Skip to main content

Autism and Increased Paternal Age

  • Reference work entry
Comprehensive Guide to Autism

Abstract

With today’s population living longer, there is a trend in many modern societies to delay parenthood until the prospective parents have completed their education and established their careers. This has resulted in an increase in children born to parents of advanced age, which has been linked to several disorders of brain development including mental retardation, schizophrenia, and autism. The underlying mechanisms for this relationship are believed to be complex and likely differ between maternal and paternal age effects. Maternal age has been associated with an increase in genetic disorders such as Down syndrome caused by duplication of chromosome 21. All of a female’s oocytes are present at birth, wherefore oocytes in older women have increased time to undergo genetic rearrangements and duplications. This is not true for fathers whose spermatocytes are continuously produced throughout life. Suggested mechanisms for an effect of advanced paternal age on autism and other disorders include de novo (new) mutations in older fathers’ DNA and multiple epigenetic mechanisms including changes in DNA methylation, histone modifications, and noncoding RNAs. Evidence for genetic and epigenetic mechanisms is reviewed herein and important areas for future research are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins RM, Thomas F, Tylavsky FA, Krushkal J. Parental ages and levels of DNA methylation in the newborn are correlated. BMC Med Genet. 2011;12:47.

    Article  PubMed  Google Scholar 

  • Alter MD, Hen R. Is there a genomic tone? Implications for understanding development, adaptation and treatment. Dev Neurosci. 2009;31:351–7.

    Article  PubMed  Google Scholar 

  • Alter MD, Rubin DB, Ramsey K, et al. Variation in the large-scale organization of gene expression levels in the hippocampus relates to stable epigenetic variability in behavior. PLoS One. 2008;6:e3344.

    Article  Google Scholar 

  • Alter MD, Kharkar R, Ramsey KE, et al. Autism and increased paternal age related changes in global levels of gene expression regulation. PLoS One. 2011;6:e16715.

    Article  PubMed  Google Scholar 

  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23:185–8.

    Article  PubMed  Google Scholar 

  • Asaka Y, Jugloff DG, Zhang L, Eubanks JH, Fitzsimonds RM. Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome. Neurobiol Dis. 2006;21:217–27.

    Article  PubMed  Google Scholar 

  • Auroux M. Decrease of learning capacity in offspring with increasing paternal age in the rat. Teratology. 1983;27:141–8.

    Article  PubMed  Google Scholar 

  • Bailey A, Le Couteur A, Gottesman I, et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med. 1995;25:63–77.

    Article  PubMed  Google Scholar 

  • Berg J, Lin KK, Sonnet, et al. Imprinted genes that regulate early mammalian growth are coexpressed in somatic stem cells. PLoS One. 2011;6:e26410.

    Article  PubMed  Google Scholar 

  • Beydoun A, D’Souza J. Treatment of idiopathic generalized epilepsy – a review of the evidence. Expert Opin Pharmacother. 2012;13:1283–98.

    Article  PubMed  Google Scholar 

  • Bouchard Jr TJ, Heston L, Eckert E, Keyes M, Resnick S. The Minnesota study of twins reared apart: project description and sample results in the developmental domain. Prog Clin Biol Res. 1981;69:227–33.

    PubMed  Google Scholar 

  • Byrne M, Agerbo E, Ewald H, Eaton WW, Mortensen PB. Parental age and risk of schizophrenia: a case control study. Arch Gen Psychiatry. 2003;60:673–8.

    Article  PubMed  Google Scholar 

  • Cardno AG, Gottesman II. Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet. 2000;97:12–7.

    Article  PubMed  Google Scholar 

  • Cheng LC, Pastrana E, Tavazoie M, Doetsch F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci. 2009;12:399–408.

    Article  PubMed  Google Scholar 

  • Dalman C, Allbeck P. Paternal age and schizophrenia: further support for an association. Am J Psychiatry. 2002;159:1591–2.

    Article  PubMed  Google Scholar 

  • Dempster EL, Pidsley R, Schalkwyk LC, et al. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum Mol Genet. 2011;20:4786–96.

    Article  PubMed  Google Scholar 

  • Driscoll DA, Gross S. Clinical practice. Prenatal screening for aneuploidy. N Engl J Med. 2009;360:2556–62.

    Article  PubMed  Google Scholar 

  • Elbe D, Lalani Z. Review of the pharmacotherapy of irritability of autism. J Can Acad Child Adolesc Psychiatry. 2012;21:130–46.

    PubMed  Google Scholar 

  • Festenstein R, Aragon L. Decoding the epigenetic effects of chromatin. Genome Biol. 2003;4:342.

    Article  PubMed  Google Scholar 

  • Flatscher-Bader T, Foldi CJ, Chong S, et al. Increased de novo copy number variants in the offspring of older males. Transl Psychiatry. 2011;1:e34.

    Article  PubMed  Google Scholar 

  • Foldi CJ, Eyles DW, McGrath JJ, Burne TH. Advanced paternal age is associated with alterations in discrete behavioural domains and cortical neuroanatomy of C57BL/6J mice. Eur J Neurosci. 2010;31:556–64.

    Article  PubMed  Google Scholar 

  • Fombonne E. The changing epidemiology of autism. J Appl Res Intellect Disabil. 2005;18:281–94.

    Article  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA. 2005;102:10604–9.

    Article  PubMed  Google Scholar 

  • Frans EM, Sandin S, Reichenberg A, Lichtenstein P, Långström N, Hultman CM. Advancing paternal age and bipolar disorder. Arch Gen Psychiatry. 2008;65:1034–40.

    Article  PubMed  Google Scholar 

  • Gandal M, Nesbitt AM, McCurdy, Alter M. Modulation of cellular plasticity is related to power-law scaling of stereotyped gene expression programs. PLoS One. 2012;7:412–15.[ahead of print].

    Google Scholar 

  • García-Palomares S, Pertusa JF, Miñarro J, et al. Long-term effects of delayed fatherhood in mice on postnatal development and behavioral traits in offspring. Biol Reprod. 2009;80:337–42.

    Article  PubMed  Google Scholar 

  • Gärtner K, Baunack E. Is the similarity of monozygotic twins due to genetic factors alone? Nature. 1981;292:646–7.

    Article  PubMed  Google Scholar 

  • Gillis RF, Rouleau GA. The ongoing dissection of the genetic architecture of autistic spectrum disorder. Mol Autism. 2011;2:12.

    Article  PubMed  Google Scholar 

  • Giraldez AJ, Cinalli RM, Glasner ME, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science. 2005;308:833–8.

    Article  PubMed  Google Scholar 

  • Goriely A, McVean GA, Röjmyr M, Ingemarsson B, Wilkie AO. Evidence for selective advantage of pathogenic FGFR2 mutations in the male germ line. Science. 2003;301:643–6.

    Article  PubMed  Google Scholar 

  • Gregory SC, Connelly JJ, Towers AJ, et al. Genomic and epigenetic evidence for oxytocin deficiency in autism. BMC Med. 2009;7:62.

    Article  PubMed  Google Scholar 

  • Haddad PM, Das A, Ashfaq M, Wieck A. A review of valproate in psychiatric practice. Expert Opin Drug Metab Toxicol. 2009;5:539–51.

    Article  PubMed  Google Scholar 

  • Hastings PJ, Lupski JR, Rosenberg SM, Ira G. Mechanisms of change in gene copy number. Nat Rev Genet. 2009;10:551–64.

    Article  PubMed  Google Scholar 

  • Hehir-Kwa JY, Rodríguez-Santiago B, Vissers LE, et al. De novo copy number variants associated with intellectual disability have a paternal origin and age bias. J Med Genet. 2011;48:776–8.

    Article  PubMed  Google Scholar 

  • Heyn H, Li N, Ferreira HJ, et al. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci USA. 2012;109:10522–7.[ahead of print].

    Article  PubMed  Google Scholar 

  • Hogart A, Wu D, LaSalle JM, Schanen NC. The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13. Neurobiological Disord. 2010;38:181–91.

    Article  Google Scholar 

  • Houston I, Peter CJ, Mitchell A, Straubhaar J, Rogaev E, Akbarian S. Epigenetics in the human brain. Neuropsychopharmacology. 2012;38:183–97. doi:10.1038/npp.2012.78.

    Article  PubMed  Google Scholar 

  • Hultman CM, Sandin S, Levine SZ, Lichtenstein P, Reichenberg A. Advancing paternal age and risk of autism: new evidence from a population-based study and a meta-analysis of epidemiological studies. Mol Psychiatry. 2011;16:1203–12.

    Article  PubMed  Google Scholar 

  • Im HI, Kenny PJ. MicroRNAs in neuronal function and dysfunction. Trends Neurosci. 2012;35:325–34.

    Article  PubMed  Google Scholar 

  • Kurahashi H, Bolor H, Kato T, et al. Recent advance in our understanding of the molecular nature of chromosomal abnormalities. J Hum Genet. 2009;54:253–60.

    Article  PubMed  Google Scholar 

  • Lehmann K, Löwel S. Age-dependent ocular dominance plasticity in adult mice. PLoS One. 2008;3:e3120.

    Article  PubMed  Google Scholar 

  • Levenson JM, Sweatt JD. Epigenetic mechanisms: a common theme in vertebrate and invertebrate memory formation. Cell Mol Life Sci. 2006;63:1009–16.

    Article  PubMed  Google Scholar 

  • Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD. Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem. 2004;279:40545–59.

    Article  PubMed  Google Scholar 

  • Li H, Zhong X, Chau KF, Williams EC, Chang Q. Loss of activity-induced phosphorylation of MeCP2 enhances synaptogenesis, LTP and spatial memory. Nat Neurosci. 2011;14:1001–8.

    Article  PubMed  Google Scholar 

  • Li J, Harris RA, Cheung SW, et al. Genomic hypomethylation in the human germline associates with selective structural mutability in the human genome. PLoS Genet. 2012;8:e1002692.

    Article  PubMed  Google Scholar 

  • MacDonald WA. Epigenetic mechanisms of genomic imprinting: common themes in the regulation of imprinted regions in mammals, plants, and insects. Genet Res Int.2012;2012:585024

    PubMed  Google Scholar 

  • Malaspina D, Harlap S, Fennig S, et al. Advancing paternal age and the risk of schizophrenia. Arch Gen Psychiatry. 2001;58:361–7.

    Article  PubMed  Google Scholar 

  • Malaspina D, Reichenberg A, Weiser M, et al. Paternal age and intelligence: implications for age-related genomic changes in male germ cells. Psychiatr Genet. 2005;15:117–25.

    Article  PubMed  Google Scholar 

  • Margolis R, Ross C. Genetics of childhood disorders: IX. Triplet repeat disorders. Development and neurobiology. J Am Acad Child Adolesc Psychiatry. 1999;38:1598–600.

    Article  PubMed  Google Scholar 

  • Maric NP, Svrakic DM. Why schizophrenia genetics needs epigenetics: a review. Psychiatr Danub. 2012;24:2–18.

    PubMed  Google Scholar 

  • Mefford HC, Batshaw ML, Hoffman EP. Genomics, intellectual disability, and autism. N Engl J Med. 2012;366:733–43.

    Article  PubMed  Google Scholar 

  • Menezes PR, Lewis G, Rasmussen F, et al. Paternal and maternal ages at conception and risk of bipolar affective disorder in their offspring. Psychol Med. 2010;40:477–85.

    Article  PubMed  Google Scholar 

  • Mill J, Tang T, Kaminsky Z, et al. Epigenetic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet. 2008;82:696–711.

    Article  PubMed  Google Scholar 

  • Moore S, Kelleher E, Corvin A. The shock of the new: progress in schizophrenia genomics. Curr Genomics. 2011;12:516–24.

    Article  PubMed  Google Scholar 

  • Morris KV. Non-coding RNAs, epigenetic memory and the passage of information to progeny. RNA Biol. 2009;6:242–7.

    Article  PubMed  Google Scholar 

  • Muhle R, Trentacoste SV, Rapin I. The genetics of autism. Pediatrics. 2004;113:472–86.

    Article  Google Scholar 

  • Nan X, Campoy FJ, Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell. 1997;88:471–81.

    Article  PubMed  Google Scholar 

  • Nguyen A, Rauch TA, Pfeifer GP, Hu VW. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J. 2010;24:3036–51.

    Article  PubMed  Google Scholar 

  • Oakes CC, Smiraglia DJ, Plass C, Trasler JM, Robaire B. Aging results in hypermethylation of ribosomal DNA in sperm and liver of male rats. Proc Natl Acad Sci USA. 2003;100:1775–80.

    Article  PubMed  Google Scholar 

  • Olde Loohuis NF, Kos A, Martens GJ, Van Bokhoven H, Nadif Kasri N, Aschrafi A. MicroRNA networks direct neuronal development and plasticity. Cell Mol Life Sci. 2012;69:89–102.

    Article  PubMed  Google Scholar 

  • Olynik BM, Rastegar M. The genetic and epigenetic journey of embryonic stem cells into mature neural cells. Front Genet. 2012;3:81.

    Article  PubMed  Google Scholar 

  • Penrose LS. Parental age and mutation. Lancet. 1955;269:312–3.

    Article  PubMed  Google Scholar 

  • Perrin MC, Brown AS, Malaspina D. Aberrant epigenetic regulation could explain the relationship of paternal age to schizophrenia. Schizophr Bull. 2007;33:1270–3.

    Article  PubMed  Google Scholar 

  • Petronis A. The origin of schizophrenia: genetic thesis, epigenetic antithesis and resolving synthesis. Biol Psychiatry. 2004;55:965–70.

    Article  PubMed  Google Scholar 

  • Razin A, Cedar H. DNA methylation and gene expression. Microbiol Rev. 1991;55:451–8.

    PubMed  Google Scholar 

  • Reichenberg A, Gross R, Weiser M, et al. Advancing paternal age and autism. Arch Gen Psychiatry. 2006;63:1026–32.

    Article  PubMed  Google Scholar 

  • Sandhu KS. Systems properties of proteins encoded by imprinted genes. Epigenetics. 2010;5:627–36.

    Article  PubMed  Google Scholar 

  • Sebat J, Lakshmi B, Troge J, et al. Large-scale copy number polymorphism in the human genome. Science. 2004;305:525–8.

    Article  PubMed  Google Scholar 

  • Shelton JF, Tancredi DJ, Hertz-Picciotto I. Independent and dependent contributions of advanced maternal and paternal ages to autism risk. Autism Res. 2010;3:30–9.

    Article  PubMed  Google Scholar 

  • Sipos A, Rasmussen F, Harrison G, et al. Paternal age and schizophrenia: a population based cohort study. BMJ. 2004;329:1070.

    Article  PubMed  Google Scholar 

  • Smith RG, Kember RL, Mill J, et al. Advancing paternal Age is associated with deficits in social and exploratory behaviors in the offspring: a mouse model. PLoS One. 2009;4:e8456.

    Article  PubMed  Google Scholar 

  • Stoneking M. Single nucleotide polymorphisms. From the evolutionary past. Nature. 2001;409:821–2.

    Article  PubMed  Google Scholar 

  • Strathern JN, Shafer BK, McGill CB. DNA synthesis errors associated with double-strand-break repair. Genetics. 1995;140:965–72.

    PubMed  Google Scholar 

  • Swisshelm K, Disteche CM, Thorvaldsen J, Nelson A, Salk D. Age-related increase in methylation of ribosomal genes and inactivation of chromosome-specific rRNA gene clusters in mouse. Mutat Res. 1990;237:131–46.

    Article  PubMed  Google Scholar 

  • Templado C, Donate A, Giraldo J, Bosch M, Estop A. Advanced age increases chromosome structure abnormalities in human spermatozoa. Eur J Hum Genet. 2011;19:145–51.

    Article  PubMed  Google Scholar 

  • Tiemann-Boege I, Navidi W, Grewal R, et al. The observed human sperm mutation frequency cannot explain the achondroplasia paternal age effect. Proc Natl Acad Sci USA. 2002;99:14952–7.

    Article  PubMed  Google Scholar 

  • Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci. 2006;9:519–25.

    Article  PubMed  Google Scholar 

  • Tsankova N, Renthal W, Kumar A, Nestler EJ. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci. 2007;8:355–67.

    Article  PubMed  Google Scholar 

  • Turner BM. The adjustable nucleosome: an epigenetic signaling molecule. Trends Genet. 2012;28:436–444.[ahead of print].

    Article  Google Scholar 

  • Van Buggenhout G, Fryns JP. Angelman syndrome (AS, MIM 105830). Eur J Hum Genet. 2009;17:1367–73.

    Article  PubMed  Google Scholar 

  • van Engeland M, Derks S, Smits KM, Meijer GA, Herman JG. Colorectal cancer epigenetics: complex simplicity. J Clin Oncol. 2011;29:1382–91.

    Article  PubMed  Google Scholar 

  • Vincent A, Van Seuningen I. Epigenetics, stem cells and epithelial cell fate. Differentiation. 2009;78:99–107.

    Article  PubMed  Google Scholar 

  • Vo NK, Cambronne XA, Goodman RH. MicroRNA pathways in neural development and plasticity. Curr Opin Neurobiol. 2010;20:457–65.

    Article  PubMed  Google Scholar 

  • Weaver IC, Champagne FA, Brown SE, et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci. 2005;25:11045–54.

    Article  PubMed  Google Scholar 

  • Weaver IC, Meaney MJ, Szyf M. Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc Natl Acad Sci USA. 2006;103:3480–5.

    Article  PubMed  Google Scholar 

  • Wilkinson LS, Davies W, Isles AR. Genomic imprinting effects on brain development and function. Nat Rev Neurosci. 2007;8:832–43.

    Article  PubMed  Google Scholar 

  • Wong AH, Gottesman II, Petronis A. Phenotypic differences in genetically identical organisms: the epigenetic perspective. Hum Mol Genet. 2005;14(Spec 1):R11–8.

    Article  PubMed  Google Scholar 

  • Zeschnigk M, Schmitz B, Dittrich B, Buiting K, Horsthemke B, Doerfler W. Imprinted segments in the human genome: different DNA methylation patterns in the Prader-Willi/Angelman syndrome region as determined by the genomic sequencing method. Hum Mol Genet. 1997;6:387–95.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Alter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Alter, M.D., Nesbitt, A.M. (2014). Autism and Increased Paternal Age. In: Patel, V., Preedy, V., Martin, C. (eds) Comprehensive Guide to Autism. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4788-7_86

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4788-7_86

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4787-0

  • Online ISBN: 978-1-4614-4788-7

  • eBook Packages: Behavioral Science

Publish with us

Policies and ethics