Skip to main content

A Tak1/p38 Signaling Axis Regulates Runx2 Activity and Osteoblast Functions

  • Conference paper
  • First Online:
Osteoimmunology

Abstract

Mitogen-activated protein kinases (MAPKs) are evolutionarily ancient signal transduction pathways well-studied as mediators of a variety of immunological responses. Despite the involvement of MAPKs in signal transduction downstream of various growth factors relevant to osteoblasts, the exact role of MAPKs in osteoblasts remains poorly understood. We have examined in particular the role of an MAP3K, TGFβ-activated kinase 1 (TAK1/MAP3K7), finding that mice with a conditional deletion of Tak1 in ostoeblasts display severe osteopenia and stigmata of human cleidocranial dysplasia, a skeletal disorder caused by haploinsufficency for the master regulator of osteoblast differentiation, Runx2. Examination of pathways downstream of TAK1 demonstrates that p38α and p38β mediate phosphorylation and activation of Runx2 by promoting the interaction between Runx2 and cofactor CBP. Thus, the p38 pathway is a critical regulator of Runx2 activity, connecting growth factor signaling to osteoblast differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771

    Article  PubMed  CAS  Google Scholar 

  2. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    Article  PubMed  CAS  Google Scholar 

  3. Ge C, Xiao G, Jiang D, Franceschi RT (2007) Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol 176:709–718

    Article  PubMed  CAS  Google Scholar 

  4. Han J, Lee JD, Bibbs L, Ulevitch RJ (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265:808–811

    Article  PubMed  CAS  Google Scholar 

  5. Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369:156–160

    Article  PubMed  CAS  Google Scholar 

  6. Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76:1025–1037

    Article  PubMed  CAS  Google Scholar 

  7. Shim JH, Greenblatt MB, Xie M, Schneider MD, Zou W, Zhai B, Gygi S, Glimcher LH (2009) TAK1 is an essential regulator of BMP signalling in cartilage. EMBO J 28:2028–2041

    Article  PubMed  CAS  Google Scholar 

  8. Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS, Lee KY, Bussey C, Steckel M, Tanaka N, Yamada G, Akira S, Matsumoto K, Ghosh S (2005) TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 19:2668–2681

    Article  PubMed  CAS  Google Scholar 

  9. Lee J, Mira-Arbibe L, Ulevitch RJ (2000) TAK1 regulates multiple protein kinase cascades activated by bacterial lipopolysaccharide. J Leukoc Biol 68:909–915

    PubMed  CAS  Google Scholar 

  10. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412:346–351

    Article  PubMed  CAS  Google Scholar 

  11. Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O, Akira S (2005) Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6:1087–1095

    Article  PubMed  CAS  Google Scholar 

  12. Greenblatt MB, Shim JH, Zou W, Sitara D, Schweitzer M, Hu D, Lotinun S, Sano Y, Baron R, Park JM, Arthur S, Xie M, Schneider MD, Zhai B, Gygi S, Davis R, Glimcher LH (2010) The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest 120:2457–2473

    Article  PubMed  CAS  Google Scholar 

  13. Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JH, Owen MJ, Mertelsmann R, Zabel BU, Olsen BR (1997) Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89:773–779

    Article  PubMed  CAS  Google Scholar 

  14. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    Article  PubMed  CAS  Google Scholar 

  15. Shirakabe K, Yamaguchi K, Shibuya H, Irie K, Matsuda S, Moriguchi T, Gotoh Y, Matsumoto K, Nishida E (1997) TAK1 mediates the ceramide signaling to stress-activated protein kinase/c-Jun N-terminal kinase. J Biol Chem 272:8141–8144

    Article  PubMed  CAS  Google Scholar 

  16. Brancho D, Tanaka N, Jaeschke A, Ventura JJ, Kelkar N, Tanaka Y, Kyuuma M, Takeshita T, Flavell RA, Davis RJ (2003) Mechanism of p38 MAP kinase activation in vivo. Genes Dev 17:1969–1978

    Article  PubMed  CAS  Google Scholar 

  17. Zarubin T, Han J (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res 15:11–18

    Article  PubMed  CAS  Google Scholar 

  18. Enslen H, Raingeaud J, Davis RJ (1998) Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6. J Biol Chem 273:1741–1748

    Article  PubMed  CAS  Google Scholar 

  19. Beardmore VA, Hinton HJ, Eftychi C, Apostolaki M, Armaka M, Darragh J, McIlrath J, Carr JM, Armit LJ, Clacher C, Malone L, Kollias G, Arthur JS (2005) Generation and characterization of p38beta (MAPK11) gene-targeted mice. Mol Cell Biol 25:10454–10464

    Article  PubMed  CAS  Google Scholar 

  20. Ge C, Xiao G, Jiang D, Yang Q, Hatch NE, Roca H, Franceschi RT (2009) Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J Biol Chem 284:32533–32543

    Article  PubMed  CAS  Google Scholar 

  21. Tang JL, Hou HA, Chen CY, Liu CY, Chou WC, Tseng MH, Huang CF, Lee FY, Liu MC, Yao M, Huang SY, Ko BS, Hsu SC, Wu SJ, Tsay W, Chen YC, Lin LI, Tien HF (2009) AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood 114:5352–5361

    Article  PubMed  CAS  Google Scholar 

  22. Watanabe-Okochi N, Kitaura J, Ono R, Harada H, Harada Y, Komeno Y, Nakajima H, Nosaka T, Inaba T, Kitamura T (2008) AML1 mutations induced MDS and MDS/AML in a mouse BMT model. Blood 111:4297–4308

    Article  PubMed  CAS  Google Scholar 

  23. Rudra D, Egawa T, Chong MM, Treuting P, Littman DR, Rudensky AY (2009) Runx-CBFbeta complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nat Immunol 10:1170–1177

    Article  PubMed  CAS  Google Scholar 

  24. Kitoh A, Ono M, Naoe Y, Ohkura N, Yamaguchi T, Yaguchi H, Kitabayashi I, Tsukada T, Nomura T, Miyachi Y, Taniuchi I, Sakaguchi S (2009) Indispensable role of the Runx1-Cbfbeta transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells. Immunity 31:609–620

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of our collaborators in this study: Drs. Roland Baron, Jin Mo Park, Simon Arthur, Min Xie, Michael D. Schneider, Bo Zhai, Steven Gygi, Roger Davis, and Dorothy Hu, Sutada Lotinun, Yasuyo Sano, and Judy Reilly. This work was funded by NIH grant HD055601 (LHG).

LHG is a member of the board of directors of and holds equity in Bristol-Myers Squibb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie H. Glimcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer New York

About this paper

Cite this paper

Greenblatt, M.B., Shim, JH., Zou, W., Glimcher, L.H. (2013). A Tak1/p38 Signaling Axis Regulates Runx2 Activity and Osteoblast Functions. In: Choi, Y. (eds) Osteoimmunology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5366-6_6

Download citation

Publish with us

Policies and ethics