Skip to main content

Clinical Genomics in Oncology

  • Reference work entry
  • First Online:
Molecular Genetic Pathology

Abstract

Clinical genomics can be described as the application of large-scale, high-throughput genomic technologies in clinical settings, such as clinical trials or primary care of patients. The field of clinical genomics has grown enormously by the elucidation of the full sequence of the human genome as well as the ability of large-scale surveys of gene expression, single-nucleotide polymorphisms, DNA copy number changes, and high-throughput sequencing technologies. In this chapter, we will describe methodologies and applications of clinical genomics, primarily focusing on DNA microarrays and high-throughput sequencing in breast cancer, hematological malignancies, prostate cancer, and gastrointestinal tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Abdullah-Sayani A, Bueno-de-Mesquita JM, van de Vijver MJ. Technology Insight: tuning into the genetic orchestra using microarrays – limitations of DNA microarrays in clinical practice. Nat Clin Pract Oncol. 2006;3:501–16.

    Article  PubMed  CAS  Google Scholar 

  • Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–11.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong SA, Kung AL, Mabon ME, et al. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell. 2003;3:173–83.

    Article  PubMed  CAS  Google Scholar 

  • Ascano M, Hafner M, Cekan P, et al. Identification of RNA–protein interaction networks using PAR–CLIP. Wiley Interdiscip Rev RNA. 2012;3:159–77.

    Article  PubMed  CAS  Google Scholar 

  • Bell DW. Our changing view of the genomic landscape of cancer. J Pathol. 2010;220:231–43.

    PubMed  CAS  Google Scholar 

  • Bild AH, Yao G, Chang JT, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439:353–7.

    Article  PubMed  CAS  Google Scholar 

  • Bloom G, Yang IV, Boulware D, et al. Multi-platform, multi-site, microarray-based human tumor classification. Am J Pathol. 2004;164:9–16.

    Article  PubMed  CAS  Google Scholar 

  • Buckhaults P, Zhang Z, Chen YC, et al. Identifying tumor origin using a gene expression-based classification map. Cancer Res. 2003;63:4144–9.

    PubMed  CAS  Google Scholar 

  • Campbell PJ, Yachida S, Mudie LJ, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010;467:1109–13.

    Article  PubMed  CAS  Google Scholar 

  • Chang HY, Sneddon JB, Alizadeh AA, et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2004;2:E7.

    Article  PubMed  Google Scholar 

  • Chang HY, Nuyten DSA, Sneddon JB, et al. From the cover: robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci USA. 2005a;102:3738–43.

    Article  PubMed  CAS  Google Scholar 

  • Chang JC, Hilsenbeck SG, Fuqua SA. The promise of microarrays in the management and treatment of breast cancer. Breast Cancer Res. 2005b;7:100–4.

    Article  PubMed  CAS  Google Scholar 

  • Chuaqui RF, Bonner RF, Best CJ, et al. Post-analysis follow-up and validation of microarray experiments. Nat Genet. 2002;32(Suppl):509–14.

    Article  PubMed  CAS  Google Scholar 

  • Cronin M, Pho M, Dutta D, et al. Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay. Am J Pathol. 2004;164:35–42.

    Article  PubMed  CAS  Google Scholar 

  • Darnell RB. HITS–CLIP: panoramic views of protein–RNA regulation in living cells. Wiley Interdiscip Rev RNA. 2010;1:266–86.

    Article  PubMed  CAS  Google Scholar 

  • Dennis JL, Vass JK, Wit EC, et al. Identification from public data of molecular markers of adenocarcinoma characteristic of the site of origin. Cancer Res. 2002;62:5999–6005.

    PubMed  CAS  Google Scholar 

  • Dennis J, Hvidsten T, Wit E, et al. Markers of adenocarcinoma characteristic of the site of origin: development of a diagnostic algorithm. Clin Cancer Res. 2005;11:3766–72.

    Article  PubMed  CAS  Google Scholar 

  • Diamandis M, White NM, Yousef GM. Personalized medicine: marking a new epoch in cancer patient management. Mol Cancer Res. 2010;8:1175–87.

    Article  PubMed  CAS  Google Scholar 

  • Ding L, Ellis MJ, Li S, et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature. 2010;464:999–1005.

    Article  PubMed  CAS  Google Scholar 

  • Ebert BL, Golub TR. Genomic approaches to hematologic malignancies. Blood. 2004;104:923–32.

    Article  PubMed  CAS  Google Scholar 

  • Eisen M, Spellman P, Brown P, et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998;95:14863–8.

    Article  PubMed  CAS  Google Scholar 

  • Eschrich S, Yang I, Bloom G, et al. Molecular staging for survival prediction of colorectal cancer patients. J Clin Oncol. 2005;23:3526–35.

    Article  PubMed  CAS  Google Scholar 

  • Farazi TA, Horlings HM, Ten Hoeve JJ, et al. MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res. 2011a;71:4443–53.

    Article  PubMed  CAS  Google Scholar 

  • Farazi TA, Spitzer JI, Morozov P, et al. miRNAs in human cancer. J Pathol. 2011b;223:102–15.

    Article  PubMed  CAS  Google Scholar 

  • Galasso M, Elena Sana M, Volinia S. Non-coding RNAs: a key to future personalized molecular therapy? Genome Med. 2010;2:12.

    Article  PubMed  Google Scholar 

  • Garber M, Grabherr MG, Guttman M, et al. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods. 2011;8:469–77.

    Article  PubMed  CAS  Google Scholar 

  • Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–6.

    Article  PubMed  CAS  Google Scholar 

  • Hafner M, Landgraf P, Ludwig J, et al. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods. 2008;44:3–12.

    Article  PubMed  CAS  Google Scholar 

  • Hafner M, Landthaler M, Burger L, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR–CLIP. Cell. 2010;141:129–41.

    Article  PubMed  CAS  Google Scholar 

  • Harbour JW, Onken MD, Roberson ED, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330:1410–3.

    Article  PubMed  CAS  Google Scholar 

  • Hausser J, Berninger P, Rodak C, et al. MirZ: an integrated microRNA expression atlas and target prediction resource. Nucleic Acids Res. 2009;37:W266–72.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins RD, Hon GC, Ren B. Next-generation genomics: an integrative approach. Nat Rev Genet. 2010;11:476–86.

    PubMed  CAS  Google Scholar 

  • Hirst M, Marra MA. Next generation sequencing based approaches to epigenomics. Brief Funct Genom. 2010;9:455–65.

    Article  CAS  Google Scholar 

  • Hurd PJ, Nelson CJ. Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief Funct Genom Prot. 2009;8:174–83.

    Article  CAS  Google Scholar 

  • Jiao Y, Shi C, Edil BH, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331:1199–203.

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Zhang X, Parsons DW, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321:1801–6.

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Hruban RH, Kamiyama M, et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science. 2009;324:217.

    Article  PubMed  CAS  Google Scholar 

  • Jungkamp AC, Stoeckius M, Mecenas D, et al. In vivo and transcriptome-wide identification of RNA binding protein target sites. Mol Cell. 2011;44:828–40.

    Article  PubMed  CAS  Google Scholar 

  • Kahn SD. On the future of genomic data. Science. 2011;331:728–9.

    Article  PubMed  CAS  Google Scholar 

  • Kan T, Shimada Y, Sato F, et al. Prediction of lymph node metastasis with use of artificial neural networks based on gene expression profiles in esophageal squamous cell carcinoma. Ann Surg Oncol. 2004;11:1070–8.

    Article  PubMed  Google Scholar 

  • Kan Z, Jaiswal BS, Stinson J, et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature. 2010;466:869–73.

    Article  PubMed  CAS  Google Scholar 

  • Kaye J, Boddington P, de Vries J, et al. Ethical implications of the use of whole genome methods in medical research. Eur J Hum Genet. 2010;18:398–403.

    Article  PubMed  CAS  Google Scholar 

  • Kishore S, Jaskiewicz L, Burger L, et al. A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat Methods. 2011;8:559–64.

    Article  PubMed  CAS  Google Scholar 

  • Lapointe J, Li C, Higgins JP, et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA. 2004;101:811–6.

    Article  PubMed  CAS  Google Scholar 

  • Lee W, Jiang Z, Liu J, et al. The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature. 2010;465:473–7.

    Article  PubMed  CAS  Google Scholar 

  • Ley TJ, Mardis ER, Ding L, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature. 2008;456:66–72.

    Article  PubMed  CAS  Google Scholar 

  • Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363:2424–33.

    Article  PubMed  CAS  Google Scholar 

  • Linnarsson S. Recent advances in DNA sequencing methods – general principles of sample preparation. Exp Cell Res. 2010;316:1339–43.

    Article  PubMed  CAS  Google Scholar 

  • Lonning PE, Sorlie T, Borresen-Dale AL. Genomics in breast cancer-therapeutic implications. Nat Clin Pract Oncol. 2005;2:26–33.

    Article  PubMed  CAS  Google Scholar 

  • Lossos IS, Jones CD, Warnke R, et al. Expression of a single gene, BCL-6, strongly predicts survival in patients with diffuse large B-cell lymphoma. Blood. 2001;98:945–51.

    Article  PubMed  CAS  Google Scholar 

  • Lossos IS, Alizadeh AA, Rajapaksa R, et al. HGAL is a novel interleukin-4-inducible gene that strongly predicts survival in diffuse large B-cell lymphoma. Blood. 2003;101:433–40.

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Getz G, Miska E, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.

    Article  PubMed  CAS  Google Scholar 

  • Ma XJ, Patel R, Wang X, et al. Molecular classification of human cancers using a 92-gene real-time quantitative polymerase chain reaction assay. Arch Pathol Lab Med. 2006;130:465–73.

    PubMed  CAS  Google Scholar 

  • Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361:1058–66.

    Article  PubMed  CAS  Google Scholar 

  • Maxam AM, Gilbert W. A new method for sequencing DNA. 1977. Biotechnology. 1992;24:99–103.

    PubMed  CAS  Google Scholar 

  • Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet. 2010;11:31–46.

    Article  PubMed  CAS  Google Scholar 

  • Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet. 2010;11:685–96.

    Article  PubMed  CAS  Google Scholar 

  • Morozova O, Marra MA. Applications of next-generation sequencing technologies in functional genomics. Genomics. 2008;92:255–64.

    Article  PubMed  CAS  Google Scholar 

  • Muers M. Technology: getting Moore from DNA sequencing. Nat Rev Genet. 2011;12:586.

    Google Scholar 

  • Natrajan R, Reis-Filho JS. Next-generation sequencing applied to molecular diagnostics. Expert Rev Mol Diagn. 2011;11:425–44.

    Article  PubMed  CAS  Google Scholar 

  • Nevins JR, Huang ES, Dressman H, et al. Towards integrated clinico-genomic models for personalized medicine: combining gene expression signatures and clinical factors in breast cancer outcomes prediction. Hum Mol Genet. 2003;12:R153–7.

    Article  PubMed  CAS  Google Scholar 

  • Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.

    Article  PubMed  CAS  Google Scholar 

  • Pasqualucci L, Trifonov V, Fabbri G, et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet. 2011;43:830–7.

    Article  PubMed  CAS  Google Scholar 

  • Pavlidis N, Fizazi K. Cancer of unknown primary (CUP). Crit Rev Oncol Hematol. 2005;54:243–50.

    Article  PubMed  Google Scholar 

  • Pawitan Y, Bjohle J, Amler L, et al. Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res. 2005;7:R953–64.

    Article  PubMed  CAS  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumors. Nature. 2000;406:747–52.

    Article  PubMed  CAS  Google Scholar 

  • Pleasance ED, Stephens PJ, O’Meara S, et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature. 2010;463:184–90.

    Article  PubMed  CAS  Google Scholar 

  • Quackenbush J. Microarray analysis and tumor classification. N Engl J Med. 2006;354:2463–72.

    Article  PubMed  CAS  Google Scholar 

  • Ramaswamy S, Golab TR. DNA microarrays in clinical oncology. J Clin Oncol. 2002;20:1932–41.

    PubMed  CAS  Google Scholar 

  • Ramaswamy S, Tamayo P, Rifkin R, et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA. 2001;98:15149–54.

    Article  PubMed  CAS  Google Scholar 

  • Rebbeck TR. Inherited genetic markers and cancer outcomes: personalized medicine in the postgenome era. J Clin Oncol. 2006;24:1972–4.

    Article  PubMed  CAS  Google Scholar 

  • Reis-Filho JS, Westbury C, Pierga JY. The impact of expression profiling on prognostic and predictive testing in breast cancer. J Clin Pathol. 2006;59:225–31.

    Article  PubMed  CAS  Google Scholar 

  • Ross ME, Zhou X, Song G, et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood. 2003;102:2951–9.

    Article  PubMed  CAS  Google Scholar 

  • Rothberg JM, Leamon JH. The development and impact of 454 sequencing. Nat Biotechnol. 2008;26:1117–24.

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74:5463–7.

    Article  PubMed  CAS  Google Scholar 

  • Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum Mol Genet. 2010;19:R227–40.

    Article  PubMed  CAS  Google Scholar 

  • Schuster SC. Next-generation sequencing transforms today’s biology. Nat Methods. 2008;5:16–8.

    Article  PubMed  CAS  Google Scholar 

  • Segal E, Shapira M, Regev A, et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet. 2003;34:166–76.

    Article  PubMed  CAS  Google Scholar 

  • Slonim DK. From patterns to pathways: gene expression data analysis comes of age. Nat Genet. 2002;32 Suppl:502–8.

    Article  PubMed  CAS  Google Scholar 

  • Sorlie T, Perou C, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguishes tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869–74.

    Article  PubMed  CAS  Google Scholar 

  • Sotiriou C, Neo SY, McShane LM, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA. 2003;100:10393–8.

    Article  PubMed  CAS  Google Scholar 

  • Statnikov A, Aliferis CF, Tsamardinos I, et al. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics. 2005;21:631–43.

    Article  PubMed  CAS  Google Scholar 

  • Stephens PJ, McBride DJ, Lin ML, et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature. 2009;462:1005–10.

    Article  PubMed  CAS  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  PubMed  CAS  Google Scholar 

  • Tamoto E, Tada M, Murakawa K, et al. Gene-expression profile changes correlated with tumor progression and lymph node metastasis in esophageal cancer. Clin Cancer Res. 2004;10:3629–38.

    Article  PubMed  CAS  Google Scholar 

  • Tinker AV, Boussioutas A, Bowtell DD. The challenges of gene expression microarrays for the study of human cancer. Cancer Cell. 2006;9:333–9.

    Article  PubMed  CAS  Google Scholar 

  • Tothill RW, Kowalczyk A, Rischin D, et al. An expression-based site of origin diagnostic method designed for clinical application to cancer of unknown origin. Cancer Res. 2005;65:4031–40.

    Article  PubMed  CAS  Google Scholar 

  • Tsai MC, Spitale RC, Chang HY. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res. 2011;71:3–7.

    Article  PubMed  CAS  Google Scholar 

  • van de Vijver MJ, He YD, van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.

    Article  PubMed  Google Scholar 

  • Varadhachary GR, Abbruzzese JL, Lenzi R. Diagnostic strategies for unknown primary cancer. Cancer. 2004;100:1776–85.

    Article  PubMed  CAS  Google Scholar 

  • Villarroel MC, Rajeshkumar NV, Garrido-Laguna I, et al. Personalizing cancer treatment in the age of global genomic analyses: PALB2 gene mutations and the response to DNA damaging agents in pancreatic cancer. Mol Cancer Ther. 2011;10:3–8.

    Article  PubMed  CAS  Google Scholar 

  • Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin Chem. 2009;55:641–58.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Klijn JG, Zhang Y, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet. 2005;365:671–9.

    PubMed  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.

    Article  PubMed  CAS  Google Scholar 

  • Yeoh EJ, Ross ME, Shurtleff SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell. 2002;1:133–43.

    Article  PubMed  CAS  Google Scholar 

  • Yu YP, Landsittel D, Jing L, et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol. 2004;22:2790–9.

    Article  PubMed  CAS  Google Scholar 

  • van’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–6.

    Article  Google Scholar 

  • Zhang C, Darnell RB. Mapping in vivo protein–RNA interactions at single-nucleotide resolution from HITS–CLIP data. Nat Biotechnol. 2011;29:607–14.

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Ren L, Meng Q, et al. The next-generation sequencing technology and application. Protein Cell. 2010;1:520–36.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Horlings, H.M., Farazi, T.A., van de Vijver, M.J. (2013). Clinical Genomics in Oncology. In: Cheng, L., Zhang, D., Eble, J. (eds) Molecular Genetic Pathology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4800-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4800-6_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4799-3

  • Online ISBN: 978-1-4614-4800-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics