cooperative actions of TLR ligands and invariant NKT cells. J Immunol 178(5):2721–2729

    PubMed  CAS  Google Scholar 

  62. Naarding MA, Falkowska E, Xiao H, Dragic T (2011) Hepatitis C virus soluble E2 in combination with QuilA and CpG ODN induces neutralizing antibodies in mice. Vaccine 29(16):2910–2917

    Article  PubMed  CAS  Google Scholar 

  63. Petersen TR, Sika-Paotonu D, Knight DA et al (2010) Potent anti-tumor responses to immunization with dendritic cells loaded with tumor tissue and an NKT cell ligand. Immunol Cell Biol 88(5):596–604

    Article  PubMed  CAS  Google Scholar 

  64. Courtney AN, Nehete PN, Nehete BP, Thapa P, Zhou D, Sastry KJ (2009) Alpha-galacto-sylceramide is an effective mucosal adjuvant for repeated intranasal or oral delivery of HIV peptide antigens. Vaccine 27(25–26):3335–3341

    Article  PubMed  CAS  Google Scholar 

  65. Schmieg J, Yang G, Franck RW, Tsuji M (2003) Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-galactosylceramide. J Exp Med 198(11):1631–1641

    Article  PubMed  CAS  Google Scholar 

  66. Schmieg J, Yang G, Franck RW, Tsuji M (2010) A multifactorial mechanism in the superior antimalarial activity of alpha-C-GalCer. J Biomed Biotechnol 2010:283612

    Article  PubMed  Google Scholar 

  67. Fujii S, Shimizu K, Hemmi H et al (2006) Glycolipid alpha-C-galactosylceramide is a distinct inducer of dendritic cell function during innate and adaptive immune responses of mice. Proc Natl Acad Sci USA 103(30):11252–11257

    Article  PubMed  CAS  Google Scholar 

  68. Kopecky-Bromberg SA, Fraser KA, Pica N et al (2009) Alpha-C-galactosylceramide as an adjuvant for a live attenuated influenza virus vaccine. Vaccine 27(28):3766–3774

    Article  PubMed  CAS  Google Scholar 

  69. Li X, Chen G, Garcia-Navarro R, Franck RW, Tsuji M (2009) Identification of C-glycoside analogues that display a potent biological activity against murine and human invariant natural killer T cells. Immunology 127(2):216–225

    Article  PubMed  CAS  Google Scholar 

  70. Reddy BG, Silk JD, Salio M et al (2009) Nonglycosidic agonists of invariant NKT cells for use as vaccine adjuvants. ChemMedChem 4(2):171–175

    Article  PubMed  CAS  Google Scholar 

  71. Silk JD, Salio M, Reddy BG et al (2008) Cutting edge: nonglycosidic CD1d lipid ligands activate human and murine invariant NKT cells. J Immunol 180(10):6452–6456

    PubMed  CAS  Google Scholar 

  72. Lee YS, Lee KA, Lee JY et al (2011) An α-GalCer analogue with branched acyl chain enhances protective immune responses in a nasal influenza vaccine. Vaccine 29(3):417–425

    Article  PubMed  CAS  Google Scholar 

  73. Li X, Fujio M, Imamura M et al (2010) Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc Natl Acad Sci USA 107(29):13010–13015

    Article  PubMed  CAS  Google Scholar 

  74. Padte NN, Li X, Tsuji M, Vasan S (2011) Clinical development of a novel CD1d-binding NKT cell ligand as a vaccine adjuvant. Clin Immunol 140(2):142–151

    Article  PubMed  CAS  Google Scholar 

  75. Liu Y, Goff RD, Zhou D et al (2006) A modified alpha-galactosyl ceramide for staining and stimulating natural killer T cells. J Immunol Methods 312(1–2):34–39

    Article  PubMed  CAS  Google Scholar 

  76. Wilson MT, Johansson C, Olivares-Villagómez D et al (2003) The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc Natl Acad Sci USA 100(19):10913–10918

    Article  PubMed  CAS  Google Scholar 

  77. Crowe NY, Uldrich AP, Kyparissoudis K et al (2003) Glycolipid antigen drives rapid expansion and sustained cytokine production by NK T cells. J Immunol 171(8):4020–4027

    PubMed  CAS  Google Scholar 

  78. Harada M, Seino K, Wakao H et al (2004) Down-regulation of the invariant Valpha14 antigen receptor in NKT cells upon activation. Int Immunol 16(2):241–247

    Article  PubMed  CAS  Google Scholar 

  79. Ikarashi Y, Iizuka A, Koshidaka Y et al (2005) Phenotypical and functional alterations during the expansion phase of invariant Valpha14 natural killer T (Valpha14i NKT) cells in mice primed with alpha-galactosylceramide. Immunology 116(1):30–37

    Article  PubMed  CAS  Google Scholar 

  80. Veerapen N, Reddington F, Bricard G, Porcelli SA, Besra GS (2010) Synthesis and biological activity of alpha-l-fucosyl ceramides, analogues of the potent agonist, alpha-d-galactosyl ceramide KRN7000. Bioorg Med Chem Lett 20(11):3223–3226

    Article  PubMed  CAS  Google Scholar 

  81. Lalazar G, Preston S, Zigmond E, Ben Yáacov A, Ilan Y (2006) Glycolipids as immune modulatory tools. Mini Rev Med Chem 6(11):1249–1253

    Article  PubMed  CAS  Google Scholar 

  82. O’Konek JJ, Illarionov P, Khursigara DS et al (2011) Mouse and human iNKT cell agonist β-mannosylceramide reveals a distinct mechanism of tumor immunity. J Clin Invest 121(2):683–694

    Article  PubMed  Google Scholar 

  83. Aspeslagh S, Li Y, Yu ED et al (2011) Galactose-modified iNKT cell agonists stabilized by an induced fit of CD1d prevent tumour metastasis. EMBO J 30(11):2294–2305

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josianne Nitcheu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nitcheu, J., Crabe, S., Davies, G., Serra, V. (2013). Preclinical and Clinical Development of Synthetic iNKT-Cell Glycolipid Agonists as Vaccine Adjuvants. In: Singh, M. (eds) Novel Immune Potentiators and Delivery Technologies for Next Generation Vaccines. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5380-2_2

Download citation

Publish with us

Policies and ethics