Skip to main content

Protein Misfolding Cyclic Amplification

  • Chapter
  • First Online:
Prions and Diseases

Abstract

Prion diseases are caused by a conformational conversion of the cellular prion protein (PrPC) to a pathological conformer (PrPSc). The “prion-only” hypothesis suggests that PrPSc is the infectious agent that propagates the disease acting as a template for the conversion of PrPC. In 2001, we developed a novel in vitro technique, called Protein misfolding cyclic amplification (PMCA), which mimics this pathological process in an accelerated way. Thereby, minimal amount of PrPSc can be amplified to several millions fold, providing an important tool for diagnosis and investigation of prion biology, and the molecular mechanism of prion conversion. PMCA also offers a great platform for the study and amplification of the protein misfolding process associated with other neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abid K, Morales R, Soto C (2010) Cellular factors implicated in prion replication. FEBS Lett 584:2409–2414

    Article  PubMed  CAS  Google Scholar 

  • Aguzzi A (2000) Prion diseases, blood and the immune system: concerns and reality. Haematologica 85:3–10

    PubMed  CAS  Google Scholar 

  • Atarashi R et al (2007) Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nat Methods 4:645–650

    Article  PubMed  CAS  Google Scholar 

  • Atarashi R et al (2011) Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking induced conversion. Nat Med 17:175–178

    Article  PubMed  CAS  Google Scholar 

  • Barria MA, Mukherjee A, Gonzalez-Romero D, Morales R, Soto C (2009) De novo generation of infectious prions in vitro produces a new disease phenotype. PLoS Pathog 5(5):e1000421

    Article  PubMed  Google Scholar 

  • Barria MA, Telling GC, Gambetti P, Mastrianni JA, Soto C (2011) Generation of a New Form of Human PrPSc in Vitro by Interspecies Transmission from Cervid Prions. J Biol Chem 286:7490–7495

    Article  PubMed  CAS  Google Scholar 

  • Bessen RA et al (1995) Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature 375:698–700

    Article  PubMed  CAS  Google Scholar 

  • Bieschke J et al (2004) Autocatalytic self-propagation of misfolded prion protein. Proc Natl Acad Sci USA 101:12207–12211

    Article  PubMed  CAS  Google Scholar 

  • Bishop MT et al (2006) Predicting susceptibility and incubation time of human-to-human transmission of vCJD. Lancet Neurol 5:393–398

    Article  PubMed  CAS  Google Scholar 

  • Brown P et al (2000) Iatrogenic Creutzfeldt-Jakob disease at the millennium. Neurology 55:1075–1081

    Article  PubMed  CAS  Google Scholar 

  • Brown P, Cervenakova L, Diringer H (2001) Blood infectivity and the prospects for a diagnostic screening test in Creutzfeldt-Jakob disease. J Lab Clin Med 137:5–13

    Article  PubMed  CAS  Google Scholar 

  • Castilla J, Saá P, Hetz C, Soto C (2005a) In vitro generation of infectious scrapie prions. Cell 121:195–206

    Article  PubMed  CAS  Google Scholar 

  • Castilla J, Saa P, Soto C (2005b) Detection of prions in blood. Nat Med 11:982–985

    PubMed  CAS  Google Scholar 

  • Castilla J et al (2008a) Cell-free propagation of prion strains. EMBO J 27:2557–2566

    Article  PubMed  CAS  Google Scholar 

  • Castilla J, Gonzalez-Romero D, Saá P, Morales R, De Castro J, Soto C (2008b) Crossing the species barrier by PrPSc replication in vitro generates unique infectious prion. Cell 134:575–768

    Article  Google Scholar 

  • Chen B, Morales R, Barria MA, Soto C (2010) Estimating prion concentration in fluids and tissues by quantitative PMCA. Nat Methods 7:519–520

    Article  PubMed  CAS  Google Scholar 

  • Clavaguera F et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913

    Article  PubMed  CAS  Google Scholar 

  • Deleault NR, Lucassen RW, Supattapone S (2003) RNA molecules stimulate prion protein conversion. Nature 425:717–720

    Article  PubMed  CAS  Google Scholar 

  • Deleault NR, Harris BT, Rees JR, Supattapone S (2007) Formation of native prions from minimal components in vitro. Proc Natl Acad Sci USA 104:9741–9746

    Article  PubMed  CAS  Google Scholar 

  • Ding N et al (2012) Inactivation of template-directed misfolding of infectious prion protein by ozone. Appl Environ Microbiol 78(3):613–620

    Article  PubMed  CAS  Google Scholar 

  • Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284:12845–12852

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Montalban N et al (2011) Highly efficient protein misfolding cyclic amplification. PLoS Pathog 7(2):e1001277

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Romero D, Barria MA, Leon P, Morales R, Soto C (2008) Detection of infectious prions in urine. FEBS Lett 582:3161–3166

    Article  PubMed  CAS  Google Scholar 

  • Green KM et al (2008) Accelerated high fidelity prion amplification within and across prion species barriers. PLoS Pathog 4:e1000139

    Article  PubMed  Google Scholar 

  • Haley NJ, Seelig DM, Zabel MD, Telling GC, Hoover EA (2009) Detection of CWD prions in urine and saliva of deer by transgenic mouse bioassay. PLoS One 4:e4848

    Article  PubMed  Google Scholar 

  • Hill AF, Collinge J (2004) Prion strains and species barriers. Contrib Microbiol 11:33–49

    Article  PubMed  Google Scholar 

  • Jones M et al (2009) Human platelets as a substrate source for the in vitro amplification of the abnormal prion protein (PrP) associated with variant Creutzfeldt-Jakob disease. Transfusion 49:376–384

    Article  PubMed  CAS  Google Scholar 

  • Krebs MR, Morozova-Roche LA, Daniel K, Robinson CV, Dobson CM (2004) Observation of sequence specificity in the seeding of protein amyloid fibrils. Protein Sci 13:1933–1938

    Article  PubMed  CAS  Google Scholar 

  • Llewelyn CA et al (2004) Possible transmission of variant Creutzfeldt-Jakob disease by blood transfusion. Lancet 363:417–421

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Luehmann M et al (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784

    Article  PubMed  CAS  Google Scholar 

  • Meyerett C et al (2008) In vitro strain adaptation of CWD prions by serial protein misfolding cyclic amplification. Virology 382:267–276

    Article  PubMed  CAS  Google Scholar 

  • Moore RA, Vorberg I, Priola SA (2005) Species barrier in prion disease-brief review. Arch Virol Suppl 19:187–202

    PubMed  Google Scholar 

  • Morales R, Abid K, Soto C (2007) The prion strain phenomenon: molecular basis and unprecedented features. Biochim Biophys Acta 1772:681–691

    Article  PubMed  CAS  Google Scholar 

  • Morales R et al (2008) Reduction of prion infectivity in packed red blood cells. Biochem Biophys Res Commun 377:373–378

    Article  PubMed  CAS  Google Scholar 

  • Morales R, Duran-Aniotz C, Castilla J, Estrada LD, Soto C (2011) De novo induction of amyloid-β deposition in vivo. Mol Psychiatry. doi:10.1038/mp. 2011.120

  • Mougenot AL et al (2012) Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol Aging 33(9):2225–2228

    Article  PubMed  CAS  Google Scholar 

  • Munch C, O’Brien J, Bertolotti A (2011) Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci USA 108:3548–3553

    Article  PubMed  CAS  Google Scholar 

  • Operalski EA, Mosley JW (1995) Pooled plasma derivatives and Creutzfeldt-Jakob disease. Lancet 346:1224

    Google Scholar 

  • Pritzkow S et al (2011) Quantitative detection and biological propagation of scrapie seeding activity in vitro facilitate use of prions as model pathogens for disinfection. PLoS One 6:e20384

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383

    Article  PubMed  CAS  Google Scholar 

  • Ren PH et al (2009) Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 11:219–225

    Article  PubMed  CAS  Google Scholar 

  • Saa P, Castilla J, Soto C (2006a) Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification. J Biol Chem 281:35245–35252

    Article  PubMed  CAS  Google Scholar 

  • Saa P, Castilla J, Soto C (2006b) Presymptomatic detection of prions in blood. Science 313:92–94

    Article  PubMed  CAS  Google Scholar 

  • Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411:810–813

    Article  PubMed  CAS  Google Scholar 

  • Safar J et al (1998) Eight prion strains have PrP(Sc) molecules with different conformations. Nat Med 4:1157–1165

    Article  PubMed  CAS  Google Scholar 

  • Saunders SE, Bartz JC, Vercauteren KC, Bartelt-Hunt SL (2011) An enzymatic treatment of soil-bound prions effectively inhibits replication. Appl Environ Microbiol 77:4313–4317

    Article  PubMed  CAS  Google Scholar 

  • Shikiya RA, Bartz JC (2011) In vitro generation of high-titer prions. J Virol 85:13439–13442

    Article  PubMed  CAS  Google Scholar 

  • Sigurdson CJ, Aguzzi A (2006) Cronic wasting disease. Biochim Biophys Acta 1772:610–618

    PubMed  Google Scholar 

  • Soto C, Saborio GP, Anderes L (2002) Cyclic amplification of protein misfolding: application to prion-related disorders and beyond. Trends Neurosci 25:390–394

    Article  PubMed  CAS  Google Scholar 

  • Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4:49–60

    Article  PubMed  CAS  Google Scholar 

  • Soto C (2004) Diagnosing prion diseases: needs, challenges and hopes. Nat Rev Microbiol 2:809–819

    Article  PubMed  CAS  Google Scholar 

  • Soto C et al (2005) Pre-symptomatic detection of prions by cyclic amplification of protein misfolding. FEBS Lett 579:638–642

    Article  PubMed  CAS  Google Scholar 

  • Soto C, Estrada L, Castilla J (2006) Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends Biochem Sci 31:150–155

    Article  PubMed  CAS  Google Scholar 

  • Soto C (2011) Prion hypothesis: The end of the controversy? Trends Biochem Sci 36:151–158

    Article  PubMed  CAS  Google Scholar 

  • Tattum MH et al (2010) Discrimination between prion-infected and normal blood samples by protein misfolding cyclic amplification. Transfusion 50:996–1002

    Article  PubMed  CAS  Google Scholar 

  • Telling GC et al (1996) Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274:2079–2082

    Article  PubMed  CAS  Google Scholar 

  • Thorne L, Terry LA (2008) In vitro amplification of PrPSc derived from the brain and blood of sheep infected with scrapie. J Gen Virol 39:3177–3184

    Article  Google Scholar 

  • Wadsworth JD et al (2001) Tissue distribution of protease resistant prion protein in variant Creutzfeldt-Jakob disease using a highly sensitive immunoblotting assay. Lancet 358:171–180

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Wang X, Yuan CG, Ma J (2010) Generating a prion with bacterially expressed recombinant prion protein. Science 327:1132–1135

    Article  PubMed  CAS  Google Scholar 

  • Weber P et al (2007) Generation of genuine prion infectivity by serial PMCA. Vet Microbiol 123:346–357

    Article  PubMed  CAS  Google Scholar 

  • Will RG et al (1996) A new variant of Creutzfeldt Jakob disease in the UK. Lancet 347:921–925

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moda, F., Pritzkow, S., Soto, C. (2013). Protein Misfolding Cyclic Amplification. In: Zou, WQ., Gambetti, P. (eds) Prions and Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5305-5_6

Download citation

Publish with us

Policies and ethics