Skip to main content

History of Diffuse Optical Spectroscopy of Human Tissue

  • Chapter
  • First Online:
Optical Methods and Instrumentation in Brain Imaging and Therapy

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 3))

Abstract

Diffuse optical spectroscopy is a noninvasive method that uses low levels of near-infrared light to measure blood oxygenation in the brain. Over the last 35 years, the number of diffuse optical studies and the range of clinical and research applications have grown steadily. Compared to other neuroimaging methods to measure cerebral blood oxygenation, such as magnetic resonance imaging or positron emission tomography, diffuse optical imaging (DOI) is more cost effective and often uses small portable instrumentation. Wireless and bedside optical systems are currently produced commercially. The portability of these instruments has extended the use of optical methods into several unique applications including brain imaging in infants and children, studies of the brain during ambulatory tasks such as walking or balance, and interoperative brain assessments. This chapter will introduce the history and basic principles of DOI including discussion of the factors contributing to the optical properties of tissue, instrumentation, and an overview of applications of the technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cope M, Delpy DT, Reynolds EO, Wray S, Wyatt J, van der Zee P (1988) Methods of quantitating cerebral near infrared spectroscopy data. Adv Exp Med Biol 222:183–189

    Article  Google Scholar 

  2. Delpy DT, Cope MC, Cady EB, Wyatt JS, Hamilton PA, Hope PL, Wray S, Reynolds EO (1987) Cerebral monitoring in newborn infants by magnetic resonance and near infrared spectroscopy. Scand J Clin Lab Invest Suppl 188:9–17

    Google Scholar 

  3. Chance B, Leigh JS, Miyake H, Smith DS, Nioka S, Greenfeld R, Finander M, Kaufmann K, Levy W, Young M et al (1988) Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain. Proc Natl Acad Sci U S A 85(14):4971–4975

    Article  ADS  Google Scholar 

  4. Hoshi Y (2003) Functional near-infrared optical imaging: utility and limitations in human brain mapping. Psychophysiology 40(4):511–520

    Article  MathSciNet  Google Scholar 

  5. Hoshi Y, Tamura M (1993) Dynamic multichannel near-infrared optical imaging of human brain activity. J Appl Physiol 75(4):1842–1846

    Google Scholar 

  6. Villringer A, Chance B (1997) Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci 20(10):435–442

    Article  Google Scholar 

  7. Jobsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198(4323):1264–1267

    Article  ADS  Google Scholar 

  8. De Blasi RA, Quaglia E, Gasparetto A, Ferrari M (1992) Muscle oxygenation by fast near infrared spectrophotometry (NIRS) in ischemic forearm. Adv Exp Med Biol 316:163–172

    Article  Google Scholar 

  9. Chance B, Bank W (1995) Genetic disease of mitochondrial function evaluated by NMR and NIR spectroscopy of skeletal tissue. Biochim Biophys Acta 1271(1):7–14

    Article  Google Scholar 

  10. Boushel R, Piantadosi CA (2000) Near-infrared spectroscopy for monitoring muscle oxygenation. Acta Physiol Scand 168(4):615–622

    Article  Google Scholar 

  11. Colier WN, van Haaren NJ, Oeseburg B (1995) A comparative study of two near infrared spectrophotometers for the assessment of cerebral haemodynamics. Acta Anaesthesiol Scand Suppl 107:101–105

    Article  Google Scholar 

  12. Torella F, Cowley R, Thorniley MS, McCollum CN (2002) Monitoring blood loss with near infrared spectroscopy. Comp Biochem Physiol A Mol Integr Physiol 132(1):199–203

    Article  Google Scholar 

  13. Hyttel-Sorensen S, Sorensen LC, Riera J, Greisen G (2011) Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm. Biomed Opt Express 2(11):3047–3057, PMCID:3207374

    Article  Google Scholar 

  14. Reed CA, Baker RS, Lam CT, Hilshorst JL, Ferguson R, Lombardi J, Eghtesady P (2011) Application of near-infrared spectroscopy during fetal cardiac surgery. J Surg Res 171(1):159–163

    Article  Google Scholar 

  15. van Bel F, Lemmers P, Naulaers G (2008) Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls. Neonatology 94(4):237–244

    Article  Google Scholar 

  16. Adcock LM, Wafelman LS, Hegemier S, Moise AA, Speer ME, Contant CF, Goddard-Finegold J (1999) Neonatal intensive care applications of near-infrared spectroscopy. Clin Perinatol 26(4):893–903, ix

    Google Scholar 

  17. Nicklin SE, Hassan IA, Wickramasinghe YA, Spencer SA (2003) The light still shines, but not that brightly? The current status of perinatal near infrared spectroscopy. Arch Dis Child Fetal Neonatal Ed 88(4):F263–F268, PMCID:1721587

    Article  Google Scholar 

  18. Greisen G (2006) Is near-infrared spectroscopy living up to its promises? Semin Fetal Neonatal Med 11(6):498–502

    Article  Google Scholar 

  19. Zeff BW, White BR, Dehghani H, Schlaggar BL, Culver JP (2007) Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography. Proc Natl Acad Sci U S A 104(29):12169–12174

    Article  ADS  Google Scholar 

  20. Hoppe-Seyler F (1866) Über die Oxydation in lebenden Blute. Med Chem Untersuch Lab 1:133–140

    Google Scholar 

  21. Stokes GG (1864) On the reduction and oxidation of the colouring matter of the blood. Proc R Soc Lond 13:355–364

    Google Scholar 

  22. Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G, North AC (1960) Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. Nature 185(4711):416–422

    Article  ADS  Google Scholar 

  23. Nobelprize.org (1962) The Nobel Prize in Chemistry 1962. [cited 2012 March 22]

    Google Scholar 

  24. Severinghaus JW, Astrup PB (1986) History of blood gas analysis. V. Oxygen measurement. J Clin Monit 2(3):174–189

    Article  Google Scholar 

  25. Nicolai L (1932) Uber Sichtbarmachung, Verlauf und chemische Kinetik der Oxyhemoglobinreduktion im lebenden Gewebe, besonders in der menschlichen Haut. Arch Ges Physiol 229:372–389

    Article  Google Scholar 

  26. Kramer K (1935) Ein Verfahren zur fortlaufenden Messung des Sauerstoffgehaltes im stromenden Blute an uner6ffneten Gefassen. Z Biol 96:61–75

    Google Scholar 

  27. Severinghaus JW, Astrup PB (1986) History of blood gas analysis. VI. Oximetry. J Clin Monit 2(4):270–288

    Article  Google Scholar 

  28. Severinghaus JW (2007) Takuo Aoyagi: discovery of pulse oximetry. Anesth Analg 105(6 suppl):S1–S4, tables of contents

    Article  Google Scholar 

  29. Nagamitsu S, Yamashita Y, Tanaka H, Matsuishi T (2012) Functional near-infrared spectroscopy studies in children. Biopsychosoc Med 6(1):7

    Article  Google Scholar 

  30. Ferrari M, Quaresima V (2012) A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63(2): 921–-35

    Google Scholar 

  31. Smith M (2011) Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy. Philos Trans A Math Phys Eng Sci 369(1955):4452–4469

    Article  ADS  Google Scholar 

  32. Bourdillon N, Mollard P, Letournel M, Beaudry M, Richalet JP (2009) Interaction between hypoxia and training on NIRS signal during exercise: contribution of a mathematical model. Respir Physiol Neurobiol 169(1):50–61

    Article  Google Scholar 

  33. Durduran T, Choe R, Culver JP, Zubkov L, Holboke MJ, Giammarco J, Chance B, Yodh AG (2002) Bulk optical properties of healthy female breast tissue. Phys Med Biol 47(16):2847–2861

    Article  Google Scholar 

  34. Gibson AP, Hebden JC, Arridge SR (2005) Recent advances in diffuse optical imaging. Phys Med Biol 50(4):R1–R43

    Article  ADS  Google Scholar 

  35. Boverman G, Miller EL, Li A, Zhang Q, Chaves T, Brooks DH, Boas DA (2005) Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information. Phys Med Biol 50(17):3941–3956

    Article  Google Scholar 

  36. Srinivasan S, Pogue BW, Jiang S, Dehghani H, Kogel C, Soho S, Gibson JJ, Tosteson TD, Poplack SP, Paulsen KD (2006) In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction. Acad Radiol 13(2):195–202

    Article  Google Scholar 

  37. Enfield LC, Gibson AP, Hebden JC, Douek M (2009) Optical tomography of breast cancer-monitoring response to primary medical therapy. Target Oncol 4(3):219–233

    Article  Google Scholar 

  38. Choe R (2009) Diffuse optical tomography & spectroscopy in breast cancer characterization & therapy monitoring at UPENN. Conf Proc IEEE Eng Med Biol Soc 2009:6335–6337

    Google Scholar 

  39. Irvine WM, Pollack JB (1968) Infrared optical properties of water and ice spheres. Icarus 8:324–360

    Article  ADS  Google Scholar 

  40. Kopelevich OV (1976) Optical properties of pure water in the 250-600nm range. Opt Spectrosc 41:391–392

    ADS  Google Scholar 

  41. Palmer KF, Williams D (1974) Optical properties of water in the near infrared. J Opt Soc Am 64:1107–1110

    Article  ADS  Google Scholar 

  42. van Veen RLP, Sterenborg HJCM, Pifferi A, Torricelli A, Cubeddu R (2004) Determination of VIS- NIR absorption coefficients of mammalian fat, with time- and spatially resolved diffuse reflectance and transmission spectroscopy. in OSA Annual BIOMED Topical Meeting

    Google Scholar 

  43. Sarna T, Sealy R (1984) Photoinduced oxygen consumption in melanin systems. Action spectra and quantum yields for eumelanin and synthetic melanin. Photochem Photobiol 39:69–74

    Article  Google Scholar 

  44. Takatani S, Graham MD (1987) Theoretical analysis of diffuse reflectance from a two-layer tissue model. IEEE Trans Biomed Eng 26:656–664

    Article  Google Scholar 

  45. Moaveni MK (1970) A multiple scattering field theory applied to whole blood, in Dept. of Electrical Engineering. University of Washington

    Google Scholar 

  46. Prahl S. http://omlc.ogi.edu/spectra

  47. Heinrich U (1981) Untersuchungen zur qualitativen photometrischen analyse der redox-zustande der atmungskette in vitro und in vivo am beispiel des gehirns., in Abteilung fur Biologie. Ruhr-Universitat Bochum

    Google Scholar 

  48. http://www.medphys.ucl.ac.uk

  49. Strangman G, Franceschini MA, Boas DA (2003) Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters. Neuroimage 18(4):865–879

    Article  Google Scholar 

  50. Simpson CR, Kohl M, Essenpreis M, Cope M (1998) Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys Med Biol 43(9):2465–2478

    Article  Google Scholar 

  51. Firbank M, Hiraoka M, Essenpreis M, Delpy DT (1993) Measurement of the optical properties of the skull in the wavelength range 650–950 nm. Phys Med Biol 38(4):503–510

    Article  Google Scholar 

  52. Hillman EM (2002) Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications. In: Department of medical physics and bioengineering. University College London, London

    Google Scholar 

  53. Cheong WF, Prahl SA, Welch AJ (1990) A review of the optical properties of biological tissues. IEEE J Quantum Electron 26:2166–2185

    Article  ADS  Google Scholar 

  54. van-der-Zee P (1992) Measurement and modelling of the optical properties of human tissue in the near infrared. In: Department of medical physics and bioengineering. University College London, London

    Google Scholar 

  55. Patel J, Marks K, Roberts I, Azzopardi D, Edwards AD (1998) Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green. Pediatr Res 43(1):34–39

    Article  Google Scholar 

  56. Te Velde EA, Veerman T, Subramaniam V, Ruers T (2010) The use of fluorescent dyes and probes in surgical oncology. Eur J Surg Oncol 36(1):6–15

    Article  Google Scholar 

  57. Luo S, Zhang E, Su Y, Cheng T, Shi C (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32(29):7127–7138

    Article  Google Scholar 

  58. van den Berg NS, van Leeuwen FW, van der Poel HG (2012) Fluorescence guidance in urologic surgery. Curr Opin Urol 22(2):109–120

    Article  Google Scholar 

  59. Mizuno S, Isaji S (2010) Indocyanine green (ICG) fluorescence imaging-guided cholangiography for donor hepatectomy in living donor liver transplantation. Am J Transplant 10(12):2725–2726

    Article  Google Scholar 

  60. Kleine M, Joahnning K, Kousoulas L, Schrem H, Lehner F, Bektas H, Klempnauer J, Kaaden S (2011) Observations with impact on the indication for kinetic therapy in critically ill liver transplant patients. Ann Transplant 16(4):25–31

    Google Scholar 

  61. Ren Z, Xu Y, Zhu S (2011) Indocyanine green retention test avoiding liver failure after hepatectomy for hepatolithiasis. Hepatogastroenterology 59:115–116

    Google Scholar 

  62. Mohnle P, Kilger E, Adnan L, Beiras-Fernandez A, Vicol C, Weis F (2012) Indocyanine green clearance after cardiac surgery: the impact of cardiopulmonary bypass. Perfusion 27:292–299

    Article  Google Scholar 

  63. Yu G, Floyd TF, Durduran T, Zhou C, Wang J, Detre JA, Yodh AG (2007) Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI. Opt Express 15(3):1064–1075

    Article  ADS  Google Scholar 

  64. Yodh AG (2009) Diffuse optics for monitoring brain hemodynamics. Conf Proc IEEE Eng Med Biol Soc 2009:1991–1993

    Google Scholar 

  65. Durduran T, Zhou C, Buckley EM, Kim MN, Yu G, Choe R, Gaynor JW, Spray TL, Durning SM, Mason SE, Montenegro LM, Nicolson SC, Zimmerman RA, Putt ME, Wang J, Greenberg JH, Detre JA, Yodh AG, Licht DJ (2010) Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects. J Biomed Opt 15(3):037004, PMCID:2887915

    Article  Google Scholar 

  66. Kim MN, Durduran T, Frangos S, Edlow BL, Buckley EM, Moss HE, Zhou C, Yu G, Choe R, Maloney-Wilensky E, Wolf RL, Grady MS, Greenberg JH, Levine JM, Yodh AG, Detre JA, Kofke WA (2010) Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults. Neurocrit Care 12(2):173–180, PMCID:2844468

    Article  Google Scholar 

  67. Gratton G, Fabiani M, Corballis PM, Hood DC, Goodman-Wood MR, Hirsch J, Kim K, Friedman D, Gratton E (1997) Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI. Neuroimage 6(3):168–180

    Article  Google Scholar 

  68. Gratton G, Fabiani M, Goodman-Wood MR, Desoto MC (1998) Memory-driven processing in human medial occipital cortex: an event-related optical signal (EROS) study. Psychophysiology 35(3):348–351

    Article  Google Scholar 

  69. Gratton G, Fabiani M (2003) The event-related optical signal (EROS) in visual cortex: replicability, consistency, localization, and resolution. Psychophysiology 40(4):561–571

    Article  Google Scholar 

  70. Radhakrishnan H, Vanduffel W, Deng HP, Ekstrom L, Boas DA, Franceschini MA (2009) Fast optical signal not detected in awake behaving monkeys. Neuroimage 45(2):410–419, PMCID:2648855

    Article  Google Scholar 

  71. Beer A, Lambert J (1854) Einleitung in die höhere Optik (Introduction to the Higher Optical)

    Google Scholar 

  72. Bouguer P (1729) Essai d’Optique, sur la gradation de la lumiere. Paris, France

    Google Scholar 

  73. Delpy DT, Cope M, van der Zee P, Arridge S, Wray S, Wyatt J (1988) Estimation of optical pathlength through tissue from direct time of flight measurement. Phys Med Biol 33(12):1433–1442

    Article  Google Scholar 

  74. Haskell RC, Svaasand LO, Tsay TT, Feng TC, McAdams MS, Tromberg BJ (1994) Boundary conditions for the diffusion equation in radiative transfer. J Opt Soc Am A Opt Image Sci Vis 11(10):2727–2741

    Article  ADS  Google Scholar 

  75. Flock ST, Wilson BC, Patterson MS (1989) Monte Carlo modeling of light propagation in highly scattering tissues–II: comparison with measurements in phantoms. IEEE Trans Biomed Eng 36(12):1169–1173

    Article  Google Scholar 

  76. Flock ST, Patterson MS, Wilson BC, Wyman DR (1989) Monte Carlo modeling of light propagation in highly scattering tissue–I: model predictions and comparison with diffusion theory. IEEE Trans Biomed Eng 36(12):1162–1168

    Article  Google Scholar 

  77. Hiraoka M, Firbank M, Essenpreis M, Cope M, Arridge SR, van der Zee P, Delpy DT (1993) A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy. Phys Med Biol 38(12):1859–1876

    Article  Google Scholar 

  78. Wang L, Jacques SL, Zheng L (1995) MCML–Monte Carlo modeling of light transport in multi-layered tissues. Comput Methods Programs Biomed 47(2):131–146

    Article  Google Scholar 

  79. Quan G, Gong H, Deng Y, Fu J, Luo Q (2011) Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units. J Biomed Opt 16(2):026018

    Article  Google Scholar 

  80. Dehghani H, Eames ME, Yalavarthy PK, Davis SC, Srinivasan S, Carpenter CM, Pogue BW, Paulsen KD (2008) Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction. Commun Numer Methods Eng 25(6):711–732, PMCID:2826796

    Article  MathSciNet  Google Scholar 

  81. Fantini S, Hueber D, Franceschini MA, Gratton E, Rosenfeld W, Stubblefield PG, Maulik D, Stankovic MR (1999) Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy. Phys Med Biol 44(6):1543–1563

    Article  Google Scholar 

  82. Hueber DM, Franceschini MA, Ma HY, Zhang Q, Ballesteros JR, Fantini S, Wallace D, Ntziachristos V, Chance B (2001) Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument. Phys Med Biol 46(1):41–62

    Article  Google Scholar 

  83. Boas D (1996) Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications. In: Physics. University of Pennsylvania

    Google Scholar 

  84. Durduran T, Yu G, Burnett MG, Detre JA, Greenberg JH, Wang J, Zhou C, Yodh AG (2004) Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation. Opt Lett 29(15):1766–1768

    Article  ADS  Google Scholar 

  85. Dunn AK, Bolay H, Moskowitz MA, Boas DA (2001) Dynamic imaging of cerebral blood flow using laser speckle. J Cereb Blood Flow Metab 21(3):195–201

    Article  Google Scholar 

  86. Durduran T, Choe R, Yu G, Zhou C, Tchou JC, Czerniecki BJ, Yodh AG (2005) Diffuse optical measurement of blood flow in breast tumors. Opt Lett 30(21):2915–2917

    Article  ADS  Google Scholar 

  87. Sunar U, Quon H, Durduran T, Zhang J, Du J, Zhou C, Yu G, Choe R, Kilger A, Lustig R, Loevner L, Nioka S, Chance B, Yodh AG (2006) Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study. J Biomed Opt 11(6):064021

    Article  Google Scholar 

  88. Zhou C, Choe R, Shah N, Durduran T, Yu G, Durkin A, Hsiang D, Mehta R, Butler J, Cerussi A, Tromberg BJ, Yodh AG (2007) Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy. J Biomed Opt 12(5):051903

    Article  Google Scholar 

  89. Edlow BL, Kim MN, Durduran T, Zhou C, Putt ME, Yodh AG, Greenberg JH, Detre JA (2010) The effects of healthy aging on cerebral hemodynamic responses to posture change. Physiol Meas 31(4):477–495

    Article  Google Scholar 

  90. Fantini S, Franceschini MA, Fishkin JB, Barbieri B, Gratton E (1994) Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique. Appl Opt 33(22):5204–5213

    Article  ADS  Google Scholar 

  91. Obrig H, Villringer A (2003) Beyond the visible—imaging the human brain with light. J Cereb Blood Flow Metab 23(1):1–18

    Article  Google Scholar 

  92. Steinbrink J, Villringer A, Kempf F, Haux D, Boden S, Obrig H (2006) Illuminating the BOLD signal: combined fMRI-fNIRS studies. Magn Reson Imaging 24(4):495–505

    Article  Google Scholar 

  93. Toet MC, Lemmers PM (2009) Brain monitoring in neonates. Early Hum Dev 85(2):77–84

    Article  Google Scholar 

  94. Moerman A, Wouters P (2010) Near-infrared spectroscopy (NIRS) monitoring in contemporary anesthesia and critical care. Acta Anaesthesiol Belg 61(4):185–194

    Google Scholar 

  95. Lloyd-Fox S, Blasi A, Elwell CE (2010) Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neurosci Biobehav Rev 34(3):269–284

    Article  Google Scholar 

  96. Hoshi Y (2011) Towards the next generation of near-infrared spectroscopy. Philos Trans A Math Phys Eng Sci 369(1955):4425–4439

    Article  MathSciNet  ADS  MATH  Google Scholar 

  97. Pellicer A, Bravo Mdel C (2011) Near-infrared spectroscopy: a methodology-focused review. Semin Fetal Neonatal Med 16(1):42–49

    Article  Google Scholar 

  98. Highton D, Elwell C, Smith M (2010) Noninvasive cerebral oximetry: is there light at the end of the tunnel? Curr Opin Anaesthesiol 23(5):576–581

    Article  Google Scholar 

  99. Kasman N, Brady K (2011) Cerebral oximetry for pediatric anesthesia: why do intelligent clinicians disagree? Paediatr Anaesth 21(5):473–478

    Article  Google Scholar 

  100. Chen CS, Leu BK, Liu K (1996) Detection of cerebral desaturation during cardiopulmonary bypass by cerebral oximetry. Acta Anaesthesiol Sin 34(4):173–178

    Google Scholar 

  101. Nemoto EM, Yonas H, Kassam A (2000) Clinical experience with cerebral oximetry in stroke and cardiac arrest. Crit Care Med 28(4):1052–1054

    Article  Google Scholar 

  102. Tortoriello TA, Stayer SA, Mott AR, McKenzie ED, Fraser CD, Andropoulos DB, Chang AC (2005) A noninvasive estimation of mixed venous oxygen saturation using near-infrared spectroscopy by cerebral oximetry in pediatric cardiac surgery patients. Paediatr Anaesth 15(6):495–503

    Article  Google Scholar 

  103. Hassan IA, Wickramasinghe YA, Spencer SA (2003) Effect of limb cooling on peripheral and global oxygen consumption in neonates. Arch Dis Child Fetal Neonatal Ed 88(2):F139–F142, PMCID:1721525

    Article  Google Scholar 

  104. Ancora G, Maranella E, Locatelli C, Pierantoni L, Faldella G (2009) Changes in cerebral hemodynamics and amplitude integrated EEG in an asphyxiated newborn during and after cool cap treatment. Brain Dev 31(6):442–444

    Article  Google Scholar 

  105. Pennekamp CW, Bots ML, Kappelle LJ, Moll FL, de Borst GJ (2009) The value of near-infrared spectroscopy measured cerebral oximetry during carotid endarterectomy in perioperative stroke prevention. A review. Eur J Vasc Endovasc Surg 38(5):539–545

    Article  Google Scholar 

  106. Pennekamp CW, Moll FL, de Borst GJ (2011) The potential benefits and the role of cerebral monitoring in carotid endarterectomy. Curr Opin Anaesthesiol 24(6):693–697

    Article  Google Scholar 

  107. Casati A, Spreafico E, Putzu M, Fanelli G (2006) New technology for noninvasive brain monitoring: continuous cerebral oximetry. Minerva Anestesiol 72(7–8):605–625

    Google Scholar 

  108. Garreffa G, Carni M, Gualniera G, Ricci GB, Bozzao L, De Carli D, Morasso P, Pantano P, Colonnese C, Roma V, Maraviglia B (2003) Real-time MR artifacts filtering during continuous EEG/fMRI acquisition. Magn Reson Imaging 21(10):1175–1189

    Article  Google Scholar 

  109. Skjoth-Rasmussen J, Schulz M, Kristensen SR, Bjerre P (2004) Delayed neurological deficits detected by an ischemic pattern in the extracellular cerebral metabolites in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 100(1):8–15

    Article  Google Scholar 

  110. Ghalenoui H, Saidi H, Azar M, Yahyavi ST, Borghei Razavi H, Khalatbari M (2008) Near-infrared laser spectroscopy as a screening tool for detecting hematoma in patients with head trauma. Prehosp Disaster Med 23(6):558–561

    Google Scholar 

  111. Kirkpatrick PJ, Smielewski P, Czosnyka M, Menon DK, Pickard JD (1995) Near-infrared spectroscopy use in patients with head injury. J Neurosurg 83(6):963–970

    Article  Google Scholar 

  112. Hou X, Ding H, Teng Y, Zhou C, Tang X, Li S (2007) Research on the relationship between brain anoxia at different regional oxygen saturations and brain damage using near-infrared spectroscopy. Physiol Meas 28(10):1251–1265

    Article  Google Scholar 

  113. Moroz T, Banaji M, Robertson NJ, Cooper CE, Tachtsidis I (2012) Computational modelling of the piglet brain to simulate near-infrared spectroscopy and magnetic resonance spectroscopy data collected during oxygen deprivation. J R Soc Interface 9:1499–1509

    Article  Google Scholar 

  114. Franceschini MA, Thaker S, Themelis G, Krishnamoorthy KK, Bortfeld H, Diamond SG, Boas DA, Arvin K, Grant PE (2007) Assessment of infant brain development with frequency-domain near-infrared spectroscopy. Pediatr Res 61(5 Pt 1):546–551, PMCID:2637818

    Google Scholar 

  115. Grant PE, Roche-Labarbe N, Surova A, Themelis G, Selb J, Warren EK, Krishnamoorthy KS, Boas DA, Franceschini MA (2009) Increased cerebral blood volume and oxygen consumption in neonatal brain injury. J Cereb Blood Flow Metab 29(10):1704–1713, PMCID:2762197

    Article  Google Scholar 

  116. Roche-Labarbe N, Carp SA, Surova A, Patel M, Boas DA, Grant PE, Franceschini MA (2010) Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life. Hum Brain Mapp 31(3):341–352, PMCID:2826558

    Article  Google Scholar 

  117. Boas DA, Dale AM, Franceschini MA (2004) Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy. Neuroimage 23(suppl 1):S275–S288

    Article  Google Scholar 

  118. Huppert TJ, Diamond SG, Franceschini MA, Boas DA (2009) HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl Opt 48(10):D280–D298, PMCID:2761652

    Article  ADS  Google Scholar 

  119. Aslin RN (2012) Questioning the questions that have been asked about the infant brain using near-infrared spectroscopy. Cogn Neuropsychol, http://dx.doi.org/10.1080/02643294.2012.654773

  120. Minagawa-Kawai Y, Cristia A, Dupoux E (2011) Cerebral lateralization and early speech acquisition: a developmental scenario. Dev Cogn Neurosci 1(3):217–232

    Article  Google Scholar 

  121. Minagawa-Kawai Y, Mori K, Hebden JC, Dupoux E (2008) Optical imaging of infants’ neurocognitive development: recent advances and perspectives. Dev Neurobiol 68(6):712–728

    Article  Google Scholar 

  122. Herrmann MJ, Walter A, Schreppel T, Ehlis AC, Pauli P, Lesch KP, Fallgatter AJ (2007) D4 receptor gene variation modulates activation of prefrontal cortex during working memory. Eur J Neurosci 26(10):2713–2718

    Article  Google Scholar 

  123. Ehlis AC, Bahne CG, Jacob CP, Herrmann MJ, Fallgatter AJ (2008) Reduced lateral prefrontal activation in adult patients with attention-deficit/hyperactivity disorder (ADHD) during a working memory task: a functional near-infrared spectroscopy (fNIRS) study. J Psychiatr Res 42(13):1060–1067

    Article  Google Scholar 

  124. Azechi M, Iwase M, Ikezawa K, Takahashi H, Canuet L, Kurimoto R, Nakahachi T, Ishii R, Fukumoto M, Ohi K, Yasuda Y, Kazui H, Hashimoto R, Takeda M (2010) Discriminant analysis in schizophrenia and healthy subjects using prefrontal activation during frontal lobe tasks: a near-infrared spectroscopy. Schizophr Res 117(1):52–60

    Article  Google Scholar 

  125. Schroeter ML, Zysset S, Kupka T, Kruggel F, Yves von Cramon D (2002) Near-infrared spectroscopy can detect brain activity during a color-word matching Stroop task in an event-related design. Hum Brain Mapp 17(1):61–71

    Article  Google Scholar 

  126. Ehlis AC, Herrmann MJ, Wagener A, Fallgatter AJ (2005) Multi-channel near-infrared spectroscopy detects specific inferior-frontal activation during incongruent Stroop trials. Biol Psychol 69(3):315–331

    Article  Google Scholar 

  127. Moghimi S, Kushki A, Power S, Guerguerian AM, Chau T (2012) Automatic detection of a prefrontal cortical response to emotionally rated music using multi-channel near-infrared spectroscopy. J Neural Eng 9(2):026022

    Article  Google Scholar 

  128. Sato Y, Uzuka T, Aoki H, Natsumeda M, Oishi M, Fukuda M, Fujii Y (2012) Near-infrared spectroscopic study and the Wada test for presurgical evaluation of expressive and receptive language functions in glioma patients: with a case report of dissociated language functions. Neurosci Lett 510(2):104–109

    Article  Google Scholar 

  129. Kahlaoui K, Sante GD, Barbeau J, Maheux M, Lesage F, Ska B, Joanette Y (2012) Contribution of NIRS to the study of prefrontal cortex for verbal fluency in aging. Brain Lang 121(2):164–173

    Article  Google Scholar 

  130. Jausovec N, Jausovec K (2012) Working memory training: improving intelligence—changing brain activity. Brain Cogn 79(2):96–106

    Article  Google Scholar 

  131. Okamoto M, Dan H, Shimizu K, Takeo K, Amita T, Oda I, Konishi I, Sakamoto K, Isobe S, Suzuki T, Kohyama K, Dan I (2004) Multimodal assessment of cortical activation during apple peeling by NIRS and fMRI. Neuroimage 21(4):1275–1288

    Article  Google Scholar 

  132. Li ZY, Dai SX, Zhang XY, Li Y, Yu XX (2010) Assessment of cerebral oxygen saturation using near infrared spectroscopy under driver fatigue state. Guang Pu Xue Yu Guang Pu Fen Xi 30(1):58–61

    Google Scholar 

  133. Naoi N, Minagawa-Kawai Y, Kobayashi A, Takeuchi K, Nakamura K, Yamamoto J, Kojima S (2012) Cerebral responses to infant-directed speech and the effect of talker familiarity. Neuroimage 59(2):1735–1744

    Article  Google Scholar 

  134. Nomura Y, Ogawa T, Nomura M (2010) Perspective taking associated with social relationships: a NIRS study. Neuroreport 21(17):1100–1105

    Article  Google Scholar 

  135. Kleinschmidt A, Obrig H, Requardt M, Merboldt KD, Dirnagl U, Villringer A, Frahm J (1996) Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. J Cereb Blood Flow Metab 16(5):817–826

    Article  Google Scholar 

  136. Dunn JF, Zaim-Wadghiri Y, Pogue BW, Kida I (1998) BOLD MRI vs. NIR spectrophotometry. Will the best technique come forward? Adv Exp Med Biol 454:103–113

    Article  Google Scholar 

  137. D’Arceuil HE, Hotakainen MP, Liu C, Themelis G, de Crespigny AJ, Franceschini MA (2005) Near-infrared frequency-domain optical spectroscopy and magnetic resonance imaging: a combined approach to studying cerebral maturation in neonatal rabbits. J Biomed Opt 10(1):11011, PMCID:2637814

    Article  Google Scholar 

  138. Sassaroli A, de BFB, Tong Y, Renshaw PF, Fantini S (2006) Spatially weighted BOLD signal for comparison of functional magnetic resonance imaging and near-infrared imaging of the brain. Neuroimage 33(2):505–514

    Google Scholar 

  139. Toronov VY, Zhang X, Webb AG (2007) A spatial and temporal comparison of hemodynamic signals measured using optical and functional magnetic resonance imaging during activation in the human primary visual cortex. Neuroimage 34:1136–1148

    Article  Google Scholar 

  140. Huppert TJ, Hoge RD, Diamond SG, Franceschini MA, Boas DA (2006) A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. Neuroimage 29(2):368–382, PMCID:2692693

    Article  Google Scholar 

  141. Hock C, Villringer K, Muller-Spahn F, Hofmann M, Schuh-Hofer S, Heekeren H, Wenzel R, Dirnagl U, Villringer A (1996) Near infrared spectroscopy in the diagnosis of Alzheimer’s disease. Ann N Y Acad Sci 777:22–29

    Article  ADS  Google Scholar 

  142. Rostrup E, Law I, Pott F, Ide K, Knudsen GM (2002) Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans. Brain Res 954(2):183–193

    Article  Google Scholar 

  143. Gervain J, Mehler J, Werker JF, Nelson CA, Csibra G, Lloyd-Fox S, Shukla M, Aslin RN (2011) Near-infrared spectroscopy: a report from the McDonnell infant methodology consortium. Dev Cogn Neurosci 1(1):22–46

    Article  Google Scholar 

  144. Karim H, Schmidt B, Dart D, Beluk N, Huppert T (2012) Functional near-infrared spectroscopy (fNIRS) of brain function during active balancing using a video game system. Gait Posture 35:367–372

    Article  Google Scholar 

  145. Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K (2001) Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage 14(5):1186–1192

    Article  Google Scholar 

  146. Suzuki M, Miyai I, Ono T, Kubota K (2008) Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study. Neuroimage 39(2):600–607

    Article  Google Scholar 

  147. Iida M, Haida M, Igarashi M (2009) Vertigo and cerebral hemoglobin changes during unilateral caloric stimulation: a near-infrared spectroscopy study. Ann N Y Acad Sci 1164:386–389

    Article  Google Scholar 

  148. Kobayashi A, Cheung B (2006) Detection of cerebral oxyhaemoglobin changes during vestibular Coriolis cross-coupling stimulation using near infrared spectroscopy. Neurosci Lett 394(2):83–87

    Article  Google Scholar 

  149. Hamaoka T, McCully KK, Niwayama M, Chance B (2011) The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments. Philos Trans A Math Phys Eng Sci 369(1955):4591–4604

    Article  ADS  Google Scholar 

  150. Ryoo HC, Sun HH, Shender BS, Hrebien L (2004) Consciousness monitoring using near-infrared spectroscopy (NIRS) during high +Gz exposures. Med Eng Phys 26(9):745–753

    Article  Google Scholar 

  151. Benni PB, Li JK, Chen B, Cammarota J, Amory DW (2003) Correlation of NIRS determined cerebral oxygenation with severity of pilot +Gz acceleration symptoms. Adv Exp Med Biol 530:381–389

    Article  Google Scholar 

  152. Benni PB, Li JK, Chen B, Cammarota J, Amory DW (2003) NIRS monitoring of pilots subjected to +Gz acceleration and G-induced loss of consciousness (G-LOC). Adv Exp Med Biol 530:371–379

    Article  Google Scholar 

  153. Shender BS, Forster EM, Hrebien L, Ryoo HC, Cammarota JP Jr (2003) Acceleration-induced near-loss of consciousness: the “A-LOC” syndrome. Aviat Space Environ Med 74(10):1021–1028

    Google Scholar 

  154. Kobayashi A, Tong A, Kikukawa A (2002) Pilot cerebral oxygen status during air-to-air combat maneuvering. Aviat Space Environ Med 73(9):919–924

    Google Scholar 

  155. Ryoo HC, Hrebien L, Shender BS (2002) Noninvasive monitoring of human consciousness by near-infrared spectroscopy (NIRS) during high +Gz stress. Biomed Sci Instrum 38:1–7

    Google Scholar 

  156. Genik RJ II, Green CC, Graydon FX, Armstrong RE (2005) Cognitive avionics and watching spaceflight crews think: generation-after-next research tools in functional neuroimaging. Aviat Space Environ Med 76(6 suppl):B208–B212

    Google Scholar 

  157. Gagnon L, Yucel MA, Dehaes M, Cooper RJ, Perdue KL, Selb J, Huppert TJ, Hoge RD, Boas DA (2012) Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements. Neuroimage 59:3933–3940

    Article  Google Scholar 

  158. Villringer K, Minoshima S, Hock C, Obrig H, Ziegler S, Dirnagl U, Schwaiger M, Villringer A (1997) Assessment of local brain activation. A simultaneous PET and near-infrared spectroscopy study. Adv Exp Med Biol 413:149–153

    Google Scholar 

  159. Eschweiler GW, Wegerer C, Schlotter W, Spandl C, Stevens A, Bartels M, Buchkremer G (2000) Left prefrontal activation predicts therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) in major depression. Psychiatry Res 99(3):161–172

    Article  Google Scholar 

  160. Ziemann U (2011) Transcranial magnetic stimulation at the interface with other techniques: a powerful tool for studying the human cortex. Neuroscientist 17(4):368–381

    Article  Google Scholar 

  161. Sander TH, Liebert A, Burghoff M, Wabnitz H, Macdonald R, Trahms L (2007) Cross-correlation analysis of the correspondence between magnetoencephalographic and near-infrared cortical signals. Methods Inf Med 46(2):164–168

    Google Scholar 

  162. Mackert BM, Wubbeler G, Leistner S, Uludag K, Obrig H, Villringer A, Trahms L, Curio G (2004) Neurovascular coupling analyzed non-invasively in the human brain. Neuroreport 15(1):63–66

    Article  Google Scholar 

  163. Lareau E, Lesage F, Pouliot P, Nguyen D, Le Lan J, Sawan M (2011) Multichannel wearable system dedicated for simultaneous electroencephalographynear-infrared spectroscopy real-time data acquisitions. J Biomed Opt 16(9):096014

    Article  Google Scholar 

  164. Fazli S, Mehnert J, Steinbrink J, Curio G, Villringer A, Muller KR, Blankertz B (2012) Enhanced performance by a hybrid NIRS-EEG brain computer interface. Neuroimage 59(1):519–529

    Article  Google Scholar 

  165. Machado A, Lina JM, Tremblay J, Lassonde M, Nguyen DK, Lesage F, Grova C (2011) Detection of hemodynamic responses to epileptic activity using simultaneous Electro-EncephaloGraphy (EEG)/Near Infra Red Spectroscopy (NIRS) acquisitions. Neuroimage 56(1):114–125

    Article  Google Scholar 

  166. Lee S, Lee M, Koh D, Kim BM, Choi JH (2010) Cerebral hemodynamic responses to seizure in the mouse brain: simultaneous near-infrared spectroscopy-electroencephalography study. J Biomed Opt 15(3):037010

    Article  Google Scholar 

  167. Roche-Labarbe N, Zaaimi B, Mahmoudzadeh M, Osharina V, Wallois A, Nehlig A, Grebe R, Wallois F (2010) NIRS-measured oxy- and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in a genetic model of absence epilepsy: the GAERS. Epilepsia 51(8):1374–1384

    Article  Google Scholar 

  168. Ancora G, Maranella E, Grandi S, Sbravati F, Coccolini E, Savini S, Faldella G (2011) Early predictors of short term neurodevelopmental outcome in asphyxiated cooled infants. A combined brain amplitude integrated electroencephalography and near infrared spectroscopy study. Brain Dev (in press)

    Google Scholar 

  169. Gucuyener K, Beken S, Ergenekon E, Soysal S, Hirfanoglu I, Turan O, Unal S, Altuntas N, Kazanci E, Kulali F, Koc E, Turkyilmaz C, Onal E, Atalay Y (2012) Use of amplitude-integrated electroencephalography (aEEG) and near infrared spectroscopy findings in neonates with asphyxia during selective head cooling. Brain Dev 34:280–286

    Article  Google Scholar 

  170. ter Horst HJ, Verhagen EA, Keating P, Bos AF (2011) The relationship between electrocerebral activity and cerebral fractional tissue oxygen extraction in preterm infants. Pediatr Res 70(4):384–388

    Google Scholar 

  171. Wallois F, Patil A, Heberle C, Grebe R (2010) EEG-NIRS in epilepsy in children and neonates. Neurophysiol Clin 40(5–6):281–292

    Article  Google Scholar 

  172. Aarabi A, Grebe R, Wallois F (2007) A multistage knowledge-based system for EEG seizure detection in newborn infants. Clin Neurophysiol 118(12):2781–2797

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore J. Huppert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huppert, T.J. (2013). History of Diffuse Optical Spectroscopy of Human Tissue. In: Madsen, S. (eds) Optical Methods and Instrumentation in Brain Imaging and Therapy. Bioanalysis, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4978-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4978-2_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4977-5

  • Online ISBN: 978-1-4614-4978-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics