Skip to main content

Monge–Kantorovich Mass Transference Problem, Minimal Distances and Minimal Norms

  • Chapter
  • First Online:
The Methods of Distances in the Theory of Probability and Statistics

Abstract

The goals of this chapter are to: Introduce the Kantorovich and Kantorovich–Rubinstein problems in one-dimensional and multidimensional settings; Provide examples illustrating applications of the abstract problems; Provide examples illustrating applications of the abstract problems; Discuss the multivariate Kantorovich and Kantorovich–Rubinstein theorems, which provide dual representations of certain types of minimal distances and norms; Discuss a particular application leading to an explicit representation for a class of minimal norms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The program of the conference and related materials are available online at http://www.mccme.ru/%5C~ansobol/otarie/MK2012conf.html.

  2. 2.

    See Rachev [1991], Rachev and Taksar [1992], Rachev and Hanin [1995a,b], Cuesta et al. [1996], and Rachev and Rüschendorf [1999].

  3. 3.

    See, for example, Bazaraa and Jarvis [2005].

  4. 4.

    See also the general discussion in Whittle (1982, p. 210–211).

  5. 5.

    See Gray (1988, p. 48).

  6. 6.

    See Kalashnikov and Rachev [1988, Chaps. 3 and 6].

  7. 7.

    See, for example, Bazaraa and Jarvis [2005].

  8. 8.

    See Bazaraa and Jarvis [2005] and Berge and Chouila-Houri [1965, Sect. 9.8].

  9. 9.

    See Fortet and Mourier [1953].

  10. 10.

    See Dunford and Schwartz [1988, p. 65].

  11. 11.

    See also Dudley [2002, Theorem 11.6.2].

  12. 12.

    See Sect. 2.2 of Chap. 2.

References

  1. Ambrosio L (2002) Optimal transport maps in the Monge-Kantorovich problem. Lect Notes ICM III:131–140

    Google Scholar 

  2. Ambrosio L (2003) Lecture notes on optimal transport problems. In: Mathematical aspects of evolving interfaces, lecture notes in mathematics, vol 1812. Springer, Berlin/Heidelberg, pp 1–52

    Google Scholar 

  3. Anderson TW (2003) An introduction to multivariate statistical analysis, 3rd edn. Wiley, Hoboken

    MATH  Google Scholar 

  4. Angenent S, Haker S, Tannenbaum A (2003) Minimizing flows for the Monge-Kantorovich problem. SIAM J Math Anal 35(1):61–97

    Article  MathSciNet  MATH  Google Scholar 

  5. Barrett JW, Prigozhin L (2009) L1 Monge-Kantorovich problem: variational formulation and numerical approximation. Interfaces and Free Boundaries 11:201–238

    Article  MathSciNet  MATH  Google Scholar 

  6. Bazaraa MS, Jarvis JJ (2005) Linear programming and network flows, 3rd edn. Wiley, Hoboken

    MATH  Google Scholar 

  7. Berge C, Chouila-Houri A (1965) Programming, games, and transportation networks. Wiley, New York

    Google Scholar 

  8. Billingsley P (1999) Convergence of probability measures, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  9. Brenier Y (2003) Extended Monge-Kantorovich theory. In: Optimal transportation and applications. Lecture notes in mathematics, vol 1813. Springer, Berlin, pp 91–121

    Google Scholar 

  10. Carlier G (2003) Duality and existence for a class of mass transportation problems and economic applications. Adv Math Econ 5:1–21

    Article  MathSciNet  Google Scholar 

  11. Chartrand R, Vixie KR, Wohlberg B, Bollt EM (2009) A gradient descent solution to the Monge-Kantorovich problem. Appl Math Sci 3(22):1071–1080

    MathSciNet  Google Scholar 

  12. Cuesta J, Matran C, Rachev S, Rüschendorf L (1996) Mass transportation problems in probability theory. Math Sci 21:34–72

    MathSciNet  MATH  Google Scholar 

  13. Dudley RM (1976) Probabilities and metrics: convergence of laws on metric spaces, with a view to statistical testing. In: Aarhus University Mathematics Institute lecture notes, series no. 45, Aarhus

    Google Scholar 

  14. Dudley RM (2002) Real analysis and probability, 2nd edn. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  15. Dunford N, Schwartz J (1988) Linear operators, vol 1. Wiley, New York

    Google Scholar 

  16. Evans LC, Gangbo W (1999) Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem Am Math Soc 137:1–66

    MathSciNet  Google Scholar 

  17. Feldman M, McCann RJ (2002) Monge’s transport problem on a Riemannian manifold. Trans Am Math Soc 354:1667–1697

    Article  MathSciNet  MATH  Google Scholar 

  18. Feyel D, Üstünel A (2004) Monge-Kantorovitch measure transportation and Monge-Ampère equation on Wiener space. Probab Theor Relat Fields 128:347–385

    Article  MATH  Google Scholar 

  19. Fortet R, Mourier B (1953) Convergence de la réparation empirique vers la répétition theorétique. Ann Sci Ecole Norm 70:267–285

    MathSciNet  MATH  Google Scholar 

  20. Gabriel J, Gonzlez-Hernndez J, Lpez-Martnez R (2010) Numerical approximations to the mass transfer problem on compact spaces. J Numer Anal 30(4):1121–1136

    Article  MathSciNet  MATH  Google Scholar 

  21. Gray RM (1988) Probability, random processes, and ergodic properties. Springer, New York

    MATH  Google Scholar 

  22. Igbida N, Mazón JM, Rossi JD, Toledo J (2011) A Monge-Kantorovich mass transport problem for a discrete distance. J Funct Anal 260:494–3534

    Article  Google Scholar 

  23. Kalashnikov VV, Rachev ST (1988) Mathematical methods for construction of stochastic queueing models. Nauka, Moscow (in Russian). [English transl. (1990) Wadsworth, Brooks—Cole, Pacific Grove, CA]

    Google Scholar 

  24. Kantorovich LV (1940) On one effective method of solving certain classes of extremal problems. Dokl. Akad. Nauk, USSR 28:212–215

    Google Scholar 

  25. Kantorovich LV, Rubinshtein GSh (1958) On the space of completely additive functions. Vestnik LGU Ser Mat, Mekh i Astron 7:52–59

    Google Scholar 

  26. Karatzas I (1984) Gittins indices in the dynamic allocation problem for diffusion processes. Ann Prob 12:173–192

    Article  MathSciNet  MATH  Google Scholar 

  27. Kemperman JHB (1983) On the role of duality in the theory of moments. Semi-infinite programming and applications. In: Lecture notes economic mathematical system, vol 215. Springer, Berlin, pp 63–92

    Google Scholar 

  28. Kruskal WM (1958) Ordinal measures of association. J Am Stat Assoc 53:814–861

    Article  MathSciNet  MATH  Google Scholar 

  29. Léonard C (2012) From the Schrödinger problem to the Monge-Kantorovich problem. J Funct Anal 262:1879–1920

    Article  MathSciNet  MATH  Google Scholar 

  30. Levin V (1997) Reduced cost functions and their applications. J Math Econ 28(2):155–186

    Article  MATH  Google Scholar 

  31. Levin V (1999) Abstract cyclical monotonicity and Monge solutions for the general Monge-Kantorovich problem. Set-Valued Anal 7(1):7–32

    Article  MathSciNet  MATH  Google Scholar 

  32. Levin VL, Milyutin AA (1979) The mass transfer problem with discontinuous cost function and a mass setting for the problem of duality of convex extremum problems. Usp Mat Nauk 34:3–68 (in Russian). (English transl. (1979) Russian Math Surveys 34, 1–78]

    Google Scholar 

  33. Rachev S (1991) Mass transshipment problems and ideal metrics. Numer Funct Anal Optim 12(5&6):563–573

    Article  MathSciNet  MATH  Google Scholar 

  34. Rachev S, Hanin L (1995a) An extension of the kantorovich–Rubinstein mass-transshipment problem. Numer Funct Anal Optim 16:701–735

    Article  MathSciNet  MATH  Google Scholar 

  35. Rachev S, Hanin L (1995b) Mass transshipment problems and ideal metrics. J Comput Appl Math 56:114–150

    MathSciNet  Google Scholar 

  36. Rachev S, Rüschendorf L (1998) Mass transportation problems, vol I: Theory. Springer, New York

    MATH  Google Scholar 

  37. Rachev S, Rüschendorf L (1999) Mass transportation problems: applications, vol II. Springer, New York

    Google Scholar 

  38. Rachev S, Taksar M (1992) Kantorovich’s functionals in space of measures. In: Applied stochastic analysis, proceedings of the US-French workshop. Lecture notes in control and information science, vol 177, pp 248–261

    Google Scholar 

  39. Sudakov VN (1976) Geometric problems in the theory of infinite-dimensional probability distributions. Tr Mat Inst V A Steklov, Akad Nauk, SSSR, vol 141 (in Russian). (English transl. (1979) Proc Steklov Inst Math (1979). no 2, 141)

    Google Scholar 

  40. Talagrand M (1996) Transportation cost for Gaussian and other product measures. Geom Funct Anal 6:587–600

    Article  MathSciNet  MATH  Google Scholar 

  41. Villani C (2003) Topics in Optimal transportation, graduate studies in mathematics, vol 58. AMS, Providence

    Google Scholar 

  42. Whittle P (1982) Optimization over time: dynamic programming and stochastic control. Wiley, Chichester, UK

    MATH  Google Scholar 

  43. Zhang X (2011) Stochastic Monge-Kantorovich problem and its duality. Forthcoming in Stochastics An International Journal of Probability and Stochastic Processes DOI: 10.1080/17442508.2011.624627

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rachev, S.T., Klebanov, L.B., Stoyanov, S.V., Fabozzi, F.J. (2013). Monge–Kantorovich Mass Transference Problem, Minimal Distances and Minimal Norms. In: The Methods of Distances in the Theory of Probability and Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4869-3_5

Download citation

Publish with us

Policies and ethics