Skip to main content

Cardiac Remodeling in the Hypertrophic Heart: Signal-Dependent Regulation of the Fibrotic Gene Program by CLP-1

  • Chapter
  • First Online:
Cardiac Adaptations

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 4))

  • 1808 Accesses

Abstract

The response of the heart to hypertrophic stress stimuli is designed to normalize heart function under conditions of increased demand. To achieve this, the heart must mount a genomic stress response that is itself responsive to the signal transduction pathways used by heart cells to transmit stress signals. The ability to adaptively link stress signal to genomic stress response is critical to how the heart responds to stress. Our laboratory has been studying the molecular events involved in this adaptive linkage. Our studies have shown that CLP-1 (Cardiac Lineage Protein-1), the mouse homolog of the human HEXIM1, acts as the molecular “go-between” linking stress signal with genomic stress response. Critical to this linkage is HEXIM1/CLP-1’s control of cyclin-dependent kinase 9 (cdk9), the kinase responsible for activating RNA polymerase (pol) II to complete synthesis of nascent stress gene transcripts. Through its control of cdk9, HEXIM1/CLP-1 controls the transcriptional output of stress response genes by regulating the ability of RNA polymerase (pol) II, and as more recent data has shown, the activity of specific transcription factors such as those of the small mother against decapentaplegic(smad) family, to transcribe stress response genes. Together, these observations provide strong support for the idea that HEXIM1/CLP-1 plays a critical role in controlling the response of cardiac cells to hypertrophic stress stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CLP-1:

Cardiac lineage protein-1

HEXIM1:

Hexamethylene bis-acetamide-inducible protein 1

Cdk9:

Cyclin-dependent kinase 9

P-TEFb:

Positive transcription elongation factor b

Smad:

Small mother against decapentaplegic

Ang II:

Angiotensin II

SHR:

Spontaneously hypertensive rat

MAP kinase:

Mitogen-activated protein kinase

References

  1. Weber KT, Janicki JS, Pick R et al (1987) Collagen in the hypertrophied, pressure-overloaded myocardium. Circulation 75:I40–I47

    Article  PubMed  CAS  Google Scholar 

  2. Weber KT, Jalil JE, Janicki JS, Pick R (1989) Myocardial collagen remodeling in pressure overload hypertrophy. A case for interstitial heart disease. Am J Hypertens 2:931–940

    Google Scholar 

  3. Kojima M, Shiojima I, Yamazaki T et al (1994) Angiotensin II receptor antagonist TCV-116 induces regression of hypertensive left ventricular hypertrophy in vivo and inhibits the intracellular signaling pathway of stretch-mediated cardiomyocyte hypertrophy in vitro. Circulation 89:2204–2211

    Article  PubMed  CAS  Google Scholar 

  4. Fernandez-Alfonso MS, Ganten D, Paul M (1992) Mechanisms of cardiac growth. The role of the renin–angiotensin system. Basic Res Cardiol 87(Suppl 2):173–181

    PubMed  CAS  Google Scholar 

  5. Sadoshima J, Xu Y, Slayter HS, Izumo S (1993) Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75:977–984

    Article  PubMed  CAS  Google Scholar 

  6. Yamazaki T, Shiojima I, Komuro I, Nagai R, Yazaki Y (1994) Involvement of the renin–angiotensin system in the development of left ventricular hypertrophy and dysfunction. J Hypertens Suppl 12:S23–S27

    PubMed  CAS  Google Scholar 

  7. Yamazaki T, Komuro I, Kudoh S et al (1995) Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy. Circ Res 77:258–265

    Article  PubMed  CAS  Google Scholar 

  8. Lijnen P, Petrov V (1999) Renin-angiotensin system, hypertrophy and gene expression in cardiac myocytes. J Mol Cell Cardiol 31:949–970

    Article  PubMed  CAS  Google Scholar 

  9. Lijnen PJ, van Pelt JF, Fagard RH (2012) Stimulation of reactive oxygen species and collagen synthesis by angiotensin II in cardiac fibroblasts. Cardiovasc Ther 30:e1–e8

    Article  PubMed  CAS  Google Scholar 

  10. Sadoshima J, Izumo S (1993) Molecular characterization of angiotensin II–induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73:413–423

    Article  PubMed  CAS  Google Scholar 

  11. Schorb W, Booz GW, Dostal DE et al (1993) Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circ Res 72:1245–1254

    Article  PubMed  CAS  Google Scholar 

  12. Lijnen P, Papparella I, Petrov V, Semplicini A, Fagard R (2006) Angiotensin II-stimulated collagen production in cardiac fibroblasts is mediated by reactive oxygen species. J Hypertens 24:757–766

    Article  PubMed  CAS  Google Scholar 

  13. Booz GW, Baker KM (1995) Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts. Cardiovasc Res 30:537–543

    PubMed  CAS  Google Scholar 

  14. Brilla CG, Scheer C, Rupp H (1997) Renin-angiotensin system and myocardial collagen matrix: modulation of cardiac fibroblast function by angiotensin II type 1 receptor antagonism. J Hypertens Suppl 15:S13–S19

    PubMed  CAS  Google Scholar 

  15. Rosenkranz S (2004) TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 63:423–432

    Article  PubMed  CAS  Google Scholar 

  16. Bujak M, Frangogiannis NG (2007) The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74:184–195

    Article  PubMed  CAS  Google Scholar 

  17. Leask A (2007) TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovasc Res 74:207–212

    Article  PubMed  CAS  Google Scholar 

  18. Sadoshima J, Izumo S (1993) Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J 12:1681–1692

    PubMed  CAS  Google Scholar 

  19. Booz GW, Dostal DE, Singer HA, Baker KM (1994) Involvement of protein kianse C and Ca2+ in angiotensin II-induced mitogenesis of cardiac fibroblasts. Am J Physiol 267:C1308–c1318

    PubMed  CAS  Google Scholar 

  20. Verma SK, Lal H, Golden HB et al (2011) Rac1 and RhoA differentially regulate angiotensinogen gene expression in stretched cardiac fibroblasts. Cardiovasc Res 90:88–96

    Article  PubMed  CAS  Google Scholar 

  21. Lal H, Verma SK, Golden HB et al (2008) Stretch-induced regulation of angiotensinogen gene expression in cardiac myocytes and fibroblasts: opposing roles of JNK1/2 and p38alpha MAP kinases. J Mol Cell Cardiol 45:770–778

    Article  PubMed  CAS  Google Scholar 

  22. Dostal DE, Hunt RA, Kule CE et al (1997) Molecular mechanisms of angiotensin II in modulating cardiac function: intracardiac effects and signal transduction pathways. J Mol Cell Cardiol 29:2893–2902

    Article  PubMed  CAS  Google Scholar 

  23. Guerrero-Esteo M, Sanchez-Elsner T, Letamendia A, Bernabeu C (2002) Extracellular and cytoplasmic domains of endoglin interact with the transforming growth factor-beta receptors I and II. J Biol Chem 277:29197–29209

    Article  PubMed  CAS  Google Scholar 

  24. Chen K, Mehta JL, Li D, Joseph L, Joseph J (2004) Transforming growth factor beta receptor endoglin is expressed in cardiac fibroblasts and modulates profibrogenic actions of angiotensin II. Circ Res 95:1167–1173

    Article  PubMed  CAS  Google Scholar 

  25. Kim S, Ohta K, Hamaguchi A et al (1995) Angiotensin II type I receptor antagonist inhibits the gene expression of transforming growth factor-beta 1 and extracellular matrix in cardiac and vascular tissues of hypertensive rats. J Pharmacol Exp Ther 273:509–515

    PubMed  CAS  Google Scholar 

  26. Lee AA, Dillmann WH, McCulloch AD, Villarreal FJ (1995) Angiotensin II stimulates the autocrine production of transforming growth factor-beta 1 in adult rat cardiac fibroblasts. J Mol Cell Cardiol 27:2347–2357

    Article  PubMed  CAS  Google Scholar 

  27. Campbell SE, Katwa LC (1997) Angiotensin II stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol 29:1947–1958

    Article  PubMed  CAS  Google Scholar 

  28. Hao J, Wang B, Jones SC, Jassal DS, Dixon IM (2000) Interaction between angiotensin II and Smad proteins in fibroblasts in failing heart and in vitro. Am J Physiol HeartCirc Physiol 279:H3020–H3030

    CAS  Google Scholar 

  29. Voloshenyuk TG, Landesman ES, Khoutorova E, Hart AD, Gardner JD (2011) Induction of cardiac fibroblast lysyl oxidase by TGF-beta1 requires PI3K/Akt, Smad3, and MAPK signaling. Cytokine 55:90–97

    Article  PubMed  CAS  Google Scholar 

  30. Hayashi H, Abdollah S, Qiu Y et al (1997) The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 89:1165–1173

    Article  PubMed  CAS  Google Scholar 

  31. Wang B, Hao J, Jones SC et al (2002) Decreased Smad 7 expression contributes to cardiac fibrosis in the infarcted rat heart. Am J Physiol HeartCirc Physiol 282:H1685–H1696

    CAS  Google Scholar 

  32. Euler-Taimor G, Heger J (2006) The complex pattern of SMAD signaling in the cardiovascular system. Cardiovasc Res 69:15–25

    Article  PubMed  CAS  Google Scholar 

  33. Wang G, Long J, Matsuura I, He D, Liu F (2005) The Smad3 linker region contains a transcriptional activation domain. Biochem J 386:29–34

    Article  PubMed  CAS  Google Scholar 

  34. Kretzschmar M, Doody J, Timokhina I, Massague J (1999) A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras. Genes Dev 13:804–816

    Article  PubMed  CAS  Google Scholar 

  35. Matsuura I, Denissova NG, Wang G et al (2004) Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature 430:226–231

    Article  PubMed  CAS  Google Scholar 

  36. Alarcon C, Zaromytidou AI, Xi Q (2009) etal. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell 139:757–769

    Article  PubMed  CAS  Google Scholar 

  37. Garriga J, Grana X (2004) Cellular control of gene expression by T-type cyclin/CDK9 complexes. Gene 337:15–23

    Article  PubMed  CAS  Google Scholar 

  38. Zhou Q, Yik JH (2006) The Yin and Yang of P-TEFb regulation: implications for human immunodeficiency virus gene expression and global control of cell growth and differentiation. Microbiol Mol Biol Rev 70:646–659

    Article  PubMed  CAS  Google Scholar 

  39. Price DH (2008) Poised polymerases: on your mark…get set…go! Mol Cell 30:7–10

    Article  PubMed  CAS  Google Scholar 

  40. Rice AP (2009) Dysregulation of positive transcription elongation factor B and myocardial hypertrophy. Circ Res 104:1327–1329

    Article  PubMed  CAS  Google Scholar 

  41. Yik JH, Chen R, Nishimura R et al (2003) Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol Cell 12:971–982

    Article  PubMed  CAS  Google Scholar 

  42. Michels AA, Fraldi A, Li Q et al (2004) Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor. EMBO J 23:2608–2619

    Article  PubMed  CAS  Google Scholar 

  43. Muse GW, Gilchrist DA, Nechaev S et al (2007) RNA polymerase is poised for activation across the genome. Nat Genet 39:1507–1511

    Article  PubMed  CAS  Google Scholar 

  44. Zeitinger J, Stark A, Kellis M et al (2007) RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat Genet 39:1512–1516

    Article  Google Scholar 

  45. Huang F, Wagner M, Siddiqui MA (2002) Structure, expression, and functional characterization of the mouse CLP-1 gene. Gene 292:245–259

    Article  PubMed  CAS  Google Scholar 

  46. Huang F, Wagner M, Siddiqui MA (2004) Ablation of the CLP-1 gene leads to down-regulation of the HAND1 gene and abnormality of the left ventricle of the heart and fetal death. Mech Dev 121:559–572

    Article  PubMed  CAS  Google Scholar 

  47. Espinoza-Derout J, Wagner M, Shahmiri K et al (2007) Pivotal role of cardiac lineage protein-1 (CLP-1) in transcriptional elongation factor P-TEFb complex formation in cardiac hypertrophy. Cardiovasc Res 75:129–138

    Article  PubMed  CAS  Google Scholar 

  48. Espinoza-Derout J, Wagner M, Salciccioli L et al (2009) Positive transcription elongation factor b activity in compensatory myocardial hypertrophy is regulated by cardiac lineage protein-1. Circ Res 104:1347–1354

    Article  PubMed  CAS  Google Scholar 

  49. Izumo S, Nadal-Ginard B, Mahdavi V (1988) Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci U S A 85:339–343

    Article  PubMed  CAS  Google Scholar 

  50. Parker TG, Packer SE, Schneider MD (1990) Peptide growth factors can provoke “fetal” contractile protein gene expression in rat cardiac myocytes. J Clin Invest 85:507–514

    Article  PubMed  CAS  Google Scholar 

  51. Sack MN, Kelly DP (1998) The energy substrate switch during development of heart failure: gene regulatory mechanisms (review). Int J Mol Med 1:17–24

    PubMed  CAS  Google Scholar 

  52. Razeghi P, Young ME, Alcorn JL et al (2001) Metabolic gene expression in fetal and failing human heart. Circulation 104:2923–2931

    Article  PubMed  CAS  Google Scholar 

  53. Lehman JJ, Kelly DP (2002) Gene regulatory mechanisms governing energy metabolism during cardiac hypertrophic growth. HeartFail Rev 7:175–185

    Google Scholar 

  54. Thum T, Galuppo P, Wolf C et al (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116:258–267

    Article  PubMed  CAS  Google Scholar 

  55. Creemers EE, Pinto YM (2011) Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res 89:265–272

    Article  PubMed  CAS  Google Scholar 

  56. Sugden PH (2001) Signalling pathways in cardiac myocyte hypertrophy. Ann Med 33:611–622

    PubMed  CAS  Google Scholar 

  57. Baines CP, Molkentin JD (2005) STRESS signaling pathways that modulate cardiac myocyte apoptosis. J Mol Cell Cardiol 38:47–62

    Article  PubMed  CAS  Google Scholar 

  58. Sano M, Wang SC, Shirai M et al (2004) Activation of cardiac Cdk9 represses PGC-1 and confers a predisposition to heart failure. EMBO J 23:3559–3569

    Article  PubMed  CAS  Google Scholar 

  59. Mazzolai L, Pedrazzini T, Nicoud F et al (2000) Increased cardiac angiotensin II levels induce right and left ventricular hypertrophy in normotensive mice. Hypertension 35:985–991

    Article  PubMed  CAS  Google Scholar 

  60. Arad M, Seidman CE, Seidman JG (2007) AMP-activated protein kinase in the heart: role during health and disease. Circ Res 100:474–488

    Article  PubMed  CAS  Google Scholar 

  61. Wong AK, Howie J, Petrie JR, Lang CC (2009) AMP-activated protein kinase pathway: a potential therapeutic target in cardiometabolic disease. Clin Sci (Lond) 116:607–620

    Article  CAS  Google Scholar 

  62. Razeghi P, Young ME, Ying J et al (2002) Downregulation of metabolic gene expression in failing human heart before and after mechanical unloading. Cardiology 97:203–209

    Article  PubMed  CAS  Google Scholar 

  63. Russell RR 3rd, Li J, Coven DL et al (2004) AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 114:495–503

    PubMed  CAS  Google Scholar 

  64. Biernacka A, Dobaczewski M, Frangogiannis NG (2011) TGF-beta signaling in fibrosis. Growth Factors 29:196–202

    Article  PubMed  CAS  Google Scholar 

  65. Dobaczewski M, Bujak M, Li N et al (2010) Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ Res 107:418–428

    Article  PubMed  CAS  Google Scholar 

  66. Sciarretta S, Paneni F, Palano F et al (2009) Role of the renin–angiotensin–aldosterone system and inflammatory processes in the development and progression of diastolic dysfunction. Clin Sci (Lond) 116:467–477

    Article  CAS  Google Scholar 

  67. Dobaczewski M, Chen W, Frangogiannis NG (2011) Transforming growth factor (TGF)-beta signaling in cardiac remodeling. J Mol Cell Cardiol 51:600–606

    Article  PubMed  CAS  Google Scholar 

  68. Verrecchia F, Mauviel A (2002) Control of connective tissue gene expression by TGF beta: role of Smad proteins in fibrosis. Curr Rheumatol Rep 4:143–149

    Article  PubMed  Google Scholar 

  69. Huang XR, Chung AC, Yang F et al (2010) Smad3 mediates cardiac inflammation and fibrosis in angiotensin II-induced hypertensive cardiac remodeling. Hypertension 55:1165–1171

    Article  PubMed  CAS  Google Scholar 

  70. Xia Y, Lee K, Li N et al (2009) Characterization of the inflammatory and fibrotic response in a mouse model of cardiac pressure overload. Histochem Cell Biol 131:471–481

    Article  PubMed  CAS  Google Scholar 

  71. Kretzschmar M, Doody J, Massague J (1997) Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature 389:618–622

    Article  PubMed  CAS  Google Scholar 

  72. Sapkota G, Alarcon C, Spagnoli FM et al (2007) Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol Cell 25:441–454

    Article  PubMed  CAS  Google Scholar 

  73. Mascareno E, Galatioto J, Rozenberg I et al (2012) Cardiac lineage protein-1 (CLP-1) regulates cardiac remodeling via transcriptional modulation of diverse hypertrophic and fibrotic responses and angiotensin II-transforming growth factor beta (TGF-beta1) signaling axis. J Biol Chem 287:13084–13093

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Q. Siddiqui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wagner, M., Siddiqui, M.A.Q. (2013). Cardiac Remodeling in the Hypertrophic Heart: Signal-Dependent Regulation of the Fibrotic Gene Program by CLP-1. In: Ostadal, B., Dhalla, N. (eds) Cardiac Adaptations. Advances in Biochemistry in Health and Disease, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5203-4_18

Download citation

Publish with us

Policies and ethics