Skip to main content

Photo-activated Cancer Therapy: Potential for Treatment of Brain Tumors

  • Chapter
  • First Online:
Optical Methods and Instrumentation in Brain Imaging and Therapy

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 3))

  • 1914 Accesses

Abstract

The diffuse and infiltrative nature of high grade gliomas, such as glioblastoma multiforme (GBM), makes complete surgical resection virtually impossible. The propensity of glioma cells to migrate along white matter tracts suggests that a cure is possible only if these migratory cells can be eradicated. Approximately 80% of GBMs recur within 2 cm of the resection margin, suggesting that a reasonable approach for improving the prognosis of GBM patients would be the development of improved local therapies capable of eradicating glioma cells in the brain-adjacent-to-tumor (BAT). An additional complicating factor for the development of successful therapies is the presence of the blood–brain barrier (BBB) which is highly variable throughout the BAT—it is intact in some regions, while leaky in others. This variance in BBB patency has significant implications for the delivery of therapeutic agents. The results of a number of studies have shown that experimental light-based therapeutic modalities such as photochemical internalization (PCI) and photothermal therapy (PTT) may be useful in the treatment of gliomas. This chapter summarizes recent findings illustrating the potential of: (1) PCI for the delivery of therapeutic macromolecules such as chemotherapeutic agents and tumor suppressor genes, and (2) nanoshell-mediated PTT, including nanoparticle delivery approaches via macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wallner KE, Galicich JH, Krol G, Arbit E, Malkin MG (1989) Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 16:1405–9

    Article  Google Scholar 

  2. Brem H, Piantadosi S, Burger PC et al (1995) Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet 345(8956):1008–12

    Article  Google Scholar 

  3. Johannesen TB, Watne K, Lote K, Norum J, Tvera K, Hirschberg H (1999) Intracavity fractionated balloon brachytherapy in glioblastoma. Acta Neurochir 141:127–33

    Article  Google Scholar 

  4. Boekelheide K, Eveleth J, Tatum A, Winkelman J (1987) Microtubule assembly inhibition by porphyrins and related-compounds. Photochem Photobiol 46:657–661

    Article  Google Scholar 

  5. Dadosh N, Shaklai N (1987) Effect of protoporphyrin-IX on red blood-cell membrane cytoskeleton. J Muscle Res Cell Motil 9:86–92

    Google Scholar 

  6. Nelson J, Liaw L, Berns M (1987) Tumor destruction in photodynamic therapy. Photochem Photobiol 46:829–835

    Article  Google Scholar 

  7. Sporn L, Foster T (1992) Photofrin and light induces microtubule depolymerization in cultured human endothelial-cells. Cancer Res 52:3443–3448

    Google Scholar 

  8. Chen B, Pogue BW, Luna JM et al (2006) Tumor vascular permeabilization by vascular-targeting photosensitization: effects, mechanism, and therapeutic implications. Clin Cancer Res 12:917–923

    Article  Google Scholar 

  9. Berg K, Selbo PK, Prasmickaite L et al (1999) Photochemical internalization: a novel technology for delivery of macromolecules into cytosol. Cancer Res 59(6):1180–83

    Google Scholar 

  10. Dietze A, Peng Q, Selbo PK et al (2005) Enhanced photodynamic destruction of a transplantable fibrosarcoma using photochemical internalization of gelonin. Br J Cancer 92:2004–9

    Article  Google Scholar 

  11. Selbo PK, Kaalhus O, Sivam G, Berg K (2001) 5- aminolevulinic acid-based photochemical internalization of the immunotoxin MOC31-gelonin generates synergistic cytotoxic effects in vitro. Photochem Photobiol 74:303–10

    Article  Google Scholar 

  12. Selbo PK, Sivam G, Fodstad Ø, Sandvig K, Berg K (2000) Photochemical internalization increases the cytotoxic effect of the immunotoxin MOC31 gelonin. Int J Cancer 87:853–9

    Article  Google Scholar 

  13. Prasmickaite L, Høgset A, Selbo PK et al (2002) Photochemical disruption of endocytic vesicles before delivery of drugs: a new strategy for cancer therapy. Br J Cancer 86:652–7

    Article  Google Scholar 

  14. Selbo PK, Weyergang A, Høgset A et al (2010) Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules. J Control Release 148(1):2–12

    Article  Google Scholar 

  15. Berg K, Bommer J, Moan J (1989) Evaluation of sulfonated aluminum phthalocyanines for use in photochemotherapy. Cellular uptake studies. Cancer Lett 44:7–15

    Article  Google Scholar 

  16. Maman N, Dhami S, Phillips D, Brault D (1999) Kinetic and equilibrium studies of incorporation of di-sulfonated aluminum phthalocyanine into unilamellar vesicles. Biochim Biophys Acta 1420:168–178

    Article  Google Scholar 

  17. Vykhodtseva N, McDannold N, Hynynen K (2008) Progress and problems in the application of focused ultrasound for blood–brain barrier disruption. Ultrasonics 48:279–96

    Article  Google Scholar 

  18. Hirschberg H, Uzal FA, Chighvinadze D, Zhang MJ, Peng Q, Madsen SJ (2008) Disruption of the blood–brain barrier following ALA-mediated photodynamic therapy. Lasers Surg Med 40:535–41

    Article  Google Scholar 

  19. Hirschberg H, Zhang MJ, Gach HM et al (2009) Targeted delivery of bleomycin to the brain using photo-chemical internalization of Clostridium perfringens epsilon prototoxin. J Neurooncol 95(3):317–29

    Article  Google Scholar 

  20. Murphy LJ, Hachey DL, Oates JA et al (2000) Metabolism of bradykinin in vivo in humans: identification of BK1-5 as a stable plasma peptide metabolite. J Pharmacol Exp Ther 294(1):263–9

    Google Scholar 

  21. Worthington R, Mulders M (1975) The effect of Clostridium perfringens epsilon toxin on the blood–brain barrier of mice. Onderstepoort J Vet Res 42:25–31

    Google Scholar 

  22. Nagahama M, Sakurai J (1991) Distribution of labeled Clostridium perfringens epsilon toxin in mice. Toxicon 29:211–7

    Article  Google Scholar 

  23. Dorca-Arevalo J, Soler-Jover A, Gibert M et al (2008) Binding of epsilon toxin from Clostridium perfringens in the nervous system. Vet Microbiol 131:14–20

    Article  Google Scholar 

  24. Madsen SJ, Angell-Petersen E, Spetalen S, Carper SW, Ziegler SA, Hirschberg H (2006) Photodynamic therapy of newly implanted glioma cells in the rat brain. Lasers Surg Med 38:540–548

    Article  Google Scholar 

  25. Pron G, Mahrour N, Orlowski S (1999) Internalization of the bleomycin molecules responsible for bleomycin toxicity: a receptor-mediated endocytosis mechanism. Biochem Pharmacol 57:45–56

    Article  Google Scholar 

  26. Berg K, Dietze A, Kaalhus O, Hogset A (2005) Site-specific drug delivery by photochemical internalization enhances the antitumor effect of bleomycin. Clin Cancer Res 11(23):8476–85

    Article  Google Scholar 

  27. Alcantara L, Laguno S et al (2009) Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15(1):45–56

    Article  Google Scholar 

  28. Evers P, Lee PP et al (2010) Irradiation of the potential cancer stem cell niches in the adult brain improves progression free survival of patients with malignant gliomas. BMC Cancer 10:384–9

    Article  Google Scholar 

  29. Hogset A, Ovstebo Engesaeter B, Prasmickaite L et al (2002) Light induced adenovirus gene transfer, an efficient and specific gene delivery technology for cancer gene therapy. Cancer Gene Ther 9:365–371

    Article  Google Scholar 

  30. Ndoye A, Dolivet G, Hogset A et al (2006) Eradication of p53-mutated head and neck squamous cell carcinoma xenografts using nonviral p53 gene therapy and photochemical internalization. Mol Ther 13(6):1156–62

    Article  Google Scholar 

  31. Knobbe CB, Merlo A, Reifenberger G (2002) Pten signaling in gliomas. Neuro Oncol 4(3):196–211

    Google Scholar 

  32. Cho SK, Kwon YJ (2011) Polyamine/DNA polyplexes with acid-degradable polymeric shell as structurally and functionally virus-mimicking nonviral vectors. J Control Release 150:287–297

    Article  Google Scholar 

  33. Chou CH, Sun CH, Zhou YH, Madsen SJ and Hirschberg H (2011) Enhanced transfection of brain tumor suppressor genes by photochemical internalization. Proceedings SPIE, photonic therapeutics and diagnostics, vol 7883, p 3U

    Google Scholar 

  34. Hirschberg H, Mathews MB, Shih EC, Madsen SJ, Kwon YJ (2012) Enhanced gene transfection by photochemical internalization of protomine sulfate/DNA complexes. Proceedings SPIE, Photonic therapeutics and diagnostics, vol 8207, p S1

    Google Scholar 

  35. Tsuchiya Y, Ishti T, Okahata Y, Sato T (2006) Characterization of protamine as a transfection accelerator for gene delivery. J Bioact Compat Polym 21:519–537

    Article  Google Scholar 

  36. Liu J, Guo S, Li Z, Liu L, Gu J (2009) Synthesis and characterization of stearyl protamine and investigation of their complexes with DNA for gene delivery. Colloids Surf B Biointerfaces 73(1):36–41

    Article  Google Scholar 

  37. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  Google Scholar 

  38. Maeda H, Fang J, Inutsuka T, Kitamoto Y (2003) Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 3:319–328

    Article  Google Scholar 

  39. Huang X, Qian W, El-Sayed IH, El-Sayed MA (2007) The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Surg Med 39(9):747–753

    Article  Google Scholar 

  40. Schwartz JA, Shetty AM, Price RE, Stafford RJ, Wang JC, Uthamanthil RK et al (2009) Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res 69(4):1659–1667

    Article  Google Scholar 

  41. Badie B, Schartner JM (2000) Flow cytometric characterization of tumor associated macrophages in experimental gliomas. Neurosurgery 46:957–61 discussion 61–2

    Google Scholar 

  42. Roggendorf W, Strupp S, Paulus W (1996) Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathol 92:288–93

    Article  Google Scholar 

  43. Valable S, Barbier EL, Bernaudin M, Roussel S, Segebarth C, Petit E et al (2008) In vivo MRI tracking of exogenous monocytes/macrophages targeting brain tumors in a rat model of glioma. Neuroimage 40(2):973–983

    Article  Google Scholar 

  44. Choi MR, Stanton-Maxey KJ, Stanley JK et al (2007) A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Lett 7(12):3759–3765

    Article  ADS  Google Scholar 

  45. Baek SK, Makkouk AR, Krasieva T, Sun CH, Madsen SJ, Hirschberg H (2011) Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells. J Neurooncol 104(2):439–48

    Article  Google Scholar 

  46. Madsen SJ, Baek SK, Makkouk AK, Krasieva T, Hirschberg H (2012) Macrophages as cell-based delivery systems for nanoshells in photothermal therapy. Ann Biomed Eng 40(2):507–15

    Article  Google Scholar 

  47. Hirschberg H, Samset E, Hole PK, Lote K (2006) Impact of intraoperative MRI on the results of surgery for high grade gliomas. J Min Inv Neurosurg 48:77–84

    Article  Google Scholar 

  48. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomized controlled multicentre phase III trial. Lancet Oncol 7:392–401

    Article  Google Scholar 

  49. Madsen SJ, Sun CH, Tromberg BJ, Hirschberg H (2001) Development of a novel balloon applicator for optimizing light delivery in photodynamic therapy. Lasers Surg Med 29:406–10

    Article  Google Scholar 

  50. Madsen SJ, Svaasand LO, Tromberg BJ, Hirschberg H (2001) Characterization of optical and thermal distributions from an intracranial balloon applicator for photodynamic therapy. Proc SPIE 4257:41

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Hirschberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hirschberg, H. (2013). Photo-activated Cancer Therapy: Potential for Treatment of Brain Tumors. In: Madsen, S. (eds) Optical Methods and Instrumentation in Brain Imaging and Therapy. Bioanalysis, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4978-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4978-2_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4977-5

  • Online ISBN: 978-1-4614-4978-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics