Skip to main content

Wavefront Measurement in Ophthalmology

Aberrometry Through the Eyes of an Engineer

  • Reference work entry
  • First Online:
Handbook of Coherent-Domain Optical Methods
  • 2208 Accesses

Abstract

Wavefront sensing or aberration measurement in the eye is a key problem in refractive surgery and vision correction with laser. The accuracy of these measurements is critical for the outcome of the surgery. Practically all clinical methods use laser as a source of light. To better understand the background, we analyze the pre-laser techniques developed over centuries. They allowed new discoveries of the nature of the optical system of the eye, and many served as prototypes for laser-based wavefront sensing technologies. Hartmann’s test was strengthened by Platt’s lenslet matrix and the CCD two-dimensional photodetector acquired a new life as a Hartmann-Shack sensor in Heidelberg. Tscherning’s aberroscope, invented in France, was transformed into a laser device known as a Dresden aberrometer, having seen its reincarnation in Germany with Seiler’s help. The clinical ray tracing technique was brought to life by Molebny in Ukraine, and skiascopy was created by Fujieda in Japan. With the maturation of these technologies, new demands now arise for their wider implementation in optometry and vision correction with customized contact and intraocular lenses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.M. MacRae, R.R. Kruger, R.A. Applegate (eds.), Customized Corneal Ablation. The Quest for SuperVision (SLACK, Thorofare, 2001)

    Google Scholar 

  2. S.M. MacRae, R.R. Kruger, R.A. Applegate (eds.), Wavefront Customized Visual Correction. The Quest for SuperVision II (SLACK, Thorofare, 2004)

    Google Scholar 

  3. B.F. Boyd (ed.), Wavefront Analysis. Aberrometers and Corneal Topography (Highlights of Ophthalmology, Panama, 2003)

    Google Scholar 

  4. F. Caimi, R. Brancato, The Aberrometers Theory. Clinical and Surgical Applications (Fabiano Editore, Canelli, Italy, 2003)

    Google Scholar 

  5. M. Wang (ed.), Corneal Topography in the Wavefront Era (SLACK, Thorofare, 2006)

    Google Scholar 

  6. V.M. Sokurenko, Objective single-beam spatially resolved refractometry of the eye, PhD Dissertation, National Technical University of Ukraine, Kiev, 2000 (in Ukrainian)

    Google Scholar 

  7. I.H. Chyzh, Aberrometry of the optical system of the eye with ray tracing, DSc Dissertation, National Technical University of Ukraine, Kiev, 2006 (in Ukrainian)

    Google Scholar 

  8. J. Rosema, On the wavefront aberrations of the human eye and the search for their origins, PhD Dissertation, University of Antwerp, 2004

    Google Scholar 

  9. D. Atchison, Recent advances in measurement of monochromatic aberrations of human eyes. Clin. Exp. Optom. 88, 5–27 (2005)

    Article  Google Scholar 

  10. M. Lombardo, G. Lombardo, Wave aberration of human eyes and new descriptors of image optical quality and visual performance. J. Cataract Refract. Surg. 36, 313–331 (2010)

    Article  Google Scholar 

  11. C. Scheiner, Oculus hoc est: fundamentum opticum in quo ex accurata oculi (Oeniponti, Innsbruck, 1619)

    Google Scholar 

  12. T. Young, The Bakerian lecture. On the mechanism of the eye. Philos. Trans. R. Soc. Lond. 91, 23–88 (1801)

    Article  Google Scholar 

  13. A.W. Volkmann, Wagner’s Handwörterbuch der Physiologie (Vieweg und Sohn, Brunswick, 1846)

    Google Scholar 

  14. H. von Helmholtz, Optique Physiologique. 1. Dioptrique de l’oeil (Edition Jacques Gabay, Paris, 1867). reimpression Jacques Gabay, Sceaux, 1989

    Google Scholar 

  15. E. Jackson, The measurement of refraction by the shadow-test, or retinoscopy. Am. J. Med. Sci. 89, 404–412 (1885)

    Article  Google Scholar 

  16. E. Jackson, Symmetrical aberration of the eye. Trans. Am. Ophthalmol. Soc. 5, 141–150 (1888)

    Google Scholar 

  17. M. Tscherning, Die monochromatischen Aberrationen des menschlichen Auges. Z. Psychol. Physiol. Sinnesorg. 6, 456–471 (1894)

    Google Scholar 

  18. A. Ames, C.A. Proctor, Dioptrics of the eye. J. Opt. Soc. Am. 5, 22–84 (1921)

    Article  ADS  Google Scholar 

  19. H.T. Pi, Trans. Ophthalmol. Soc. U K 45, 393 (1925)

    Google Scholar 

  20. G.H. Stine, Am. J. Ophthalmol. 13(Ser. 3), 101 (1930)

    Google Scholar 

  21. G.M. Byram, The physical and photochemical basis of visual resolving power. Part I. The distribution of illumination in retinal images. J. Opt. Soc. Am. 34, 571–591 (1944)

    Article  ADS  Google Scholar 

  22. G. von Bahr, Investigations into the spherical and chromatic aberrations of the eye, and their influence on its refraction. Acta Ophthalmol. 23, 1–47 (1945)

    Google Scholar 

  23. J.M. Otero, A. Duran, Continuación del estudio de la miopia nocturna. An. Fis Quim 38, 236 (1942)

    Google Scholar 

  24. M. Koomen, R. Tousey, R. Scolnik, The spherical aberration of the eye. J. Opt. Soc. Am. 39, 370–376 (1949)

    Article  ADS  Google Scholar 

  25. A. Ivanoff, Sur une méthode de mesure des aberrations chromatiques et sphériques de l’oeil en lumière dirigée. C. R. Acad. Sci. 323, 170–172 (1946)

    Google Scholar 

  26. A. Ivanoff, Les aberrations de l’oeil (Editions de la Revue de l’Optique Theorique et Instrumentale, Paris, 1953)

    Google Scholar 

  27. A. Ivanoff, About the spherical aberration of the eye. J. Opt. Soc. Am. 46, 901–903 (1956)

    Article  Google Scholar 

  28. M.J. Koomen, R. Scolnik, R. Tousey, Spherical aberration of the eye and the choice of axis. J. Opt. Soc. Am. 46, 903–904 (1956)

    Article  Google Scholar 

  29. M.S. Smirnov, Measurement of the wave aberration of the human eye. Biophysics 6, 687–703 (1961). Russian original: Biofizika 6, 776–795 (1961)

    Google Scholar 

  30. G. van den Brink, Measurements of the geometrical aberrations of the eye. Vision Res. 2, 233–244 (1962)

    Article  Google Scholar 

  31. M. Dick, E. Schroeder, J. Fiedler, H. Maeusezahl, V. Molebny, Method and device for completely correcting visual defects of the human eye. US Patent 6,616,275, 9 Sept 2003

    Google Scholar 

  32. B. Howland, Use of crossed cylinder lens in photographic lens evaluation. Appl. Opt. 7, 1587–1600 (1968)

    Article  ADS  Google Scholar 

  33. B. Howland, H.C. Howland, Subjective measurement of high order aberrations of the eye. Science 193, 580–582 (1976)

    Article  ADS  Google Scholar 

  34. H.C. Howland, B. Howland, A subjective method for the measurement of monochromatic aberrations of the eye. J. Opt. Soc. Am. 67, 1508–1518 (1977)

    Article  ADS  Google Scholar 

  35. G. Walsh, W.N. Charman, H.C. Howland, Objective technique for the determination of monochromatic aberrations of the human eye. J. Opt. Soc. Am. A 1, 987–992 (1984)

    Article  ADS  Google Scholar 

  36. G. Smith, R.A. Applegate, D.A. Atchison, Assessment of the accuracy of the crossed-cylinder aberroscope technique. J. Opt. Soc. Am. A 15, 2477–2487 (1998)

    Article  ADS  Google Scholar 

  37. R.H. Webb, C.M. Penney, K.P. Thompson, Measurement of ocular local wavefront distortion with a spatially resolved refractometer. Appl. Opt. 31, 3678–3686 (1992)

    Article  ADS  Google Scholar 

  38. N.M. Sergienko, Ophthalmologic Optics (Meditsina, Moscow, 1991) (in Russian)

    Google Scholar 

  39. J.C. He, S. Marcos, R.H. Webb, S.A. Burns, Measurement of the wave-front aberration of the eye by a fast psychophysical procedure. J. Opt. Soc. Am. A 15, 2449–2456 (1998)

    Article  ADS  Google Scholar 

  40. S. Marcos, S.A. Burns, E. Moreno-Barriuso, R. Navarro, A new approach to the study of ocular chromatic aberrations. Vision Res. 39, 4309–4323 (1999)

    Article  Google Scholar 

  41. R.H. Webb, C.M. Penney, J. Sobiech, P.R. Staver, S.A. Burns, SRR (spatially resolved refractometer): a null-seeking aberrometer. Appl. Opt. 42, 736–744 (2003)

    Article  ADS  Google Scholar 

  42. R.V. Shack, B.C. Platt, Production and use of a lenticular Hartmann screen. J. Opt. Soc. Am. 61, 656 (1971)

    Google Scholar 

  43. J. Hartmann, Objektivuntersuchungen. Z. Instrum. 24, 1–21 (1904)

    MathSciNet  Google Scholar 

  44. B.C. Platt, R.S. Shack, History and principles of Shack-Hartmann wavefront sensing. J. Refract. Surg. 17, S573–S577 (2001)

    Google Scholar 

  45. J. Liang, B. Grimm, S. Goelz, J.F. Bille, Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. J. Opt. Soc. Am. A 11(1949–1957) (1994)

    Google Scholar 

  46. A.P. Vinnichenko, V.V. Molebny, Y.N. Filippov, Adaptive aberration correction of a telescope system, in Proceedings of 11 All-Union Conference Coherence Non-Linear Optics, Erevan, 1982, pp. 789–790

    Google Scholar 

  47. V.V. Molebny, V.N. Kurashov, I.G. Pallikaris, L.P. Naoumidis, Adaptive optics technique for measuring eye refraction distribution. Proc. SPIE 2930, 147–157 (1996)

    Article  ADS  Google Scholar 

  48. G. Yoon, S. Pantanelli, L.J. Nagy, Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes. J. Biomed. Opt. 11(1–3), 030502 (2006)

    Article  ADS  Google Scholar 

  49. N. Lindlein, J. Pfund, J. Schwider, Algorithm for expanding the dynamic range of a Shack-Hartmann sensor by using a spatial light modulator array. Opt. Eng. 40, 837–840 (2001)

    Article  ADS  Google Scholar 

  50. V.V. Molebny, Method of measurement of wave aberrations of an eye and device for performing the same. US Patent 6,715,877, 2004

    Google Scholar 

  51. N. Lindlein, J. Pfund, Experimental results for expanding the dynamic range of a Shack-Hartmann sensor using astigmatic microlenses. Opt. Eng. 41, 529–533 (2002)

    Article  ADS  Google Scholar 

  52. S. Groening, B. Sick, K. Donner, J. Pfund, N. Lindlein, J. Schwider, Wave-front reconstruction with a Shack-Hartmann sensor with an iterative spline fitting method. Appl. Opt. 39, 561–567 (2000)

    Article  ADS  Google Scholar 

  53. L. Lundström, P. Unsbo, Unwrapping Hartmann-Shack images from highly aberrated eyes using an iterative B-spline based extrapolation method. Optom. Vis. Sci. 81, 383–388 (2004)

    Article  Google Scholar 

  54. C. Leroux, C. Dainty, A simple and robust method to extend the dynamic range of an aberrometer. Opt. Express 17, 19055–19061 (2009)

    Article  ADS  Google Scholar 

  55. J. Lee, R.V. Shack, M.R. Descour, Sorting method to extend the dynamic range of the Shack–Hartmann wave-front sensor. Appl. Opt. 44, 4838–4845 (2005)

    Article  ADS  Google Scholar 

  56. D.G. Smith, J.E. Greivenkamp, Generalized method for sorting Shack-Hartmann spot patterns using local similarity. Appl. Opt. 47, 4548–4554 (2008)

    Article  ADS  Google Scholar 

  57. P. Bedggood, A. Metha, Comparison of sorting algorithms to increase the range of Hartmann-Shack aberrometry. J. Biomed. Opt. 15(1–7), 067004 (2010)

    Article  ADS  Google Scholar 

  58. G. Häusler, G. Schneider, Testing optics by experimental ray tracing with a lateral effect photodiode. Appl. Opt. 27, 5160–5164 (1988)

    Article  ADS  Google Scholar 

  59. V.V. Molebny, I.G. Pallikaris, L.P. Naoumidis, V.N. Kurashov, I.H. Chyzh, Eye investigation with optical microradar techniques. Proc. SPIE 3065, 191–199 (1997)

    Article  ADS  Google Scholar 

  60. V.V. Molebny, I.G. Pallikaris, L.P. Naoumidis, I.H. Chyzh, S.V. Molebny, V.M. Sokurenko, Retina ray-tracing technique for eye-refraction mapping. Proc. SPIE 2971, 175–183 (1997)

    Article  ADS  Google Scholar 

  61. V.V. Molebny, S.I. Panagopoulou, S.V. Molebny, Y.S. Wakil, I.G. Pallikaris, Principles of ray tracing aberrometry. J. Refract. Surg. 16, 572–575 (2000)

    Google Scholar 

  62. I.G. Pallikaris, S.I. Panagopoulou, V.V. Molebny, Clinical experience with the Tracey Technology wavefront device. J. Refract. Surg. 16, 588–591 (2000)

    Google Scholar 

  63. R. Navarro, M.A. Losada, Aberrations and relative efficiency of light pencils in the living human eye. Optom. Vis. Sci. 74, 540–547 (1997)

    Article  Google Scholar 

  64. R. Navarro, E. Moreno-Barriuso, Laser ray-tracing method for optical testing. Opt. Lett. 24, 951–953 (1999)

    Article  ADS  Google Scholar 

  65. American National Standard for Ophthalmics, Methods for Reporting Optical Aberrations of Eyes. American National Standard for Ophthalmics. ANSI Z80.28–2004 (American National Standards Institute, Merrifield, 2004)

    Google Scholar 

  66. International Standard ISO/FDIS 24157:2008 (E), Ophthalmic optics and instruments – reporting aberrations of the human eye (2008)

    Google Scholar 

  67. P. Artal, A. Guirao, Contributions of the cornea and the lens to the aberrations of the human eye. Opt. Lett. 23, 1713–1715 (1998)

    Article  ADS  Google Scholar 

  68. P. Artal, A. Guirao, E. Berrio, D.R. Williams, Compensation of corneal aberrations by the internal optics in the human eye. J. Vis. 1, 1–8 (2001)

    Article  Google Scholar 

  69. H. Hofer, P. Artal, B. Singer, J.L. Aragon, Dynamics of the eye’s wave aberration. J. Opt. Soc. Am. A 18, 497–508 (2001)

    Article  ADS  Google Scholar 

  70. J. Tarrant, A. Roorda, C.F. Wildsoet, Determining the accommodative response from wavefront aberrations. J. Vis. 10(5), 4, 1–16 (2010)

    Article  Google Scholar 

  71. D.R. Iskander, M.R. Morelande, M.J. Collins, B. Davis, Modeling of corneal surfaces with radial polynomials. IEEE Trans. Biomed. Eng. 49, 320–328 (2002)

    Article  Google Scholar 

  72. A.B. Bhatia, E. Wolf, On the circle polynomials of Zernike and related orthogonal sets. Proc. Camb. Philos. Soc. 50, 40–53 (1954)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  73. L.N. Thibos, W. Wheeler, D. Horner, Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error. Optom. Vis. Sci. 74, 367–375 (1997)

    Article  Google Scholar 

  74. G. Dai, Zernike aberration coefficients transformed to and from Fourier series coefficients for wavefront representation. Opt. Lett. 31, 501–503 (2006)

    Article  ADS  Google Scholar 

  75. S. Molebny, V. Molebny, L.F. Laster, Method for measuring the wave aberrations of the eye. US Patent 7,380,942, 2008

    Google Scholar 

  76. M. Ares, S. Royo, Comparison of cubic B-spline and Zernike-fitting techniques in complex wavefront reconstruction. Appl. Opt. 45, 6954–6964 (2006)

    Article  ADS  Google Scholar 

  77. J. Espinosa, D. Mas, J. Pérez, C. Illueca, Optical surface reconstruction technique through combination of zonal and modal fitting. J. Biomed. Opt. 15, 026022 (2010)

    Article  ADS  Google Scholar 

  78. V.V. Molebny, O.V. Lutsenko, Displaying aberration errors as vectors. Electron. Commun. 14, 103–106 (2002)

    Google Scholar 

  79. V. Molebny, S. Molebny, Ocular Q-factor: an approach to eye aberrations analysis. J. Mod. Opt. 58 (2011). doi:10.1080/09500340.2011.564318

    Google Scholar 

  80. D.R. Williams, D.H. Brainard, M.J. McMahon, R. Navarro, Double-pass and interferometric measures of the optical quality of the eye. J. Opt. Soc. Am. A 11(3123–3135) (1994)

    Google Scholar 

  81. P. Artal, S. Marcos, R. Navarro, D.R. Williams, Odd aberrations and double-pass measurements of retinal image quality. J. Opt. Soc. Am. A 12, 195–201 (1995)

    Article  ADS  Google Scholar 

  82. V.N. Kurashov, V.V. Molebny, A.V. Kovalenko, I.G. Pallikaris, L.P. Naoumidis, Double-pass wave model in eye aberrations study. Proc. SPIE 3192, 243–248 (1997)

    Article  ADS  Google Scholar 

  83. L. Diaz Santana, J.C. Dainty, Single-pass measurements of the wave-front aberrations of the human eye by use of retinal lipofuscin autofluorescence. Opt. Lett. 24, 61–63 (1999)

    Article  ADS  Google Scholar 

  84. G.E. Sommargren, Optical heterodyne profilometry. Appl. Opt. 20, 610–618 (1981)

    Article  ADS  Google Scholar 

  85. C.W. See, M.V. Iravani, H.K. Wickramasinghe, Scanning differential phase contrast optical microscope: application to surface studies. Appl. Opt. 24, 2373–2379 (1985)

    Article  ADS  Google Scholar 

  86. V.V. Molebny, I.G. Pallikaris, L.P. Naoumidis, G.W. Kamerman, E.M. Smirnov, L.M. Ilchenko, V.O. Goncharov, Dual-beam dual-frequency scanning laser radar for investigation of ablation profiles. Proc. SPIE 2748, 68–75 (1996)

    Article  ADS  Google Scholar 

  87. V.V. Molebny, I.G. Pallikaris, L.P. Naoumidis, E.M. Smirnov, L.M. Ilchenko, V.O. Goncharov, High precision double-frequency interferometric measurement of the cornea shape. Proc. SPIE 2965, 121–126 (1996)

    Article  ADS  Google Scholar 

  88. V.V. Molebny, G.W. Kamerman, E.M. Smirnov, L.M. Ilchenko, S.O. Kolenov, V.O. Goncharov, Three-beam scanning laser radar microprofilometer”. Proc. SPIE 3380, 280–284 (1998)

    Article  ADS  Google Scholar 

  89. M. Fujieda, Ophthalmic measurement apparatus having plural pairs of photoreceiving elements. US Patent 5,907,388, 1999

    Google Scholar 

  90. S. MacRae, M. Fujieda, Slit skiascopic-guided ablation using the Nidek laser. J. Refract. Surg. 16, 576–580 (2000)

    Google Scholar 

  91. M. Mrochen, M. Kaemmerer, P. Mierdel, H.E. Krinke, T. Seiler, Principles of Tscherning aberrometry. J. Refract. Surg. 16, 570–571 (2000)

    Google Scholar 

  92. P. Mierdel, M. Kaemmerer, M. Mrochen, H.E. Krinke, T. Seiler, Ocular optical aberrometer for clinical use. J. Biomed. Opt. 6, 200–204 (2001)

    Article  ADS  Google Scholar 

  93. V. Molebny, I. Pallikaris, Y. Wakil, S. Molebny, Method and device for synchronous mapping of the total refraction non-homogeneity of the eye and its refractive components. US Patent 6,409,345, 2002

    Google Scholar 

  94. V. Sokurenko, V. Molebny, Damped least-squares approach for point-source corneal topography. Ophthalmol. Physiol. Opt. 29, 330–337 (2009)

    Article  Google Scholar 

  95. C.E. Stewart, EVA hazard due to TPS inspection and repair. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070020343_2007018370.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasyl Molebny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Molebny, V. (2013). Wavefront Measurement in Ophthalmology. In: Tuchin, V. (eds) Handbook of Coherent-Domain Optical Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5176-1_9

Download citation

Publish with us

Policies and ethics