Skip to main content

Novel Antigenic Targets for Immunotherapy in Myeloma

  • Chapter
  • First Online:
Advances in Biology and Therapy of Multiple Myeloma
  • 568 Accesses

Abstract

Multiple myeloma (MM) is the second most commonly diagnosed hematologic malignancy after non-Hodgkin lymphoma and remains incurable in most of patients despite advances in high-dose chemotherapy, stem cell transplantation, and the development of novel therapeutics. Strategies for posttransplantation immunomodulation are desirable for eradication of remaining tumor cells. However, active immunotherapies using idiotype protein vaccines have been explored in MM patients, and the results have been disappointing. This chapter will concentrate on novel antigenic targets that are being targeted or can be targeted for immunotherapies to treat patients with MM. I will review the results of targeting idiotype proteins in preclinical and clinical studies of immunotherapies in MM conducted in the past 14 years. Moreover, the potentials of novel antigenic targets for myeloma immunotherapies, either through active immunization or vaccination or by adoptive immunotherapy using antigen-specific monoclonal antibodies, will be discussed in detail. With a better understanding of the immune system and tumor microenvironment in myeloma patients, as well as identification and development of novel targets and methods for immune targeting, there is a realistic hope that immunotherapies will soon be a part of conventional treatment modalities in MM and help control or even cure the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kyle RA, Vincent Rajkumar S (2006) Treatment of multiple myeloma: an emphasis on new developments. Ann Med 38:111–115

    Article  PubMed  CAS  Google Scholar 

  2. Anderson KC (2007) Targeted therapy of multiple myeloma based upon tumor-microenvironmental interactions. Exp Hematol 35:155–162

    Article  PubMed  CAS  Google Scholar 

  3. Yi Q (2009) Novel immunotherapies. Cancer J 15:502–510

    Article  PubMed  CAS  Google Scholar 

  4. Tricot G, Vesole DH, Jagannath S, Hilton J, Munshi N, Barlogie B (1996) Graft-versus-myeloma effect: proof of principle. Blood 87:1196–1198

    PubMed  CAS  Google Scholar 

  5. Verdonck LF, Lokhorst HM, Dekker AW, Nieuwenhuis HK, Petersen EJ (1996) Graft-versus-myeloma effect in two cases. Lancet 347:800–801

    Article  PubMed  CAS  Google Scholar 

  6. Lokhorst HM, Wu K, Verdonck LF, Laterveer LL, van de Donk NW, van Oers MH, Cornelissen JJ, Schattenberg AV (2004) The occurrence of graft-versus-host disease is the major predictive factor for response to donor lymphocyte infusions in multiple myeloma. Blood 103:4362–4364

    Article  PubMed  CAS  Google Scholar 

  7. Campbell MJ, Esserman L, Byars NE, Allison AC, Levy R (1990) Idiotype vaccination against murine B cell lymphoma. Humoral and cellular requirements for the full expression of antitumor immunity. J Immunol 145:1029–1036

    PubMed  CAS  Google Scholar 

  8. Kaminski MS, Kitamura K, Maloney DG, Levy R (1987) Idiotype vaccination against murine B cell lymphoma. Inhibition of tumor immunity by free idiotype protein. J Immunol 138:1289–1296

    PubMed  CAS  Google Scholar 

  9. King CA, Spellerberg MB, Zhu D, Rice J, Sahota SS, Thompsett AR, Hamblin TJ, Radl J, Stevenson FK (1998) DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat Med 4:1281–1286

    Article  PubMed  CAS  Google Scholar 

  10. Sirisinha S, Eisen HN (1971) Autoimmune-like antibodies to the ligand-binding sites of myeloma proteins. Proc Natl Acad Sci USA 68:3130–3135

    Article  PubMed  CAS  Google Scholar 

  11. Wang S, Hong S, Wezeman M, Qian J, Yang J, Yi Q (2007) Dendritic cell vaccine but not idiotype-KLH protein vaccine primes therapeutic tumor-specific immunity against multiple myeloma. Front Biosci 12:3566–3575

    Article  PubMed  CAS  Google Scholar 

  12. Holm G, Bergenbrant S, Lefvert AK, Yi Q, Osterborg A, Mellstedt H (1991) Anti-idiotypic immunity as a potential regulator in myeloma and related diseases. Ann N Y Acad Sci 636:178–183

    Article  PubMed  CAS  Google Scholar 

  13. Osterborg A, Yi Q, Bergenbrant S, Holm G, Lefvert AK, Mellstedt H (1995) Idiotype-specific T cells in multiple myeloma stage I: an evaluation by four different functional tests. Br J Haematol 89:110–116

    PubMed  CAS  Google Scholar 

  14. Yi Q, Bergenbrant S, Osterborg A, Osby E, Ostman R, Bjorkholm M, Holm G, Lefvert AK (1993) T-cell stimulation induced by idiotypes on monoclonal immunoglobulins in patients with monoclonal gammopathies. Scand J Immunol 38:529–534

    Article  PubMed  CAS  Google Scholar 

  15. Yi Q, Osterborg A, Bergenbrant S, Mellstedt H, Holm G, Lefvert AK (1995) Idiotype-reactive T-cell subsets and tumor load in monoclonal gammopathies. Blood 86:3043–3049

    PubMed  CAS  Google Scholar 

  16. Fagerberg J, Yi Q, Gigliotti D, Harmenberg U, Ruden U, Persson B, Osterborg A, Mellstedt H (1999) T-cell-epitope mapping of the idiotypic monoclonal IgG heavy and light chains in multiple myeloma. Int J Cancer 80:671–680

    Article  PubMed  CAS  Google Scholar 

  17. Hansson L, Rabbani H, Fagerberg J, Osterborg A, Mellstedt H (2003) T-cell epitopes within the complementarity-determining and framework regions of the tumor-derived immunoglobulin heavy chain in multiple myeloma. Blood 101:4930–4936

    Article  PubMed  CAS  Google Scholar 

  18. Szea DM, Brown RD, Yang S, Gibson J, Ho J, de St Groth BF, Basten A, Joshua DE (2003) Prediction of high affinity class I-restricted multiple myeloma idiotype peptide epitopes. Leuk Lymphoma 44:1557–1568

    Article  PubMed  CAS  Google Scholar 

  19. Wen YJ, Ling M, Bailey-Wood R, Lim SH (1998) Idiotypic protein-pulsed adherent peripheral blood mononuclear cell-derived dendritic cells prime immune system in multiple myeloma. Clin Cancer Res 4:957–962

    PubMed  CAS  Google Scholar 

  20. Dabadghao S, Bergenbrant S, Anton D, He W, Holm G, Yi Q (1998) Anti-idiotypic T-cell activation in multiple myeloma induced by M-component fragments presented by dendritic cells. Br J Haematol 100:647–654

    Article  PubMed  CAS  Google Scholar 

  21. Yi Q, Eriksson I, He W, Holm G, Mellstedt H, Osterborg A (1997) Idiotype-specific T lymphocytes in monoclonal gammopathies: evidence for the presence of CD4+ and CD8+ subsets. Br J Haematol 96:338–345

    Article  PubMed  CAS  Google Scholar 

  22. Romagnani S (1991) Human TH1 and TH2 subsets: doubt no more. Immunol Today 12:256–257

    Article  PubMed  CAS  Google Scholar 

  23. Romagnani S (1992) Human TH1 and TH2 subsets: regulation of differentiation and role in protection and immunopathology. Int Arch Allergy Immunol 98:279–285

    Article  PubMed  CAS  Google Scholar 

  24. Walchner M, Wick M (1997) Elevation of CD8+ CD11b  +  Leu-8- T cells is associated with the humoral immunodeficiency in myeloma patients. Clin Exp Immunol 109:310–316

    Article  PubMed  CAS  Google Scholar 

  25. Salgame P, Abrams JS, Clayberger C, Goldstein H, Convit J, Modlin RL, Bloom BR (1991) Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science 254:279–282

    Article  PubMed  CAS  Google Scholar 

  26. Hong S, Qian J, Yang J, Li H, Kwak LW, Yi Q (2008) Roles of idiotype-specific t cells in myeloma cell growth and survival: Th1 and CTL cells are tumoricidal while Th2 cells promote tumor growth. Cancer Res 68:8456–8464

    Article  PubMed  CAS  Google Scholar 

  27. Wen YJ, Barlogie B, Yi Q (2001) Idiotype-specific cytotoxic T lymphocytes in multiple myeloma: evidence for their capacity to lyse autologous primary tumor cells. Blood 97:1750–1755

    Article  PubMed  CAS  Google Scholar 

  28. Bergenbrant S, Yi Q, Osterborg A, Bjorkholm M, Osby E, Mellstedt H, Lefvert AK, Holm G (1996) Modulation of anti-idiotypic immune response by immunization with the autologous M-component protein in multiple myeloma patients. Br J Haematol 92:840–846

    Article  PubMed  CAS  Google Scholar 

  29. Osterborg A, Yi Q, Henriksson L, Fagerberg J, Bergenbrant S, Jeddi-Tehrani M, Ruden U, Lefvert AK, Holm G, Mellstedt H (1998) Idiotype immunization combined with granulocyte-macrophage colony-stimulating factor in myeloma patients induced type I, major histocompatibility complex-restricted, CD8- and CD4-specific T-cell responses. Blood 91:2459–2466

    PubMed  CAS  Google Scholar 

  30. Massaia M, Borrione P, Battaglio S, Mariani S, Beggiato E, Napoli P, Voena C, Bianchi A, Coscia M, Besostri B, Peola S, Stiefel T, Even J, Novero D, Boccadoro M, Pileri A (1999) Idiotype vaccination in human myeloma: generation of tumor-specific immune responses after high-dose chemotherapy. Blood 94:673–683

    PubMed  CAS  Google Scholar 

  31. Coscia M, Mariani S, Battaglio S, Di Bello C, Fiore F, Foglietta M, Pileri A, Boccadoro M, Massaia M (2004) Long-term follow-up of idiotype vaccination in human myeloma as a maintenance therapy after high-dose chemotherapy. Leukemia 18:139–145

    Article  PubMed  CAS  Google Scholar 

  32. Lim SH, Bailey-Wood R (1999) Idiotypic protein-pulsed dendritic cell vaccination in multiple myeloma. Int J Cancer 83:215–222

    Article  PubMed  CAS  Google Scholar 

  33. Reichardt VL, Okada CY, Liso A, Benike CJ, Stockerl-Goldstein KE, Engleman EG, Blume KG, Levy R (1999) Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma—a feasibility study. Blood 93:2411–2419

    PubMed  CAS  Google Scholar 

  34. Liso A, Stockerl-Goldstein KE, Auffermann-Gretzinger S, Benike CJ, Reichardt V, van Beckhoven A, Rajapaksa R, Engleman EG, Blume KG, Levy R (2000) Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol Blood Marrow Transplant 6:621–627

    Article  PubMed  CAS  Google Scholar 

  35. Cull G, Durrant L, Stainer C, Haynes A, Russell N (1999) Generation of anti-idiotype immune responses following vaccination with idiotype-protein pulsed dendritic cells in myeloma. Br J Haematol 107:648–655

    Article  PubMed  CAS  Google Scholar 

  36. Titzer S, Christensen O, Manzke O, Tesch H, Wolf J, Emmerich B, Carsten C, Diehl V, Bohlen H (2000) Vaccination of multiple myeloma patients with idiotype-pulsed dendritic cells: immunological and clinical aspects. Br J Haematol 108:805–816

    Article  PubMed  CAS  Google Scholar 

  37. Yi Q, Desikan R, Barlogie B, Munshi N (2002) Optimizing dendritic cell-based immunotherapy in multiple myeloma. Br J Haematol 117:297–305

    Article  PubMed  Google Scholar 

  38. Curti A, Tosi P, Comoli P, Terragna C, Ferri E, Cellini C, Massaia M, D’Addio A, Giudice V, Di Bello C, Cavo M, Conte R, Gugliotta G, Baccarani M, Lemoli RM (2007) Phase I/II clinical trial of sequential subcutaneous and intravenous delivery of dendritic cell vaccination for refractory multiple myeloma using patient-specific tumour idiotype protein or idiotype (VDJ)-derived class I-restricted peptides. Br J Haematol 139:415–424

    Article  PubMed  CAS  Google Scholar 

  39. Bendandi M, Rodriguez-Calvillo M, Inoges S, Lopez-Diaz de Cerio A, Perez-Simon JA, Rodriguez-Caballero A, Garcia-Montero A, Almeida J, Zabalegui N, Giraldo P, San Miguel J, Orfao A (2006) Combined vaccination with idiotype-pulsed allogeneic dendritic cells and soluble protein idiotype for multiple myeloma patients relapsing after reduced-intensity conditioning allogeneic stem cell transplantation. Leuk Lymphoma 47:29–37

    Article  PubMed  CAS  Google Scholar 

  40. Yi Q, Szmania S, Freeman J, Qian J, Rosen NA, Viswamitra S, Cottler-Fox M, Barlogie B, Tricot G, van Rhee F (2010) Optimizing dendritic cell-based immunotherapy in multiple myeloma: intranodal injections of idiotype-pulsed CD40 ligand-matured vaccines led to induction of type-1 and cytotoxic T-cell immune responses in patients. Br J Haematol 150(5):554–564

    Article  PubMed  CAS  Google Scholar 

  41. Lacy MQ, Mandrekar S, Dispenzieri A, Hayman S, Kumar S, Buadi F, Dingli D, Litzow M, Wettstein P, Padley D, Kabat B, Gastineau D, Rajkumar SV, Gertz MA (2009) Idiotype-pulsed antigen-presenting cells following autologous transplantation for multiple myeloma may be associated with prolonged survival. Am J Hematol 84:799–802

    Article  PubMed  Google Scholar 

  42. Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, Niehrs C (2001) LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411:321–325

    Article  PubMed  CAS  Google Scholar 

  43. Zorn AM (2001) Wnt signalling: antagonistic Dickkopfs. Curr Biol 11:R592–R595

    Article  PubMed  CAS  Google Scholar 

  44. Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391:357–362

    Article  PubMed  CAS  Google Scholar 

  45. Gregory CA, Singh H, Perry AS, Prockop DJ (2003) The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. J Biol Chem 278:28067–28078

    Article  PubMed  CAS  Google Scholar 

  46. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy JD Jr (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349:2483–2494

    Article  PubMed  CAS  Google Scholar 

  47. Fulciniti M, Tassone P, Hideshima T, Vallet S, Nanjappa P, Ettenberg SA, Shen Z, Patel N, Tai YT, Chauhan D, Mitsiades C, Prabhala R, Raje N, Anderson KC, Stover DR, Munshi NC (2009) Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 114:371–379

    Article  PubMed  CAS  Google Scholar 

  48. Heath DJ, Chantry AD, Buckle CH, Coulton L, Shaughnessy JD Jr, Evans HR, Snowden JA, Stover DR, Vanderkerken K, Croucher PI (2009) Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. J Bone Miner Res 24:425–436

    Article  PubMed  CAS  Google Scholar 

  49. Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy JD Jr (2007) Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 109:2106–2111

    Article  PubMed  CAS  Google Scholar 

  50. Qian J, Xie J, Hong S, Yang J, Zhang L, Han X, Wang M, Zhan F, Shaughnessy JD Jr, Epstein J, Kwak LW, Yi Q (2007) Dickkopf-1 (DKK1) is a widely expressed and potent tumor-associated antigen in multiple myeloma. Blood 110:1587–1594

    Article  PubMed  CAS  Google Scholar 

  51. Bjorkman PJ, Burmeister WP (1994) Structures of two classes of MHC molecules elucidated: crucial differences and similarities. Curr Opin Struct Biol 4:852–856

    Article  PubMed  CAS  Google Scholar 

  52. Strominger JL (2002) Human histocompatibility proteins. Immunol Rev 185:69–77

    Article  PubMed  CAS  Google Scholar 

  53. Cooper EH, Plesner T (1980) Beta-2-microglobulin review: its relevance in clinical oncology. Med Pediatr Oncol 8:323–334

    Article  PubMed  CAS  Google Scholar 

  54. Molica S, Levato D, Cascavilla N, Levato L, Musto P (1999) Clinico-prognostic implications of simultaneous increased serum levels of soluble CD23 and beta2-microglobulin in B-cell chronic lymphocytic leukemia. Eur J Haematol 62:117–122

    Article  PubMed  CAS  Google Scholar 

  55. Shvidel L, Hofstein R, Berrebi A (1996) Serum beta-2 microglobulin as a marker of B-cell activation in chronic lymphoid malignancies. Am J Hematol 53:148–149

    Article  PubMed  CAS  Google Scholar 

  56. Barlogie B, Jagannath S, Desikan KR, Mattox S, Vesole D, Siegel D, Tricot G, Munshi N, Fassas A, Singhal S, Mehta J, Anaissie E, Dhodapkar D, Naucke S, Cromer J, Sawyer J, Epstein J, Spoon D, Ayers D, Cheson B, Crowley J (1999) Total therapy with tandem transplants for newly diagnosed multiple myeloma. Blood 93:55–65

    PubMed  CAS  Google Scholar 

  57. Bataille R, Durie BG, Grenier J (1983) Serum beta2 microglobulin and survival duration in multiple myeloma: a simple reliable marker for staging. Br J Haematol 55:439–447

    Article  PubMed  CAS  Google Scholar 

  58. Alexanian R, Barlogie B, Fritsche H (1985) Beta 2 microglobulin in multiple myeloma. Am J Hematol 20:345–351

    Article  PubMed  CAS  Google Scholar 

  59. Yang J, Qian J, Wezeman M, Wang S, Lin P, Wang M, Yaccoby S, Kwak LW, Barlogie B, Yi Q (2006) Targeting beta(2)-microglobulin for induction of tumor apoptosis in human hematological malignancies. Cancer Cell 10:295–307

    Article  PubMed  CAS  Google Scholar 

  60. Yang J, Cao Y, Hong S, Li H, Qian J, Kwak LW, Yi Q (2009) Human-like mouse models for testing the efficacy and safety of anti-beta2-microglobulin monoclonal antibodies to treat myeloma. Clin Cancer Res 15:951–959

    Article  PubMed  CAS  Google Scholar 

  61. Sekimoto E, Ozaki S, Ohshima T, Shibata H, Hashimoto T, Abe M, Kimura N, Hattori K, Kawai S, Kinoshita Y, Yamada-Okabe H, Tsuchiya M, Matsumoto T (2007) A single-chain Fv diabody against human leukocyte antigen-A molecules specifically induces myeloma cell death in the bone marrow environment. Cancer Res 67:1184–1192

    Article  PubMed  CAS  Google Scholar 

  62. Nomura T, Huang WC, Seo S, Zhau HE, Mimata H, Chung LW (2007) Targeting beta2-microglobulin mediated signaling as a novel therapeutic approach for human renal cell carcinoma. J Urol 178:292–300

    Article  PubMed  CAS  Google Scholar 

  63. Huang WC, Wu D, Xie Z, Zhau HE, Nomura T, Zayzafoon M, Pohl J, Hsieh CL, Weitzmann MN, Farach-Carson MC, Chung LW (2006) Beta2-microglobulin is a signaling and growth-promoting factor for human prostate cancer bone metastasis. Cancer Res 66:9108–9116

    Article  PubMed  CAS  Google Scholar 

  64. Yang J, Zhang X, Wang J, Qian J, Zhang L, Wang M, Kwak LW, Yi Q (2007) Anti beta2-microglobulin monoclonal antibodies induce apoptosis in myeloma cells by recruiting MHC class I to and excluding growth and survival cytokine receptors from lipid rafts. Blood 110:3028–3035

    Article  PubMed  CAS  Google Scholar 

  65. Hsi ED, Steinle R, Balasa B, Szmania S, Draksharapu A, Shum BP, Huseni M, Powers D, Nanisetti A, Zhang Y, Rice AG, van Abbema A, Wong M, Liu G, Zhan F, Dillon M, Chen S, Rhodes S, Fuh F, Tsurushita N, Kumar S, Vexler V, Shaughnessy JD Jr, Barlogie B, van Rhee F, Hussein M, Afar DE, Williams MB (2008) CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res 14:2775–2784

    Article  PubMed  CAS  Google Scholar 

  66. Tai YT, Dillon M, Song W, Leiba M, Li XF, Burger P, Lee AI, Podar K, Hideshima T, Rice AG, van Abbema A, Jesaitis L, Caras I, Law D, Weller E, Xie W, Richardson P, Munshi NC, Mathiot C, Avet-Loiseau H, Afar DE, Anderson KC (2008) Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 112:1329–1337

    Article  PubMed  CAS  Google Scholar 

  67. van Rhee F, Szmania SM, Dillon M, van Abbema AM, Li X, Stone MK, Garg TK, Shi J, Moreno-Bost AM, Yun R, Balasa B, Ganguly B, Chao D, Rice AG, Zhan F, Shaughnessy JD Jr, Barlogie B, Yaccoby S, Afar DE (2009) Combinatorial efficacy of anti-CS1 monoclonal antibody elotuzumab (HuLuc63) and bortezomib against multiple myeloma. Mol Cancer Ther 8:2616–2624

    Article  PubMed  CAS  Google Scholar 

  68. Pepys MB, Hirschfield GM (2003) C-reactive protein: a critical update. J Clin Invest 111:1805–1812

    PubMed  CAS  Google Scholar 

  69. Stein MP, Edberg JC, Kimberly RP, Mangan EK, Bharadwaj D, Mold C, Du Clos TW (2000) C-reactive protein binding to FcgammaRIIa on human monocytes and neutrophils is allele-specific. J Clin Invest 105:369–376

    Article  PubMed  CAS  Google Scholar 

  70. Pepys MB (1983) C-reactive protein: the role of an ancient protein in modern rheumatology. Clin Exp Rheumatol 1:3–7

    PubMed  CAS  Google Scholar 

  71. Bataille R, Boccadoro M, Klein B, Durie B, Pileri A (1992) C-reactive protein and beta-2 microglobulin produce a simple and powerful myeloma staging system. Blood 80:733–737

    PubMed  CAS  Google Scholar 

  72. Tienhaara A, Pulkki K, Mattila K, Irjala K, Pelliniemi TT (1994) Serum immunoreactive interleukin-6 and C-reactive protein levels in patients with multiple myeloma at diagnosis. Br J Haematol 86:391–393

    Article  PubMed  CAS  Google Scholar 

  73. Legouffe E, Rodriguez C, Picot MC, Richard B, Klein B, Rossi JF, Commes T (1998) C-reactive protein serum level is a valuable and simple prognostic marker in non Hodgkin’s lymphoma. Leuk Lymphoma 31:351–357

    PubMed  CAS  Google Scholar 

  74. Pedersen LM, Bergmann OJ (2003) Urinary albumin excretion and its relationship to C-reactive protein and proinflammatory cytokines in patients with cancer and febrile neutropenia. Scand J Infect Dis 35:491–494

    Article  PubMed  CAS  Google Scholar 

  75. Reichle A, Bross K, Vogt T, Bataille F, Wild P, Berand A, Krause SW, Andreesen R (2004) Pioglitazone and rofecoxib combined with angiostatically scheduled trofosfamide in the treatment of far-advanced melanoma and soft tissue sarcoma. Cancer 101:2247–2256

    Article  PubMed  CAS  Google Scholar 

  76. Venugopal SK, Devaraj S, Jialal I (2005) Effect of C-reactive protein on vascular cells: evidence for a proinflammatory, proatherogenic role. Curr Opin Nephrol Hypertens 14:33–37

    Article  PubMed  CAS  Google Scholar 

  77. Berenson JR, Yang HH, Sadler K, Jarutirasarn SG, Vescio RA, Mapes R, Purner M, Lee SP, Wilson J, Morrison B, Adams J, Schenkein D, Swift R (2006) Phase I/II trial assessing bortezomib and melphalan combination therapy for the treatment of patients with relapsed or refractory multiple myeloma. J Clin Oncol 24:937–944

    Article  PubMed  CAS  Google Scholar 

  78. Garcia F, Sepulveda P, Liegeard P, Gregoire J, Hermann E, Lemonnier F, Langlade-Demoyen P, Hontebeyrie M, Lone YC (2003) Identification of HLA-A*0201-restricted cytotoxic T-cell epitopes of Trypanosoma cruzi TcP2beta protein in HLA-transgenic mice and patients. Microbes Infect 5:351–359

    Article  PubMed  CAS  Google Scholar 

  79. Gill R, Kemp JA, Sabin C, Pepys MB (2004) Human C-reactive protein increases cerebral infarct size after middle cerebral artery occlusion in adult rats. J Cereb Blood Flow Metab 24:1214–1218

    Article  PubMed  CAS  Google Scholar 

  80. Griselli M, Herbert J, Hutchinson WL, Taylor KM, Sohail M, Krausz T, Pepys MB (1999) C-reactive protein and complement are important mediators of tissue damage in acute myocardial infarction. J Exp Med 190:1733–1740

    Article  PubMed  CAS  Google Scholar 

  81. Yang J, Wezeman M, Zhang X, Lin P, Wang M, Qian J, Wan B, Kwak LW, Yu L, Yi Q (2007) Human C-reactive protein binds activating fcgamma receptors and protects myeloma tumor cells from apoptosis. Cancer Cell 12:252–265

    Article  PubMed  CAS  Google Scholar 

  82. Dhodapkar MV, Osman K, Teruya-Feldstein J, Filippa D, Hedvat CV, Iversen K, Kolb D, Geller MD, Hassoun H, Kewalramani T, Comenzo RL, Coplan K, Chen YT, Jungbluth AA (2003) Expression of cancer/testis (CT) antigens MAGE-A1, MAGE-A3, MAGE-A4, CT-7, and NY-ESO-1 in malignant gammopathies is heterogeneous and correlates with site, stage and risk status of disease. Cancer Immun 3:9

    PubMed  Google Scholar 

  83. Pellat-Deceunynck C, Mellerin MP, Labarriere N, Jego G, Moreau-Aubry A, Harousseau JL, Jotereau F, Bataille R (2000) The cancer germ-line genes MAGE-1, MAGE-3 and PRAME are commonly expressed by human myeloma cells. Eur J Immunol 30:803–809

    Article  PubMed  CAS  Google Scholar 

  84. van Baren N, Brasseur F, Godelaine D, Hames G, Ferrant A, Lehmann F, Andre M, Ravoet C, Doyen C, Spagnoli GC, Bakkus M, Thielemans K, Boon T (1999) Genes encoding tumor-specific antigens are expressed in human myeloma cells. Blood 94:1156–1164

    PubMed  Google Scholar 

  85. Gupta SK, Pei L, Droojenbroeck JV, Szmania SM, Yacobby S, Batchu RB, Spagnoli GC, Tricot G, Epstein J, van Rhee F (2002) Intra- and intertumoral variation in the expression of cancer testis antigens, MAGE-3 and NY-ESO-1 in multiple myeloma. Blood 100:603a

    Article  Google Scholar 

  86. Gupta SK, Shaughnessy J, Droojenbroeck JV, Szmania SM, Zhan F, Batchu RB, Spagnoli GC, Tricot G, Pei L, van Rhee F (2002) NY-ESO-1 RNA and protein expression in multiple myeloma is highest in aggressive myeloma and is correlated with chromosomal abnormalities. Blood 100:401a

    Google Scholar 

  87. Lendvai N, Gnjatic S, Ritter E, Mangone M, Austin W, Reyner K, Jayabalan D, Niesvizky R, Jagannath S, Bhardwaj N, Chen-Kiang S, Old LJ, Cho HJ (2010) Cellular immune responses against CT7 (MAGE-C1) and humoral responses against other cancer-testis antigens in multiple myeloma patients. Cancer Immun 10:4

    PubMed  Google Scholar 

  88. Atanackovic D, Hildebrandt Y, Jadczak A, Cao Y, Luetkens T, Meyer S, Kobold S, Bartels K, Pabst C, Lajmi N, Gordic M, Stahl T, Zander AR, Bokemeyer C, Kroger N (2010) Cancer-testis antigens MAGE-C1/CT7 and MAGE-A3 promote the survival of multiple myeloma cells. Haematologica 95:785–793

    Article  PubMed  CAS  Google Scholar 

  89. Tinguely M, Jenni B, Knights A, Lopes B, Korol D, Rousson V, Curioni Fontecedro A, Cogliatti SB, Bittermann AG, Schmid U, Dommann-Scherrer C, Maurer R, Renner C, Probst-Hensch NM, Moch H, Knuth A, Zippelius A (2008) MAGE-C1/CT-7 expression in plasma cell myeloma: sub-cellular localization impacts on clinical outcome. Cancer Sci 99:720–725

    Article  PubMed  CAS  Google Scholar 

  90. Pabst C, Zustin J, Jacobsen F, Luetkens T, Kroger N, Schilling G, Bokemeyer C, Sauter G, Atanackovic D, Marx A (2010) Expression and prognostic relevance of MAGE-C1/CT7 and MAGE-C2/CT10 in osteolytic lesions of patients with multiple myeloma. Exp Mol Pathol 89(2):175–181

    Article  PubMed  CAS  Google Scholar 

  91. Atanackovic D, Luetkens T, Hildebrandt Y, Arfsten J, Bartels K, Horn C, Stahl T, Cao Y, Zander AR, Bokemeyer C, Kroger N (2009) Longitudinal analysis and prognostic effect of cancer-testis antigen expression in multiple myeloma. Clin Cancer Res 15:1343–1352

    Article  PubMed  CAS  Google Scholar 

  92. Szmania S, Gnjatic S, Tricot G, Stone K, Zhan F, Moreno A, Thuro B, Melenhorst J, Barrett J, Shaughnessy J, Old LJ, Barlogie B, Brichard VG, van Rhee F (2007) Immunization with a recombinant MAGE-A3 protein after high-dose therapy for myeloma. J Immunother 30:847–854

    Article  PubMed  Google Scholar 

  93. Tai YT, Catley LP, Mitsiades CS, Burger R, Podar K, Shringpaure R, Hideshima T, Chauhan D, Hamasaki M, Ishitsuka K, Richardson P, Treon SP, Munshi NC, Anderson KC (2004) Mechanisms by which SGN-40, a humanized anti-CD40 antibody, induces cytotoxicity in human multiple myeloma cells: clinical implications. Cancer Res 64:2846–2852

    Article  PubMed  CAS  Google Scholar 

  94. Tai YT, Li X, Tong X, Santos D, Otsuki T, Catley L, Tournilhac O, Podar K, Hideshima T, Schlossman R, Richardson P, Munshi NC, Luqman M, Anderson KC (2005) Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma. Cancer Res 65:5898–5906

    Article  PubMed  CAS  Google Scholar 

  95. Tai YT, Li XF, Catley L, Coffey R, Breitkreutz I, Bae J, Song W, Podar K, Hideshima T, Chauhan D, Schlossman R, Richardson P, Treon SP, Grewal IS, Munshi NC, Anderson KC (2005) Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Res 65:11712–11720

    Article  PubMed  CAS  Google Scholar 

  96. Anderson KC (2003) New agents and approaches in the treatment of multiple myeloma. Clin Adv Hematol Oncol 1:151–152

    PubMed  Google Scholar 

  97. Akagi J, Nakagawa K, Egami H, Ogawa M (1998) Induction of HLA-unrestricted and HLA-class-II-restricted cytotoxic T lymphocytes against MUC-1 from patients with colorectal carcinomas using recombinant MUC-1 vaccinia virus. Cancer Immunol Immunother 47:21–31

    Article  PubMed  CAS  Google Scholar 

  98. Moore A, Medarova Z, Potthast A, Dai G (2004) In vivo targeting of underglycosylated MUC-1 tumor antigen using a multimodal imaging probe. Cancer Res 64:1821–1827

    Article  PubMed  CAS  Google Scholar 

  99. Treon SP, Mollick JA, Urashima M, Teoh G, Chauhan D, Ogata A, Raje N, Hilgers JH, Nadler L, Belch AR, Pilarski LM, Anderson KC (1999) Muc-1 core protein is expressed on multiple myeloma cells and is induced by dexamethasone. Blood 93:1287–1298

    PubMed  CAS  Google Scholar 

  100. Lim SH, Chiriva-Internati M, Wang Z, Salati E (2002) Sperm protein 17 (Sp17) as a tumor vaccine for multiple myeloma. Blood 100:673a

    Article  Google Scholar 

  101. Lim SH, Wang Z, Chiriva-Internati M, Xue Y (2001) Sperm protein 17 is a novel cancer-testis antigen in multiple myeloma. Blood 97:1508–1510

    Article  PubMed  CAS  Google Scholar 

  102. Ohtomo T, Sugamata Y, Ozaki Y, Ono K, Yoshimura Y, Kawai S, Koishihara Y, Ozaki S, Kosaka M, Hirano T, Tsuchiya M (1999) Molecular cloning and characterization of a surface antigen preferentially overexpressed on multiple myeloma cells. Biochem Biophys Res Commun 258:583–591

    Article  PubMed  CAS  Google Scholar 

  103. Ono K, Ohtomo T, Yoshida K, Yoshimura Y, Kawai S, Koishihara Y, Ozaki S, Kosaka M, Tsuchiya M (1999) The humanized anti-HM1.24 antibody effectively kills multiple myeloma cells by human effector cell-mediated cytotoxicity. Mol Immunol 36:387–395

    Article  PubMed  CAS  Google Scholar 

  104. Treon SP, Raje N, Anderson KC (2000) Immunotherapeutic strategies for the treatment of plasma cell malignancies. Semin Oncol 27:598–613

    PubMed  CAS  Google Scholar 

  105. Noto H, Takahashi T, Makiguchi Y, Hayashi T, Hinoda Y, Imai K (1997) Cytotoxic T lymphocytes derived from bone marrow mononuclear cells of multiple myeloma patients recognize an underglycosylated form of MUC1 mucin. Int Immunol 9:791–798

    Article  PubMed  CAS  Google Scholar 

  106. Chiriva-Internati M, Wang Z, Salati E, Bumm K, Barlogie B, Lim SH (2002) Sperm protein 17 (Sp17) is a suitable target for immunotherapy of multiple myeloma. Blood 100:961–965

    Article  PubMed  CAS  Google Scholar 

  107. Lacy HM, Sanderson RD (2001) Sperm protein 17 is expressed on normal and malignant lymphocytes and promotes heparan sulfate-mediated cell–cell adhesion. Blood 98:2160–2165

    Article  PubMed  CAS  Google Scholar 

  108. Neelapu, S.S. & Kwak, L.W. (2007) Vaccine therapy for B-cell lymphomas: next-generation strategies. Hematology Am Soc Hematol Educ Program:243–249.

    Google Scholar 

  109. Scallon BJ, Snyder LA, Anderson GM, Chen Q, Yan L, Weiner LM, Nakada MT (2006) A review of antibody therapeutics and antibody-related technologies for oncology. J Immunother 29:351–364

    Article  PubMed  Google Scholar 

  110. Stevenson FK, King A, Ottensmeier CH (2003) Vaccine therapy in NHL: future promises and current limitations. Leuk Lymphoma 44(Suppl 3):S85–S90

    Article  PubMed  CAS  Google Scholar 

  111. Yi Q (2003) Immunotherapy in multiple myeloma: current strategies and future prospects. Expert Rev Vaccines 2:391–398

    Article  PubMed  CAS  Google Scholar 

  112. Yi Q (2003) Dendritic cell-based immunotherapy in multiple myeloma. Leuk Lymphoma 44:2031–2038

    Article  PubMed  CAS  Google Scholar 

  113. Barnett BG, Ruter J, Kryczek I, Brumlik MJ, Cheng PJ, Daniel BJ, Coukos G, Zou W, Curiel TJ (2008) Regulatory T cells: a new frontier in cancer immunotherapy. Adv Exp Med Biol 622:255–260

    Article  PubMed  CAS  Google Scholar 

  114. Ruter J, Barnett BG, Kryczek I, Brumlik MJ, Daniel BJ, Coukos G, Zou W, Curiel TJ (2009) Altering regulatory T cell function in cancer immunotherapy: a novel means to boost the efficacy of cancer vaccines. Front Biosci 14:1761–1770

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by institutional start-up funds from the University of Texas M. D. Anderson Cancer Center, the Center for Targeted Therapy of The University of Texas M. D. Anderson Cancer Center, grants from the National Cancer Institute (R01 CA96569, R01 CA103978, and R01 CA138402), the Leukemia & Lymphoma Society, Multiple Myeloma Research Foundation, and Commonwealth Foundation for Cancer Research. I thank Mrs. Kimberly Jensen for providing editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Yi M.D., Ph.D. .

Editor information

Editors and Affiliations

Additional information

Conflict-of-interest disclosure: The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yi, Q. (2013). Novel Antigenic Targets for Immunotherapy in Myeloma. In: Munshi, N., Anderson, K. (eds) Advances in Biology and Therapy of Multiple Myeloma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5260-7_2

Download citation

Publish with us

Policies and ethics