Skip to main content

A Fast Block Krylov Implicit Runge–Kutta Method for Solving Large-Scale Ordinary Differential Equations

  • Chapter
  • First Online:
Optimization, Simulation, and Control

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 76))

Abstract

In this chapter, we describe a new based block Krylov–Runge–Kutta method for solving stiff ordinary differential equations. We transform the linear system arising in the application of Newton’s method to a nonsymmetric matrix Stein equation that will be solved by a block Krylov iterative method. Numerical examples are given to illustrate the performance of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Y. Barraud. A numerical algorithm to solve \({A}^{T}XA - X = Q\), IEEE Trans. Autom. Contr., AC-22: 883–885, (1977).

    Article  MathSciNet  Google Scholar 

  2. A. Bouhamidi and K. Jbilou: Sylvester Tikhonov-regularization methods in image restoration, J. Comput. Appl. Math., 206(1):86–98, (2007).

    Article  MathSciNet  MATH  Google Scholar 

  3. P. N. Brown, A. C. Hindmarsh, and L. R. Petzold: Using Krylov methods in the solution of large-scale differential-algebraic systems, SIAM J. Sci. Comput. 15: 1467–1488, (1994).

    Article  MathSciNet  MATH  Google Scholar 

  4. J.C. Butcher: The Numerical Analysis of Ordinary Differential Equations, Wiley, Chichester, 1987.

    MATH  Google Scholar 

  5. B.N. Datta: Krylov-subspace methods for large scale matrix problems in control, Generation of Computer Systems, 19: 125–126, (2003).

    Google Scholar 

  6. B.N. Datta: Numerical Methods for Linear Control Systems, Elsevier Academic press, 2004.

    Google Scholar 

  7. K. Dekker, Partitioned Krylov subspace iteration in implicit Runge–Kutta methods, Linear Algebra Appl. 431:488–494, (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Druskin, L. Knizhnerman, Extended Krylov subspaces: approximation of the matrix square root and related functions, SIAM J. Matrix Anal. Appl., 19(3):755–771, (1998).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. El Guennouni, K. Jbilou and A.J. Riquet, Block Krylov subspace methods for solving large Sylvester equations, Numer. Alg., 29: 75–96, (2002).

    Article  MathSciNet  MATH  Google Scholar 

  10. C. W. Gear, Simultaneous numerical solutions of differential-algebraic equations, IEEE Trans. Circuit Theory, CT-18, 1: 89–95, (1971).

    Article  Google Scholar 

  11. K. Glover, D.J.N. Limebeer, J.C. Doyle, E.M. Kasenally and M.G. Safonov, A characterisation of all solutions to the four block general distance problem, SIAM J. Control Optim., 29: 283–324, (1991).

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Hairer, S. P. Nørsett and G. Wanner, Solving ordinary differential equations I. Nonstiff Problems, 2nd Revised Editions, Springer Series in computational Mathematics, Vol. 8, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  13. E. Hairer, and G. Wanner, Solving ordinary differential equations II. Stiff and differential algebraic problems, 2nd Revised Editions, Comput. Math., Vol. 14, Springer-Verlag, Berlin, 1996.

    Google Scholar 

  14. L. O. Jay, Inexact simplified Newton iterations for implicit Runge–Kutta methods, SIAM J. Numer. Anal. 38: 1369–1388, (2000).

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Jbilou A. Messaoudi H. Sadok, Global FOM and GMRES algorithms for matrix equations, Appl. Num. Math., Appl. Num. math., 31: 49–63, (1999).

    Google Scholar 

  16. P. Lancaster, L. Rodman, Algebraic Riccati Equations, Clarendon Press, Oxford, 1995.

    MATH  Google Scholar 

  17. Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statis. Comput., 7:856–869, (1986).

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equations, SIAM J. Sci. Comp., 29(3):1268–1288, (2007).

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Van Dooren, Gramian based model reduction of large-scale dynamical systems, in Numerical Analysis, Chapman and Hall, pp. 231–247, CRC Press London, 2000.

    Google Scholar 

  20. D. Voss, S. Abbas: Block predictorcorrector schemes for the parallel solution of ODEs, Comp. Math. Appl. 33: 65–72, (1997).

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Voss, P.H. Muir, Mono-implicit Runge-Kutta schemes for of initial value ODES the parallel solution, J. Comp. Appl. Math. 102: 235–252, (1999).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jbilou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bouhamidi, A., Jbilou, K. (2013). A Fast Block Krylov Implicit Runge–Kutta Method for Solving Large-Scale Ordinary Differential Equations. In: Chinchuluun, A., Pardalos, P., Enkhbat, R., Pistikopoulos, E. (eds) Optimization, Simulation, and Control. Springer Optimization and Its Applications, vol 76. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5131-0_20

Download citation

Publish with us

Policies and ethics