Skip to main content

The Role of CaM Kinase II in Cardiac Function in Health and Disease

  • Chapter
  • First Online:
Cardiac Adaptations

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 4))

  • 1811 Accesses

Abstract

Ca2+-calmodulin-dependent protein kinase II (CaMKII) has emerged as a critical molecule involved in the regulation of cell processes that are dependent on calcium, including excitation–contraction coupling (ECC), cell growth, and death. In addition to a generally accepted signaling pathway through beta-adrenergic receptors (ARs), oxidative stress has been suggested to promote CaMKII activation. Since many cardiac diseases, including those characterized by a phenomenon called as ischemia/reperfusion injury (IRI), are associated with oxidative stress, CaMKII is likely to be a crucial molecule underlying the phenotypes of this cardiac injury. In contrast, there is also evidence that CaMKII activation leading to phosphorylation of phospholamban and the subsequent decrease of calcium overload is important for attenuation of post-ischemic cardiac contracture, indicating that CaMKII may act as a double-edged sword depending on the actual conditions. In addition, CaMKII over-activation has been shown to destabilize the action potential and trigger early and delayed afterdepolarizations promoting arrhythmias. Experimental studies from our laboratory have revealed that CaMKII inhibition does not protect the heart against all types of IRI-induced ventricular arrhythmias, but it is capable to reduce the occurrence of the most life-threatening tachyarrhythmias. Moreover, the CaMKII inhibition appears to reduce oxidative stress and thus to increase the viability of cardiomyocytes upon IRI. In this manuscript, a dual role of CaMKII in IRI is reviewed and beneficial effects of the CaMKII inhibition are discussed with studies that have shown the opposite results. We conclude that CaMKII activation either inhibition should be carefully considered in effort to mitigate cardiac IRI-induced injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkinson JB, Gurevich VV, Salama G et al (2005) Calmodulin kinase II inhibition protects against structural heart disease. Nat Med 11:409–417

    Article  PubMed  Google Scholar 

  2. Hagemann D, Hoch B, Krause EG, Karczewski P (1999) Developmental changes in isoform expression of Ca2+/calmodulin-dependent protein kinase II delta-subunit in rat heart. J Cell Biochem 74:202–210

    Article  PubMed  CAS  Google Scholar 

  3. Hudmon A, Schulman H, Kim J et al (2005) CaMKII tethers to L-type Ca2+ chanels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. J Cell Biol 171:537–547

    Article  PubMed  CAS  Google Scholar 

  4. Zhang R, Khoo MS, Wu Y et al (2005) Calmodulin kinase II inhibition protects against structural heart disease. Nat Med 11:409–417

    Article  PubMed  CAS  Google Scholar 

  5. Meyer T, Hanson P, Stryer L, Schulman H (1992) Calmodulin trapping by calcium-calmodulin dependent protein kinase. Science 256:1199–1202

    Google Scholar 

  6. Schworer CM, Colbran RJ, Soderling TR (1986) Reversibile generation of a Ca2+ (calmodulin)-dependent protein kinase II by an autophosphorylation mechanism. J Biol Chem 261:8581–8584

    PubMed  CAS  Google Scholar 

  7. Colbran RJ (1993) Inactivation of Ca2+/calmodulin-dependent protein kinase II by basal autophosphorylation. J Biol Chem 268:7163–7170

    PubMed  CAS  Google Scholar 

  8. Erickson JR, Joiner ML, Guan X et al (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133:462–474

    Article  PubMed  CAS  Google Scholar 

  9. Lyle AN, Griendling KK (2006) Modulation of vascular smooth muscle signaling by reactive oxygen species. Physiology 21:269–280

    Article  PubMed  CAS  Google Scholar 

  10. Wagner S, Ruff HM, Weber SL et al (2011) Reactive oxygen species-activated Ca/calmodulin kinase IIδ is required for late I(Na) augmentation leading to cellular Na and Ca overload. Circ Res 108:555–565

    Article  PubMed  CAS  Google Scholar 

  11. Hashambhoy YL, Winslow RL, Greenstein JL (2011) CaMKII-dependent activation of late INa contributes to cellular arrhythmia in a model of the cardiac myocyte. Conf Proc IEEE Eng Med Biol Soc 2011:4665–4668

    Google Scholar 

  12. Sossalla S, Maurer U, Schotola H et al (2011) Diastolic dysfunction and arrhythmias caused by overexpression of CaMKIIδ(C) can be reversed by inhibition of late Na(+) current. Basic Res Cardiol 106:263–272

    Article  PubMed  CAS  Google Scholar 

  13. Grueter CE, Abiria SA, Dzhura I et al (2006) L-type Ca2+ channel facilitation mediated by phosphorylation of the beta subunit by CaMKII. Mol Cell 23:641–650

    Article  PubMed  CAS  Google Scholar 

  14. Hudmon A, Schulman H (2002) Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem J 364:593–611

    Article  PubMed  CAS  Google Scholar 

  15. Wu Y, Kimbrough JT, Colbran RJ, Anderson ME (2004) Calmodulin kinase is functionally targeted to the action potential plateau for regulation of L-type Ca2+ current in rabbit cardiomyocytes. J Physiol 554:145–155

    Article  PubMed  CAS  Google Scholar 

  16. Anderson ME (2006) QT interval prolongation and arrhythmia: an unbreakable connection? J Intern Med 259:81–90

    Article  PubMed  CAS  Google Scholar 

  17. Wu Y, Shintani A, Grueter C et al (2006) Suppression of dynamic Ca2+ transient responses to pacing in ventricular myocytes from mice with genetic calmodulin kinase II inhibition. J Mol Cell Cardiol 40:213–223

    Article  PubMed  CAS  Google Scholar 

  18. Wu Y, Temple J, Zhang R et al (2002) Calmodulin kinase II and arrhythmias in a mouse model of cardiac hypertrophy. Circulation 106:1288–1293

    Article  PubMed  CAS  Google Scholar 

  19. Anderson ME, Braun AP, Wu Y et al (1998) KN-93, an inhibitor of multifunctional Ca++/calmodulin-dependent protein kinase, decreases early afterdepolarizations in rabbit heart. J Pharmacol Exp Ther 287:996–1006

    PubMed  CAS  Google Scholar 

  20. Rodriguez P, Bhogal MS, Colyer J (2003) Stoichiometric phosphorylation of cardiac ryanodine receptor on serine 2809 by calmodulin-dependent kinase II and protein kinase A. J Biol Chem 278:38593–38600

    Article  PubMed  CAS  Google Scholar 

  21. van Oort RJ, McCauley MD, Dixit SS et al (2010) Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure. Circulation 122:2669–2679

    Article  PubMed  Google Scholar 

  22. Kohlhaas M, Zhang T, Siedler T et al (2006) Increased sarcoplasmic reticulum calcium leak but unaltered contractility by acute CaMKII overexpression in isolated rabbit cardiac myocytes. Circ Res 98:235–244

    Article  PubMed  CAS  Google Scholar 

  23. Yang D, Zhu W, Xiao B et al (2007) Ca2+/calmodulin kinase II-dependent phosphorylation of ryanodine receptors suppresses Ca2+ sparks and Ca2+ waves in cardiac myocytes. Circ Res 100:399–407

    Article  PubMed  CAS  Google Scholar 

  24. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  PubMed  CAS  Google Scholar 

  25. Hagemann D, Kuschel M, Kuramochi T et al (2000) Frequency-encoding Thr17 phospholamban phosphorylation is independent of Ser16 phosphorylation in cardiac myocytes. J Biol Chem 23:641–650

    Google Scholar 

  26. Vangheluwe P, Tjwa M, Van Den Bergh A et al (2006) A SERCA2 pump with an increased Ca2+ affinity can lead to severe cardiac hypertrophy, stress intolerance and reduced life span. J Mol Cell Cardiol 41:308–317

    Article  PubMed  CAS  Google Scholar 

  27. Werdich AA, Lima EA, Dzhura I et al (2008) Differential effects of phospholamban and Ca2+/calmodulin-dependent kinase II on [Ca2+]i-transients in cardiac myocytes at physiological stimulation frequencies. Am J Physiol Heart Circ Physiol 294:2352–2362

    Article  Google Scholar 

  28. Zhang T, Maier L, Dalton ND et al (2003) The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res 92:912–919

    Article  PubMed  CAS  Google Scholar 

  29. Sag CM, Wadsack DP, Khabbazzadeh S et al (2009) Calcium/calmodulin-dependent protein kinase II contributes to cardiac arrhythmogenesis in heart failure. Circ Heart Fail 2:664–675

    Article  PubMed  CAS  Google Scholar 

  30. Liu N, Ruan Y, Denegri M et al (2011) Calmodulin kinase II inhibition prevents arrhythmias in RyR2(R4496C+/−) mice with catecholaminergic polymorphic ventricular tachycardia. J Mol Cell Cardiol 50:214–222

    Article  PubMed  CAS  Google Scholar 

  31. Gonano L, Sepúlveda M, Rico Y, et al. (2011) Calcium-calmodulin kinase II mediates digitalis-induced arrhythmias. Circ Arrhythm Electrophysiol 4:947–957

    Google Scholar 

  32. Bell JR, Curl CL, IP WT, Delbridge LM (2011) Ca(2+)/calmodulin-dependent protein kinase inhibition suppresses post-ischemic arrhythmogenesis and mediates sinus bradycardic recovery in reperfusion. Int J Cardiol (Epub ahead of print)

    Google Scholar 

  33. Salas MA, Valverde CA, Sánchez G et al (2010) The signalling pathway of CaMKII-mediated apoptosis and necrosis in the ischemia/reperfusion injury. J Mol Cell Cardiol 48:1298–1306

    Article  PubMed  CAS  Google Scholar 

  34. Vila-Petroff M, Salas MA, Said M et al (2007) CaMKII inhibition protects against necrosis and apoptosis in irreversible ischemia-reperfusion injury. Cardiovasc Res 73:689–698

    Article  PubMed  CAS  Google Scholar 

  35. Pedersen TH, Gurung IS, Grace A, Huang CL (2009) Calmodulin kinase II initiates arrhythmogenicity during metabolic acidification in murine hearts. Acta Physiol (Oxf) 197:13–25

    Article  CAS  Google Scholar 

  36. Adameova A, Carnicka S, Rajtik T, et al. (2012) Upregulation of CaMKII δ during ischaemia/reperfusion is associated with reperfusion-induced arrhythmias and mechanical dysfunction of the rat heart: an involvement of the sarcolemmal Ca2+ -cycling proteins. Can J Physiol Pharmacol 90:1127–1134

    Google Scholar 

  37. Koval OM, Guan X, Wu Y et al (2010) CaV1.2 beta-subunit coordinates CaMKII-triggered cardiomyocyte death and afterdepolarizations. Proc Natl Acad Sci U S A 107:4996–5000

    Article  PubMed  CAS  Google Scholar 

  38. Said M, Vittone L, Mundina-Weilenmann C et al (2003) Role of dual-site phospholamban phosphorylation in the stunned heart: insights from phospholamban site-specific mutants. Am J Physiol Heart Circ Physiol 285:1198–1205

    Google Scholar 

  39. Fiers W, Beyaert R, Declercq W, Vandenabeele P (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18:7719–7730

    Article  PubMed  CAS  Google Scholar 

  40. Fliss H, Gattinger D (1996) Apoptosis in ischemic and reperfused rat myocardium. Circ Res 79:949–956

    Article  PubMed  CAS  Google Scholar 

  41. Kajstura J, Cheng W, Reiss K et al (1996) Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74:86–107

    PubMed  CAS  Google Scholar 

  42. Freude B, Masters TN, Robicsek F et al (2000) Apoptosis is initiated by myocardial ischemia and executed during reperfusion. J Mol Cell Cardiol 32:197–208

    Article  PubMed  CAS  Google Scholar 

  43. Zhao ZQ, Nakamura M, Wang NP et al (2000) Reperfusion induces myocardial apoptotic cell death. Cardiovasc Res 45:651–660

    Article  PubMed  CAS  Google Scholar 

  44. Kokoszka JE, Waymire KG, Levy SE et al (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465

    Article  PubMed  CAS  Google Scholar 

  45. Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9:550–555

    Article  PubMed  CAS  Google Scholar 

  46. Kerr JF (1999) A personal account of events leading to the definition of the apoptosis concept. Results Probl Cell Differ 23:1–10

    PubMed  CAS  Google Scholar 

  47. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  PubMed  CAS  Google Scholar 

  48. Sumi M, Kiuchi K, Ishikawa T et al (1991) The newly synthesized selective Ca2+/calmodulin dependent protein kinase II inhibitor KN-93 reduces dopamine contents in PC12h cells. Biochem Biophys Res 181:968–975

    Article  CAS  Google Scholar 

  49. Dhalla NS, Elmoselhi AB, Hata T, Makino N (2000) Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res 47:446–456

    Article  PubMed  CAS  Google Scholar 

  50. Bishopric NH, Andreka P, Slepak T, Webster KA (2001) Molecular mechanisms of apoptosis in the cardiac myocyte. Curr Opin Pharmacol 1:141–150

    Article  PubMed  CAS  Google Scholar 

  51. Netticadan T, Temsah R, Osada M, Dhalla NS (1999) Status of Ca2+/calmodulin protein kinase phosphorylation of cardiac SR proteins in ischemia-reperfusion. Am J Physiol 277:C384–C391

    PubMed  CAS  Google Scholar 

  52. Persad S, Takeda S, Panagia V, Dhalla NS (1997) Beta-adrenoceptor-linked signal transduction in ischemic-reperfused heart and scavenging of oxyradicals. J Mol Cell Cardiol 29:545–558

    Article  PubMed  CAS  Google Scholar 

  53. Valverde CA, Mundina-Weilenmann C, Reyes M et al (2006) Phospholamban phosphorylation sites enhance the recovery of intracellular Ca2+ after perfusion arrest in isolated, perfused mouse heart. Cardiovasc Res 70:335–345

    Article  PubMed  CAS  Google Scholar 

  54. Osada M, Netticadan T, Kawabata K, Tamura K, Dhalla NS (2000) Ischemic preconditioning prevents I/R-induced alterations in SR calcium-calmodulin protein kinase II. Am J Physiol Heart Circ Physiol 278:H1791–H1798

    PubMed  CAS  Google Scholar 

  55. Wagner S, Dybkova N, Rasenack EC et al (2006) Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest 116:3127–3138

    Article  PubMed  CAS  Google Scholar 

  56. Tessier S, Karczewski P, Krause EG et al (1999) Regulation of the transient outward K(+) current by Ca(2+)/calmodulin-dependent protein kinases II in human atrial myocytes. Circ Res 85:810–819

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research in this article was supported by a grant from Slovak Scientific Grant Agency (VEGA) 1/0638/12 and 2/0054/11, APVV-0523-10 and APVV-0102-11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Adameova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adameova, A., Szobi, A., Carnicka, S., Ravingerova, T., Rajtik, T. (2013). The Role of CaM Kinase II in Cardiac Function in Health and Disease. In: Ostadal, B., Dhalla, N. (eds) Cardiac Adaptations. Advances in Biochemistry in Health and Disease, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5203-4_24

Download citation

Publish with us

Policies and ethics