Skip to main content

Abstract

Depression is a common comorbid condition in substance abuse disorders. In particular, comorbidity between alcoholism and depression occurs with extremely high prevalence in the general population. Early studies investigating this dual diagnosis issue reported alcohol abuse to occur in almost a quarter of patients with affective disorders [1, 2]. Prevalence rises as high as 32 % if other substance abuse disorders are included [2]. These findings made it clear that enormous challenges lie ahead in tracing the individual etiology of substance abuse and depression, let alone their interaction. Clearly, this dilemma was to produce further difficulties in providing adequate and appropriate treatment for sufferers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hasin DS, Endicott J, Lewis C (1985) Alcohol and drug abuse in patients with affective syndromes. Compr Psychiatry 26:283–295

    PubMed  CAS  Google Scholar 

  2. Regier DA, Farmer ME, Rae DS, Locke BZ, Keith SJ, Judd LL, Goodwin FK (1990) Comorbidity of mental disorders with alcohol and other drug abuse: results from the Epidemiological Catchment Area (ECA) Study. JAMA 264:2511–2518

    PubMed  CAS  Google Scholar 

  3. Boschloo L, Vogelzangs N, Smit JH, van den Brink W, Veltman DJ, Beekman ATF, Penninx BWJH (2011) Comorbidity and risk indicators for alcohol use disorders among ­persons with anxiety and/or depressive disorders: findings from the Netherlands Study of Depression and Anxiety (NESDA). J Affect Disord 131:233–242

    PubMed  Google Scholar 

  4. Buysse DJ, Angst J, Gamma A, Ajdacic V, Eich D, Rössler W (2008) Prevalence, course, and comorbidity of insomnia and depression in young adults. Sleep 31:473–480

    PubMed  Google Scholar 

  5. Jim HSL, Small B, Faul LA, Franzen J, Apte S, Jacobsen PB (2011) Fatigue, depression, sleep, and activity during chemotherapy: daily and intraday variation and relationships among symptom changes. Ann Behav Med 42:321–333. doi:10.1007/s12160-011-9294-9

    PubMed  Google Scholar 

  6. Rodin J, McAvay G, Timko C (1988) A longitudinal study of depressed mood and sleep disturbances in elderly adults. J Gerontol 43:P45–P53

    PubMed  CAS  Google Scholar 

  7. Sinha R, Robinson J, Merikangas K, Wilson GT, Rodin J, O’Malley S (1996) Eating pathology among women with alcoholism and/or anxiety disorders. Alcohol Clin Exp Res 20:1184–1191

    PubMed  CAS  Google Scholar 

  8. Swendsen JD, Merikangas KR (2000) The comorbidity of depression and substance use disorders. Clin Psychol Rev 20:173–189

    PubMed  CAS  Google Scholar 

  9. Boden JM, Fergusson DM (2011) Alcohol and depression. Addiction 106(5):906–914

    PubMed  Google Scholar 

  10. Kessler RC, Price RH (1993) Primary prevention of secondary disorders: a proposal and agenda. Am J Comm Psychol 21:607–633

    CAS  Google Scholar 

  11. Fergusson DM, Boden JM, Horwood LJ (2009) Tests of causal links between alcohol abuse or dependence and major depression. Arch Gen Psychiatry 66:260–266

    PubMed  Google Scholar 

  12. Paljarvi T, Koskenvuo M, Poikolainen K, Kauhanen J, Sillinmaki L, Makela P (2009) Binge drinking and depressive symptoms: a 5 year population-based cohort study. Addiction 104:1168–1178

    PubMed  Google Scholar 

  13. Nurnberger JI, Foroud T, Flury L, Su J, Meyer ET, Hu K, Crowe R, Edenberg H, Goate A, Bierut L, Reich T, Schuckit M, Reich W (2001) Evidence for a locus on chromosome 1 that influences vulnerability to alcoholism and affective disorder. Am J Psychiatry 158:718–724

    PubMed  Google Scholar 

  14. Fu Q, Heath AC, Bucholz KK, Nelson E, Goldberg J, Lyons MJ, True WR, Jacob T, Tsuang MT, Eisen SA (2002) Shared genetic risk of major depression, alcohol dependence, and marijuana dependence. Arch Gen Psychiatry 59:1125–1132

    PubMed  Google Scholar 

  15. Kuo PH, Neale MC, Walsh D, Patterson DG, Riley B, Prescott CA, Kendler KS (2010) Genome-wide linkage scans for major depression in individuals with alcohol dependence. J Psychiatr Res 44:616–619

    PubMed  Google Scholar 

  16. Kendler KS, Kessler RC, Walters EE, MacLean CJ, Sham PC, Neale MC, Heath AC, Eaves LJ (1995) Stressful life events, genetic liability and onset of an episode of major depression in women. Am J Psychiatry 152:833–842

    PubMed  CAS  Google Scholar 

  17. Fava M, Davidson KG (1996) Definition and epidemiology of treatment-resistant depression. Psychiatr Clin North Am 19:179–200

    PubMed  CAS  Google Scholar 

  18. Lesch KP (2004) Gene–environment interaction and the genetics of depression. J Psychiatry Neurosci 29:174–184

    PubMed  Google Scholar 

  19. Agrawal A, Scherrer JF, Lynskey MT, Sartor CE, Grant JD, Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–97

    Google Scholar 

  20. Miguel-Hidalgo JJ, Nithuairisg S, Stockmeier C, Rajkowska G (2007) Distribution of ICAM-1 immunoreactivity during aging in the human orbitofrontal cortex. Brain Behav Immun 21:100–111

    PubMed  CAS  Google Scholar 

  21. Haddad JJ (2004) Alcoholism and neuro-immune-endocrine interactions: physiochemical aspects. Biochem Biophys Res Commun 323:361–371

    PubMed  CAS  Google Scholar 

  22. Crews FT, Zou J, Qin L (2011) Induction of innate immune genes in brain create the neurobiology of addiction. Brain Behav Immun 25:S4–S12

    PubMed  CAS  Google Scholar 

  23. Blednov YA, Benavidez JM, Geil C, Perra S, Morikawa H, Harris RA (2011) Activation of inflammatory signaling by lipopolysaccharide produces a prolonged increase of voluntary alcohol intake in mice. Brain Behav Immun 25(Suppl 1):S92–S105

    PubMed  CAS  Google Scholar 

  24. Stevenson JR, Schroeder JP, Nixon K, Besheer J, Crews FT, Hodge CW (2009) Abstinence following alcohol drinking produces depression-like behavior and reduced hippocampal ­neurogenesis in mice. Neuropsychopharmacology 34:1209–1222

    PubMed  CAS  Google Scholar 

  25. Capuron L, Miller AH (2004) Cytokines and psychopathology: lessons from interferon-alpha. Biol Psychiatry 56:819–824

    PubMed  CAS  Google Scholar 

  26. Capuron L, Pagnoni G, Lawson DH, Demetrashvili M, Woolwine BJ, Kilts CD, Bremner JD, Nemeroff CB, Miller AH (2002) Altered fronto-pallidal activity during high-dose interferon-alpha treatment as determined by positron emission tomography. Abstr Soc Neurosci 498:5

    Google Scholar 

  27. Haas HS, Schaenstein K (1997) Neuroimmunomodulation via limbic structures: the neuroanatomy of psychoimmunology. Prog Neurobiol 51:195–222

    PubMed  CAS  Google Scholar 

  28. Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65:732–741

    PubMed  CAS  Google Scholar 

  29. Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, Sanchez-Vera I, Guerri C (2010) Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci 30:8285–8295

    PubMed  CAS  Google Scholar 

  30. Lu YC, Yeh WC, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42:145–151

    PubMed  CAS  Google Scholar 

  31. Irwin MR, Olmstead R, Valladares EM, Crabb Breen E, Ehlers CL (2009) Tumor necrosis factor antagonism normalizes rapid eye movement sleep in alcohol dependence. Biol Psychiatry 66:191–195

    PubMed  CAS  Google Scholar 

  32. Ford DE, Kamerow DB (1989) Epidemiologic study of sleep disturbances and psychiatric disorders: an opportunity for prevention? JAMA 262:1479–1484

    PubMed  CAS  Google Scholar 

  33. Clark CP, Gillin JC, Golshan S, Demodena A, Smith TL, Danowski S, Irwin M, Schuckit M (1998) Increased REM sleep density at admission predicts relapse by three months in primary alcoholics with a lifetime diagnosis of secondary depression. Biol Psychiatry 43:601–607

    PubMed  CAS  Google Scholar 

  34. Opp MR, Toth LA (2003) Neural-immune interactions in the regulation of sleep. Front Biosci 8:d768–d779

    PubMed  CAS  Google Scholar 

  35. Dantzer R, Kelley KW (1989) Stress and immunity: an integrated view of relationships between the brain and the immune system. Life Sci 44:1995–2008

    PubMed  CAS  Google Scholar 

  36. Bluthé RM, Michaud B, Poli V, Dantzer R (2000) Role of IL-6 in cytokine-induced sickness behavior: a study with IL-6 deficient mice. Physiol Behav 70:367–373

    PubMed  Google Scholar 

  37. Opp MR, Krueger JM (1991) Interleukin 1-receptor antagonist blocks interleukin 1-induced sleep and fever. Am J Physiol 260:R453–R457

    PubMed  CAS  Google Scholar 

  38. Palin K, Bluthé RM, McCusker RH, Moos F, Dantzer R, Kelley KW (2007) TNF alpha-induced sickness behavior in mice with functional 55 kD TNF receptors is blocked by central IGF-I. J Neuroimmunol 187:55–60

    PubMed  CAS  Google Scholar 

  39. Yirmiya R (1996) Endotoxin produces a depressive-like episode in rats. Brain Res 711:163–174

    PubMed  CAS  Google Scholar 

  40. Dantzer R, Kelley KW (2007) Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun 21:153–160

    PubMed  CAS  Google Scholar 

  41. O’Connor JC, André C, Wang Y, Lawson MA, Szegedi SS, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Interferon-γ and tumor necrosis factor-α mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to Bacillus Calmette-Guerin. J Neurosci 29:4200–4209

    PubMed  Google Scholar 

  42. O’Connor JC, Lawson MA, André C, Briley EM, Szegedi SS, Lestage J, Castanon N, Herkenham M, Dantzer R, Kelley KW (2009) Induction of IDO by Bacilli Calmette-Guerin is responsible for development of murine depressive-like behavior. J Immunol 182:3202–3212

    PubMed  Google Scholar 

  43. O’Connor JC, Lawson MA, André C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14:511–522

    PubMed  Google Scholar 

  44. Frenois F, Moreau M, O’Connor J, Lawson M, Micon C, Lestage J, Kelley KW, Dantzer R, Castanon N (2007) Lipopolysaccharide induces delayed Fos B/Delta Fos B immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior. Psychoneuroendocrinology 32:516–531

    PubMed  CAS  Google Scholar 

  45. Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF, Godbout JP (2008) Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation 5:15

    PubMed  Google Scholar 

  46. Kelley KW, Aubert A, Dantzer R (2011) Inflammation and behavior. In: Demas GE, Nelson RJ (eds) Eco-immunology and behavior. Oxford University Press, Oxford

    Google Scholar 

  47. Kelley KW, Dantzer R (2011) Alcoholism and inflammation: neuroimmunology of behavioral and mood disorders. Brain Behav Immun 25:S13–S20. doi:10.1016/j.bbi.2010.12.013

    PubMed  CAS  Google Scholar 

  48. Bluthé RM, Walter V, Parnet P, Layé S, Lestage J, Verrier D, Poole S, Stenning BE, Kelley KW, Dantzer R (1994) Lipopolysaccharide induces sickness behaviour in rats by a vagal mediated mechanism. C R Acad Sci III 317:499–503

    PubMed  Google Scholar 

  49. Watkins LR, Weirtelak EP, Goehler LE, Smith KP, Martin D, Maier SF (1994) Characterization of cytokine induced hyperalgesia. Brain Res 654:15–26

    PubMed  CAS  Google Scholar 

  50. Watkins LR, Maier SF, Goehler LE (1995) Cytokine-to-brain communication: a review and analysis of alternative mechanisms. Life Sci 57:1011–1026

    PubMed  CAS  Google Scholar 

  51. Wan W, Janz L, Vriend CY, Sorensen CM, Greenberg AH, Nance DM (1993) Differential induction of c-Fos immunoreactivity in hypothalamus and brain stem nuclei following central and peripheral administration of endotoxin. Brain Res Bull 32:581–587

    PubMed  CAS  Google Scholar 

  52. Elmquist JK, Saper CB (1996) Activation of neurons projecting to the paraventricular hypothalamic nucleus by intravenous lipopolysaccharide. J Comp Neurol 374:315–331

    PubMed  CAS  Google Scholar 

  53. Blatteis CM, Bealer SL, Hunter WS, Llanos-Q J, Ahokas RA, Mashburn TA Jr (1983) Suppression of fever after lesions of the anteroventral third ventricle in guinea pigs. Brain Res Bull 11:519–526

    PubMed  CAS  Google Scholar 

  54. Quan N, Banks WA (2007) Brain-immune communications pathways. Brain Behav Immun 21:727–735

    PubMed  CAS  Google Scholar 

  55. Banks WA, Kastin AK (1991) Blood to brain transport of interleukin links the immune and central nervous systems. Life Sci 48:PL117–PL121

    PubMed  CAS  Google Scholar 

  56. Gutierrez EG, Banks WA, Kastin AJ (1993) Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J Neuroimmunol 47:169–176

    PubMed  CAS  Google Scholar 

  57. Blatteis CM (2000) The afferent signalling of fever. J Physiol 526(Pt 3):470

    PubMed  CAS  Google Scholar 

  58. Dantzer R (2004) Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur J Pharmacol 500:399–411

    PubMed  CAS  Google Scholar 

  59. Konsman JP, Parnet P, Dantzer R (2002) Cytokine induced sickness behaviour: mechanisms and implications. Trends Neurosci 25:154–159

    PubMed  CAS  Google Scholar 

  60. Tancredi V, D’Antuono M, Café C, Giovedì S, Bué MC, D’Arcangelo G, Onofri F, Benfenati F (2000) The inhibitory effects of interleukin-6 on synaptic plasticity in the rat hippocampus are associated with an inhibition of mitogen-activated protein kinase ERK. J Neurochem 75:634–643

    PubMed  CAS  Google Scholar 

  61. Wang X, Wu H, Miller AH (2004) Interleukin 1a (IL-1a) induced activation of p38 mitogen-activated protein kinase inhibits glucocorticoid receptor function. Mol Psychiatry 9:65–75

    PubMed  CAS  Google Scholar 

  62. Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84:87–136

    PubMed  CAS  Google Scholar 

  63. Griffin R, Nally R, Nolan Y, McCartney Y, Linden J, Lynch MA (2006) The age-related attenuation in long-term potentiation is associated with microglial activation. J Neurochem 99(4):1263–1272

    PubMed  CAS  Google Scholar 

  64. Gemma C, Bickford PC (2007) Interleukin-1beta and caspase-1: players in the regulation of age-related cognitive dysfunction. Rev Neurosci 18(2):137–148

    PubMed  CAS  Google Scholar 

  65. Costello DA, Watson MB, Cowley TR, Murphy N, Murphy Royal C, Garlanda C, Lynch MA (2011) Interleukin-1alpha and HMGB1 mediate hippocampal dysfunction in SIGIRR-deficient mice. J Neurosci 31:3871–3879

    PubMed  CAS  Google Scholar 

  66. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14

    PubMed  CAS  Google Scholar 

  67. Farrar WL, Kilian PL, Ruff MR, Hill JM, Pert CB (1987) Visualization and characterization of interleukin 1 receptors in brain. J Immunol 139:459–463

    PubMed  CAS  Google Scholar 

  68. Ericsson A, Liu C, Hart RP, Sawchenko PE (1995) Type 1 interleukin-1 receptor in the rat brain: distribution, regulation, and relationship to sites of IL-1-induced cellular activation. J Comp Neurol 361:681–698

    PubMed  CAS  Google Scholar 

  69. de Pablos RM, Villarán RF, Argüelles S, Herrera AJ, Venero JL, Ayala A, Cano J, Machado A (2006) Stress increases vulnerability to inflammation in the rat prefrontal cortex. J Neurosci 26:5709–5719

    PubMed  Google Scholar 

  70. Dantzer R (2001) Cytokine-induced sickness behavior: where do we stand? Brain Behav Immun 15:7–24

    PubMed  CAS  Google Scholar 

  71. Besedovsky H, del Rey A, Sorkin E, Dinarello CA (1986) Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 233:652–654

    PubMed  CAS  Google Scholar 

  72. Berkenbosch F, van Oers J, del Rey A, Tilders F, Besedovsky H (1987) Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science 238:524–526

    PubMed  CAS  Google Scholar 

  73. Sapolsky R, Rivier C, Yamamoto G, Plotsky P, Vale W (1987) Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science 238:522

    PubMed  CAS  Google Scholar 

  74. Dalton SO, Laursen TM, Ross L, Mortensen PB, Johansen C (2009) Risk for hospitalization with depression after a cancer diagnosis: a nationwide, population-based study of cancer patients in Denmark from 1973 to 2003. J Clin Oncol 27:1440–1445

    PubMed  Google Scholar 

  75. Musselman DL, Lawson DH, Gumnick JF, Manatunga AK, Penna S, Goodkin RS, Greiner K, Nemeroff CB, Miller AH (2001) Paroxetine for the prevention of depression induced by high-dose interferon alfa. N Engl J Med 344:961–966

    PubMed  CAS  Google Scholar 

  76. Schäfer A, Scheurlen M, Seufert J, Keicher C, Weiss brich B, Rieger P, Kraus MR (2010) Platelet serotonin (5-HT) levels in interferon-treated patients with hepatitis C and its possible association with interferon-induced depression. J Hepatol 52:10–15

    PubMed  Google Scholar 

  77. Maes M, Lambrechts J, Bosmans E, Jacobs J, Suy E, Vandervorst C (1992) Evidence for a systemic immune activation during depression: results of leukocyte enumeration by flow cytometry in conjunction with monoclonal antibody staining. Psychol Med 22:45–53

    PubMed  CAS  Google Scholar 

  78. Capuron L (1999) Prediction of the depressive effects of interferon alfa therapy by the patient’s initial affective state. N Engl J Med 340:1370

    PubMed  CAS  Google Scholar 

  79. Capuron L, Gumnick JF, Musselman DL, Lawson DH, Reemsnyder A, Nemeroff CB, Miller AH (2002) Neurobehavioral effects of interferon-α in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacology 26:643–652

    PubMed  CAS  Google Scholar 

  80. Prather AA, Rabinovitz M, Pollock BG, Lotrich FE (2009) Cytokine-induced depression during IFN-alpha treatment: the role of IL-6 and sleep quality. Brain Behav Immun 23:1109–1116

    PubMed  CAS  Google Scholar 

  81. Capuron L, Pagnoni G, Demetrashvili M, Woolwine BJ, Nemeroff CB, Berns GS, Miller AH (2005) Anterior cingulate activation and error processing during interferon alpha treatment. Biol Psychiatry 58:190–196

    PubMed  CAS  Google Scholar 

  82. Marks DH, Adineh M, Wang B, Gupta S (2007) Use of fMRI to predict psychiatric adverse effects of interferon treatment for Hepatitis C – preliminary report. Neuropsychiatr Dis Treat 3:655–667

    PubMed  CAS  Google Scholar 

  83. Goldney RD, Fischer LJ, Phillips PJ, Wilson DH (2004) Diabetes, depression, and quality of life: a population study. Diabetes Care 17:1066–1070

    Google Scholar 

  84. Anderson RJ, Clouse RE, Freedland KE, Lustman PJ (2001) The prevalence of comorbid depression in adults with diabetes. Diabetes Care 24:1069–1078

    PubMed  CAS  Google Scholar 

  85. Pickup JC, Chusney GD, Thomas SM, Burt D (2000) Plasma interleukin-6, tumour necrosis factor α and blood cytokine production in type 2 diabetes. Life Sci 67:291–300

    PubMed  CAS  Google Scholar 

  86. Pasic J, Levy WC, Sullivan MD (2003) Cytokines in depression and heart failure. Psychosom Med 65:181–193

    PubMed  Google Scholar 

  87. Alesci S, Martinez PE, Kelkar S, Ilias I, Ronsaville DS, Listwak SJ, Ayala AR, Licinio J, Gold HK, Kling MA, Chrousos GP, Gold PW (2005) Major depression is associated with significant diurnal elevations in plasma IL-6 levels, a shift of its circadian rhythm, and loss of physiologic complexity in its secretion: clinical implications. J Clin Endocrinol Metab 90:2522–2530

    PubMed  CAS  Google Scholar 

  88. Frommberger UH, Bauer J, Haselbauer P, Fraulin A, Riemann D, Berger M (1997) Interleukin-6-(IL-6) plasma levels in depression and schizophrenia: comparison between the acute state and after remission. Eur Arch Psychiatry Clin Neurosci 247:228–233

    PubMed  CAS  Google Scholar 

  89. Maes M, Lin A, Delmeire L, Van Gastel A, Kenis G, De Jongh R, Bosmons E (1999) Elevated serum interleukin-6 (IL-6) and IL-6 receptor concentrations in posttraumatic stress disorder following accidental man-made traumatic events. Biol Psychiatry 45:833–839

    PubMed  CAS  Google Scholar 

  90. Schlatter J, Ortuño F, Cervera-Enguix S (2004) Monocytic parameters in patients with dysthymia versus major depression. J Affect Disord 78:243–247

    PubMed  Google Scholar 

  91. Zorrilla EP, Luborsky L, McKay JR, Rosenthal R, Houldin A, Tax A, McCorkle R, Seligman DA, Schmidt K (2001) The relationship of depression and stressors to immunological assays: a meta-analytic review. Brain Behav Immun 15(3):199–226

    PubMed  CAS  Google Scholar 

  92. Sluzewska A, Rybakowski JK, Laciak M, Mackiewicz A, Sobieska M, Wiktorowicv K (1995) Interleukin-6 serum levels in depressed patients before and after treatment with fluoxetine. Ann N Y Acad Sci 762:474–476

    PubMed  CAS  Google Scholar 

  93. Basterzi AD, Aydemir C, Kisa C, Aksaray C, Tuzer V, Yazici K, Goka E (2005) IL-6 levels decrease with SSRI treatment in patients with major depression. Hum Psychopharmacol 20:473–476

    PubMed  CAS  Google Scholar 

  94. O’Brien SM, Scott LV, Dinan TG (2006) Antidepressant therapy and C-reactive protein levels. Br J Psychiatry 188:449–452

    PubMed  Google Scholar 

  95. O’Brien SM, Scully P, Fitzgerald P, Scott LV, Dinan TG (2007) Plasma cytokine profiles in depressed patients who fail to respond to selective serotonin reuptake inhibitor therapy. J Psychiatr Res 41:326–331

    PubMed  Google Scholar 

  96. Hannestad J, DellaGioia N, Bloch M (2011) The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology 36:2452–2459. doi:10.1038/npp.2011.132

    PubMed  CAS  Google Scholar 

  97. Penninx BWJH, Kritchevsky SB, Yaffe K, Newman AB, Simonsick EM, Rubin S, Ferrucci L, Harris T, Pahor M (2003) Inflammatory markers and depressed mood in older persons: results from the Health, Aging and Body Composition Study. Biol Psychiatry 54:566–572

    PubMed  CAS  Google Scholar 

  98. Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Critchley HD (2009) Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiatry 66:407–414

    PubMed  Google Scholar 

  99. Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A, Pollmächer T (2001) Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 58:445–452

    PubMed  CAS  Google Scholar 

  100. Strike PC, Wardle J, Steptoe A (2004) Mild acute inflammatory stimulation induces transient negative mood. J Psychosom Res 57:189–194

    PubMed  Google Scholar 

  101. Wright CE, Strike PC, Brydon L, Steptoe A (2005) Acute inflammation and negative mood: mediation by cytokine activation. Brain Behav Immun 19:345–350

    PubMed  CAS  Google Scholar 

  102. Stewart JC, Rand KL, Muldoon MF, Kamarck TW (2009) A prospective evaluation of the directionality of the depression-inflammation relationship. Brain Behav Immun 23:936–944

    PubMed  CAS  Google Scholar 

  103. Copeland WE, Shanahan L, Worthman C, Angold A, Costello EJ (2012) Cumulative depression episodes predict later C-reactive protein levels: a prospective analysis. Biol Psychiatry 71:15–21

    PubMed  CAS  Google Scholar 

  104. Loftis JM, Wall JM, Pagel RL, Hauser P (2006) Administration of pegylated interferon-α-2a or -2b does not induce sickness behavior in Lewis rats. Psychoneuroendocrinology 31:1289–1294

    PubMed  CAS  Google Scholar 

  105. Hori T, Nakashima T, Take S, Kaizuka Y, Mori T, Katafuchi T (1991) Immune cytokines and regulation of body temperature, food intake and cellular immunity. Brain Res Bull 27:309–313

    PubMed  CAS  Google Scholar 

  106. Thompson CM, Proctor DM, Suh M, Haws LC, Hebert CD, Mann JF, Shertzer HG, Hixon JG, Harris MA (2012) Comparison of the effects of hexavalent chromium in the alimentary canal of F344 and B6C3F1 mice following exposure in drinking water: implications for carcinogenic models of action. Toxicol Sci 125:79–90

    PubMed  CAS  Google Scholar 

  107. Suzuki M, Fujii E, Kato C, Yamazaki M, Adachi K, Sugimoto T, Doi K (2008) Differences in bone responses to recombinant human granulocyte colony-stimulating factor between mice and rats. J Toxicol Sci 33:245–249

    PubMed  CAS  Google Scholar 

  108. Sammut S, Goodall G, Muscat R (2001) Acute interferon-α administration modulates sucrose consumption in the rat. Psychoneuroendocrinology 26:261–272

    PubMed  CAS  Google Scholar 

  109. Dunn AJ, Swiergel AH (2005) Effects of interleukin-1 and endotoxin in the forced swim and tail suspension tests in mice. Pharmacol Biochem Behav 81:688–693

    PubMed  CAS  Google Scholar 

  110. Connor TJ, Song C, Leonard BE, Merali Z, Anisman H (1998) An assessment of the effects of central interleukin-1β, -2, -6, and tumor necrosis factor-α administration on some behavioural, neurochemical, endocrine and immune parameters in the rat. Neuroscience 84:923–933

    PubMed  CAS  Google Scholar 

  111. Huang Y, Henry CJ, Dantzer R, Johnson RW, Godbout JP (2008) Exaggerated sickness behavior and brain proinflammatory cytokine expression in aged mice in response to intracerebroventricular lipopolysaccharide. Neurobiol Aging 29:1744–1753

    PubMed  CAS  Google Scholar 

  112. Palin K, McCusker RH, Strle K, Moos F, Dantzer R, Kelley KW (2008) Tumor necrosis factor-α-induced sickness behavior is impaired by central administration of an inhibitor of c-jun N-terminal kinase. Psychopharmacology 197:629–635

    PubMed  CAS  Google Scholar 

  113. Kent S, Bluthé RM, Kellet KW, Dantzer R (1992) Sickness behavior as a new target for drug development. Trends Pharmacol Sci 13:24–28

    PubMed  CAS  Google Scholar 

  114. Kent S, Bluthé RM, Dantzer R, Hardwick AJ, Kelley KW, Rothwell NJ, Vannice JL (1992) Different receptor mechanisms mediate the pyrogenic and behavioral effects of interleukin-1. Proc Natl Acad Sci USA 89:9117–9120

    PubMed  CAS  Google Scholar 

  115. Kent S, Kelley KW, Dantzer R (1992) Effects of lipopolysaccharide on food-motivated behavior in the rat are not blocked by an interleukin-1 receptor antagonist. Neurosci Lett 145:83–86

    PubMed  CAS  Google Scholar 

  116. Burgess W, Gheusi G, Yao J, Johnson RW, Dantzer R, Kelley KW (1998) Interleukin-1β-converting enzyme-deficient mice resist central but not systemic endotoxin-induced anorexia. Am J Physiol 274:R1829–R1833

    PubMed  CAS  Google Scholar 

  117. Chourbaji S, Urani A, Inta I, Sanchis-Segura C, Brandwein C, Zink M, Schwaninger M, Gass P (2006) IL-6 knockout mice exhibit resistance to stress-induced development of depression-like behaviors. Neurobiol Dis 23:587–594

    PubMed  CAS  Google Scholar 

  118. Swiergiel AH, Dunn AJ (2006) Feeding, exploratory, anxiety- and depression-related behaviors are not altered in interleukin-6-deficient male mice. Behav Brain Res 171(1):94–108

    PubMed  CAS  Google Scholar 

  119. von Meyenburg B, Hrupka H, Arsenijevic D, Schwartz GJ, Landmann R, Langhans W (2004) Role for CD14, TLR2, and TLR4 in bacterial product-induced anorexia. Am J Physiol Regul Integr Comp Physiol 287:R298–R305

    Google Scholar 

  120. Palin K, Bluthe RM, McCusker RH, Levade T, Moos F, Dantzer R, Kelley KW (2009) The type 1 TNF receptor and its associated adapter protein, FAN, are required for TNF alpha-induced sickness behavior. Psychopharmacology 201:549–556

    PubMed  CAS  Google Scholar 

  121. Mathew SJ, Charney DS (2009) Publication bias and the efficacy of antidepressants. Am J Psychiatry 166:140–145

    PubMed  Google Scholar 

  122. Lacasse JR, Leo J (2005) Serotonin and depression: a disconnect between the advertisements and the scientific literature. PLoS Med 2:e392

    PubMed  Google Scholar 

  123. Hindmarch I (2001) Expanding the horizons of depression: beyond the monoamine hypothesis. Hum Psychopharmacol 16:203–218

    PubMed  CAS  Google Scholar 

  124. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, Nakazato M, Watanabe H, Shinoda N, Okada S, Iyo M (2003) Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 54:70–75

    PubMed  CAS  Google Scholar 

  125. Hensler JG, Ladenheim EE, Lyons WE (2003) Ethanol consumption and serotonin-1A (5-HT1A) receptor function in heterozygous BDNF(+/−) mice. J Neurochem 85:1139–1147

    PubMed  CAS  Google Scholar 

  126. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 15:91–95

    Google Scholar 

  127. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    PubMed  CAS  Google Scholar 

  128. Maj J, Rogoz Z, Skuza G, Sowinska H (1992) Effects of MK-801 and antidepressant drugs in the forced swimming test in rats. Eur Neuropsychopharmacol 2:37–41

    PubMed  CAS  Google Scholar 

  129. Salomon RM, Miller HL, Krystal JH, Heninger GR, Charney DS (1997) Lack of behavioral effects of monoamine depletion in healthy subjects. Biol Psychiatry 41:58–64

    PubMed  CAS  Google Scholar 

  130. Heninger G, Delgado P, Charney D (1996) The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry 29:2–11

    PubMed  CAS  Google Scholar 

  131. Delgado PL, Miller HL, Salomon RM, Licinio J, Krystal JH, Moreno FA, Heninger GR, Charney DS (1999) Tryptophan-depletion challenge in depressed patients treated with desipramine or fluoxetine: implications for the role of serotonin in the mechanism of antidepressant action. Biol Psychiatry 46:212–220

    PubMed  CAS  Google Scholar 

  132. Berman RM, Sanacora G, Anand A, Roach LM, Fasula MK, Finkelstein CO, Wachen RM, Oren DA, Heninger GR, Charney DS (2002) Monoamine depletion in unmedicated depressed subjects. Biol Psychiatry 51:469–473

    PubMed  CAS  Google Scholar 

  133. Nestler EJ (1998) Antidepressant treatments in the 21st Century. Biol Psychiatry 44:526–533

    PubMed  CAS  Google Scholar 

  134. Den Boer JA, Bosker FJ, Slaap BR (2000) Serotonergic drugs in the treatment of depressive and anxiety disorders. Hum Psychopharmacol 15:315–336

    Google Scholar 

  135. Raison CL, Lin JMS, Reeves WC (2009) Association of peripheral inflammatory markers with chronic fatigue in a population-based sample. Brain Behav Immun 23:327–337

    PubMed  CAS  Google Scholar 

  136. Bonaccorso S, Marino V, Biondi M, Grimaldi F, Ippoliti F, Maes M (2002) Depression induced by treatment with interferon-alpha in patients affected by hepatitis C virus. J Affect Disord 72:237–241

    PubMed  CAS  Google Scholar 

  137. Blackburn-Munro G, Blackburn-Munro RE (2001) Chronic pain, chronic stress and depression: coincidence or consequence? J Neuroendocrinol 13:1009–1023

    PubMed  CAS  Google Scholar 

  138. Jarskog FL, Xiao H, Wilkie MB, Lauder JM, Gilmore JH (1997) Cytokine regulation of embryonic rat dopamine and serotonin neuronal survival in vitro. Int J Dev Neurosci 15:711–716

    PubMed  CAS  Google Scholar 

  139. Zhu CB, Blakely RD, Hewlett WA (2006) The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology 31:2121–2131

    PubMed  CAS  Google Scholar 

  140. Zalcman S, Green-Johnson JM, Murray L, Nance DM, Dyck D, Anismanc H, Greenberg AH (1994) Cytokine-specific central monoamine alterations induced by interleukin-1, -2 and -6. Brain Res 643:40–49

    PubMed  CAS  Google Scholar 

  141. Pae CU, Marks DM, Han C, Patkar AA (2008) Does minocycline have antidepressant effect? Biomed Pharmacother 62:308–311

    PubMed  CAS  Google Scholar 

  142. Fuchs D, Weiss G, Wachter H (1993) Neopterin, biochemistry and clinical use as a marker of cellular immune reaction. Int Arch Allergy Immunol 101:1–6

    PubMed  CAS  Google Scholar 

  143. Maes M, Meltzer HY, Scharpe S, Bosmans E, Suy E, De Meester I, Calabrese J, Cosyns P (1993) Relationships between lower plasma L-tryptophan level and immune-inflammatory variables in depression. Psychiatry Res 49:151–165

    PubMed  CAS  Google Scholar 

  144. Maes M, Meltzer HY, Bosmans E, Bergmans R, Vandoolaeghe E, Ranjan R, Desnyder R (1995) Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin-2 and transferrin receptor in major depression. J Affect Disord 34:301–309

    PubMed  CAS  Google Scholar 

  145. Häusler KG, Prinz M, Nolte C, Weber JR, Schumann RR, Kettenmann H, Hanisch UK (2002) Interferon-γ differentially modulates the release of cytokines and chemokines in lipopolysaccharide- and pneumococcal cell wall-stimulated mouse microglia and macrophages. Eur J Neurosci 16:2113–2122

    PubMed  Google Scholar 

  146. Arkins S, Rebeiz N, Brunke-Reese DL, Biragyn A, Kelley KW (1995) Interferon-gamma inhibits macrophage insulin-like growth factor-I synthesis at the transcriptional level. Mol Endocrinol 9:350–360

    PubMed  CAS  Google Scholar 

  147. Dunn AJ (2000) Cytokine activation of the HPA axis. Ann N Y Acad Sci 917:608–617

    PubMed  CAS  Google Scholar 

  148. Silverman MN, Miller AH, Biron CA, Pearce BD (2004) Characterization of an interleukin-6 and adrenocorticotropin-dependent, immune-to-adrenal pathway during viral infection. Endocrinology 145:3580–3589

    PubMed  CAS  Google Scholar 

  149. Sullivan GM, Canfield SM, Lederman S, Xiao E, Ferin M, Wardlaw SL (1997) Intracerebroventricular injection of interleukin-1 suppresses peripheral lymphocyte function in the primate. Neuroimmunomodulation 4:12–18

    PubMed  CAS  Google Scholar 

  150. Watanabe T, Morimoto A, Murakami N (1991) ACTH response in rats during biphasic fever induced by interleukin-1. Am J Physiol 261:R11014–R11108

    Google Scholar 

  151. Krishnan V, Nestler EJ (2010) Linking molecules to mood: new insight into the biology of depression. Am J Psychiatry 167:1305–1320

    PubMed  Google Scholar 

  152. Chesnokova V, Melmed S (2002) Minireview: neuro-immuno-endocrine modulation of the hypothalamic-pituitary-adrenal (HPA) axis by gp130 signaling molecules. Endocrinology 143:1571–1574

    PubMed  CAS  Google Scholar 

  153. Guan Z, Fang J (2006) Peripheral immune activation by lipopolysaccharide decreases neurotrophins in the cortex and hippocampus in rats. Brain Behav Immun 20:64–71

    PubMed  CAS  Google Scholar 

  154. Kelley KW, Weigent DA, Kooijman R (2007) Protein hormones and immunity. Brain Behav Immun 21:384–392

    PubMed  CAS  Google Scholar 

  155. Park SE, Lawson M, Dantzer R, Kelley KW, McCusker RH (2011) Insulin-like growth factor-I peptides act centrally to decrease depression-like behavior of mice treated intraperitoneally with lipopolysaccharide. J Neuroinflammation 21:179

    Google Scholar 

  156. Park SE, Dantzer R, Kelley KW, McCusker RH (2011) Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice. J Neuroinflammation 9:8–12

    Google Scholar 

  157. Kaneko N, Kudo K, Mabuchi T, Takemoto K, Fujimaki K, Wati H, Iguchi H, Tezuka H, Kanba S (2006) Suppression of cell proliferation by interferon-alpha through interleukin-1 production in adult rat dentate gyrus. Neuropsychopharmacology 31:2619–2626

    PubMed  CAS  Google Scholar 

  158. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765

    PubMed  CAS  Google Scholar 

  159. Vallières L, Campbell IL, Gage FH, Sawchenko PE (2002) Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci 22:486–492

    PubMed  Google Scholar 

  160. Seguin JA, Brennan J, Mangano E, Hayley S (2009) Proinflammatory cytokines differentially influence adult hippocampal cell proliferation depending upon the route and chronicity of administration. Neuropsychiatr Dis Treat 5:5–14

    PubMed  CAS  Google Scholar 

  161. Tolosa L, Caraballo-Miralles V, Olmos G, Llado J (2011) TNF-α potentiates glutamate-induced spinal cord motoneuron death via NF-ΚB. Mol Cell Neurosci 46:176–186

    PubMed  CAS  Google Scholar 

  162. Villani GR, Gargiulo N, Faraonio R, Castaldo S, Gonzalez Y, Reyero E, Di Natale P (2007) Cytokines, neurotrophins, and oxidative stress in brain disease from mucopolysaccharidosis IIIB. J Neurosci Res 85:612–622

    PubMed  CAS  Google Scholar 

  163. Zhu W, Zheng H, Shao X, Wang W, Yao Q, Li Z (2010) Excitotoxicity of TNF alpha derived from KA activated microglia on hippocampal neurons in vitro and in vivo. J Neurochem 23:386–396

    Google Scholar 

  164. Howren MB, Lamkin DM, Suls J (2009) Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 71:171–186

    PubMed  CAS  Google Scholar 

  165. Liukkonen T, Silvennoinen-Kassinen S, Jokelainen J, Räsänend P, Leinoneng M, Meyer-Rochowe VB, Timonen M (2006) The association between C-reactive protein levels and depression: results from the Northern Finland 1966 birth cohort study. Biol Psychiatry 60:825–830

    PubMed  CAS  Google Scholar 

  166. Heinrich PC, Castell JV, Andus T (1990) Interleukin-6 and the acute phase response. Biochem J 265:621–636

    PubMed  CAS  Google Scholar 

  167. Anisman H, Merali Z, Poulter MO, Hayley S (2005) Cytokines as a precipitant of depressive illness: animal and human studies. Curr Pharm Des 11:963–972

    PubMed  CAS  Google Scholar 

  168. Pace TWW, Mletzko TC, Alagbe O, Musselman DL, Nemeroff CB, Miller AH, Heim CM (2006) Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. Am J Psychiatry 163:1630–1633

    PubMed  Google Scholar 

  169. Goshen I, Yirmiya R, Iverfeldt K, Weidenfeld J (2003) The role of endogenous interleukin-1 in stress-induced adrenal activation and adrenalectomy induced adrenocorticotropic hormone hypersecretion. Endocrinology 144:4453–4458

    PubMed  CAS  Google Scholar 

  170. Goshen I, Yirmiya R (2007) The role of pro-inflammatory cytokines in memory processes and neural plasticity. In: Ader R (ed) Psychoneuroimmunology, 4th edn. Academic, Amsterdam, pp 337–377

    Google Scholar 

  171. Kendler KS, Karkowski LM, Prescott CA (1999) Causal relationships between stressful life events and the onset of major depression. Am J Psychiatry 156:837–841

    PubMed  CAS  Google Scholar 

  172. Luby JL, Heffelfinger A, Mrakotsky C, Brown K, Hessler M, Spitznagel E (2003) Alterations in stress cortisol reactivity in depressed preschoolers relative to psychiatric and no-disorder comparison groups. Arch Gen Psychiatry 60:1248–1255

    PubMed  Google Scholar 

  173. Tennes K, Downey K, Vernadakis A (1977) Urinary cortisol excretion rates and anxiety in normal one year old infants. Psychosom Med 39:178–187

    PubMed  CAS  Google Scholar 

  174. Guerry JD, Hastings PD (2011) In search of HPA axis dysregulation in child and adolescent depression. Clin Child Fam Psychol Rev 14:135–160

    PubMed  Google Scholar 

  175. Bhagwagar Z, Hafizi S, Cowen PJ (2003) Increase in concentration of waking salivary cortisol in recovered patients with depression. Am J Psychiatry 160:1890–1891

    PubMed  Google Scholar 

  176. Pariante CM, Lightman SL (2008) The HPA axis in major depression: classical theories and new developments. Trends Neurosci 31:464–468

    PubMed  CAS  Google Scholar 

  177. Koolschijn PCMP, van Haren NEM, Lensvelt-Mulders GJLM, Hulshoff Pol HE, Kahn RS (2009) Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum Brain Mapp 30:3719–3735

    PubMed  Google Scholar 

  178. den Heijer T, Tiemeier H, Luijendijk HJ, van der Lijn F, Koudstaal PJ, Hofman A, Breteler MMB (2011) A study of the bidirectional association between hippocampal volume on magnetic resonance imaging and depression in the elderly. Biol Psychiatry 70:191–197

    Google Scholar 

  179. Heim C, Nemeroff CB (1999) The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biol Psychiatry 46:1509–1522

    PubMed  CAS  Google Scholar 

  180. Humphreys D, Schlesinger L, Lopez M, Araya AV (2006) Interleukin-6 production and deregulation of the hypothalamic-pituitary-adrenal axis in patients with major depressive disorders. Endocrine 30:371–376

    PubMed  CAS  Google Scholar 

  181. Webster JC, Oakley RH, Jewell CM, Cidlowski JA (2001) Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative β isoform: a mechanism for the generation of glucocorticoid resistance. Proc Natl Acad Sci USA 98:6865–6870

    PubMed  CAS  Google Scholar 

  182. Fitzgerald P, O’Brien SM, Scully P, Rijkers K, Scott LV, Dinan TG (2006) Cutaneous glucocorticoid receptor sensitivity and pro-inflammatory cytokine levels in antidepressant-resistant depression. Psychol Med 36:37–43

    PubMed  Google Scholar 

  183. Jehn CF, Kuehnhardt D, Bartholomae A, Pfeiffer S, Krebs M, Regierer AC, Schmid P, Possinger K, Rath BC (2006) Biomarkers of depression in cancer patients. Cancer 107:2723–2729

    PubMed  CAS  Google Scholar 

  184. Shanks N, Larocque S, Meaney MJ (1995) Neonatal endotoxin exposure alters the development of the hypothalamic-pituitary-adrenal axis: early illness and later responsivity to stress. J Neurosci 15:376–384

    PubMed  CAS  Google Scholar 

  185. Walker AK, Nakamura T, Byrne R, Naicker S, Tynan RJ, Hodgson DM (2009) Neonatal lipopolysaccharide and adult stress exposure predisposes rats to anxiety-like behavior and blunted corticosterone responses: implications for the double-hit hypothesis. Psychoneuroendocrinology 34:1515–1525

    PubMed  CAS  Google Scholar 

  186. Walker AK, Nakamura T, Hodgson DM (2010) Neonatal lipopolysaccharide exposure alters central cytokine responses to stress in adulthood in Wistar rats. Stress 13(6):506–515

    PubMed  CAS  Google Scholar 

  187. Hajszan T, Dow A, Warner-Schmidt JL, Szigeti-Buck K, Sallam NL, Parducz A, Leranth A, Duman RS (2009) Remodeling of hippocampal spine synapses in the rat learned helplessness model of depression. Biol Psychiatry 65:392–400

    PubMed  Google Scholar 

  188. Pittenger C, Duman RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33:88–109

    PubMed  CAS  Google Scholar 

  189. Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110

    PubMed  CAS  Google Scholar 

  190. Frodl T, Jäger M, Smajstrlova I, Born C, Bottlender R, Palladino T, Reiser M, Möller HJ, Meisenzahl EM (2008) Effect of hippocampal and amygdala volumes on clinical outcomes in major depression: a 3-year prospective magnetic resonance imaging study. J Psychiatry Neurosci 33:423–430

    PubMed  Google Scholar 

  191. Jehn CF, Kühnhardt D, Bartholomae A, Pfeiffer S, Schmid P, Possibger K, Flath BC, Lüftner D (2010) Association of IL-6, hypothalamus–pituitary–adrenal axis function, and depression in patients with cancer. Integr Cancer Ther 9:270–275

    PubMed  CAS  Google Scholar 

  192. Pace T, Hu F, Miller AH (2007) Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav Immun 21:9–19

    PubMed  CAS  Google Scholar 

  193. Pace TW, Miller AH (2009) Cytokines and glucocorticoid receptor signaling. Relevance to major depression. Ann N Y Acad Sci 1179:86–105

    PubMed  CAS  Google Scholar 

  194. Hu F, Wang X, Pace TWW, Wu H, Miller AH (2005) Inhibition of COX-2 by celecoxib enhances glucocorticoid receptor function. Mol Psychiatry 10:426–433

    PubMed  CAS  Google Scholar 

  195. Klinesmith J, Kasser T, McAndrew FT (2006) Guns, testosterone, and aggression: an experimental test of a mediational hypothesis. Psychol Sci 17:568

    PubMed  Google Scholar 

  196. Newman ML, Josephs RA (2009) Testosterone as a personality variable. J Res Pers 43:258–259

    Google Scholar 

  197. Schweiger U, Deuschle M, Weber B, Korner A, Lammers CH, Schmeider J, Gotthardt U, Heuser I (1999) Testosterone, gonadotropin, and cortisol secretion in male patients with major depression. Psychosom Med 61:292–296

    PubMed  CAS  Google Scholar 

  198. Perry PJ, Yates WR, Williams RD, Anderson AE, MacIndoe JH, Lund BC, Holman TL (2002) Testosterone therapy in late-life major depression in males. J Clin Psychiatry 63:1096–1101

    PubMed  CAS  Google Scholar 

  199. Yoo MJ, Nishihara M, Takahashi M (1997) Tumor necrosis factor a mediates endotoxin induced suppression of gonadotropin-releasing hormone pulse generator activity in the rat. Endocr J 44:141–148

    PubMed  CAS  Google Scholar 

  200. Ebisui O, Fukata J, Tominaga T, Murakami N, Kobayashi H, Segawa H, Muro S, Naito Y, Nakai Y, Maui Y, Nishida T, Imura H (1992) Roles of interleukin-1a and 21b in endotoxin-induced suppression of plasma gonadotropin levels in rats. Endocrinology 130:3307–3313

    PubMed  CAS  Google Scholar 

  201. Rivest S, Rivier C (1993) Interleukin-1b inhibits the endogenous expression of the early gene c-fos located within the nucleus of LH-RH neurons and interferes with hypothalamic LH-RH release during proestrus in the rat. Brain Res 613:132–142

    PubMed  CAS  Google Scholar 

  202. Avitsur R, Cohen E, Yirmiya R (1998) Effects of interleukin-1 on sexual attractivity in a model of sickness behavior. Physiol Behav 63:25–30

    CAS  Google Scholar 

  203. Avitsur R, Yirmiya R (1999) Cytokines inhibit sexual behavior in female rats: I. Synergistic effects of tumor necrosis factor α and interleukin-1. Brain Behav Immun 13:14–32

    PubMed  CAS  Google Scholar 

  204. Avitsur R, Wiedenfeld J, Yirmiya R (1999) Cytokines inhibit sexual behavior in female rats: II. Prostaglandins mediate the suppressive effects of interleukin-1β. Brain Behav Immun 13:33–45

    PubMed  CAS  Google Scholar 

  205. Imura H, Fukata JI, Mori T (1991) Cytokines and endocrine function: an interaction between the immune and neuroendocrine systems. Clin Endocrinol 35:107–115

    CAS  Google Scholar 

  206. Li XF, Bowe JE, Lightman SL, O’Byrne KT (2005) Role of corticotropin-releasing factor receptor-2 in stress-induced suppression of pulsatile luteinizing hormone secretion in the rat. Endocrinology 146:318–322

    PubMed  CAS  Google Scholar 

  207. Matsuwaki T, Suzuki M, Yamanouchi K, Nishihara M (2004) Glucocorticoid counteracts the suppressive effect of tumor necrosis factor-alpha on the surge of luteinizing hormone secretion in rats. J Endocrinol 181:509–513

    PubMed  CAS  Google Scholar 

  208. Li XF, Kinsey-Jones JS, Knox AM, Wu XQ, Tahsinsoy D, Brain SD, Lightman SL, O’Byrne KT (2007) Neonatal lipopolysaccharide exposure exacerbates stress-induced suppression of luteinizing hormone pulse frequency in adulthood. Endocrinology 148:5984–5990

    PubMed  CAS  Google Scholar 

  209. Knox AM, Li XF, Kinsey-Jones JS, Wilkinson ES, Wu XQ, Cheng YS, Milligan SR, Lightman SL, O’Byrne KT (2009) Neonatal lipopolysaccharide exposure delays puberty and alters hypothalamic Kiss1 and Kiss1r mRNA expression in the female rat. J Neuroendocrinol 21:683–689

    PubMed  CAS  Google Scholar 

  210. Walker AK, Hiles SA, Sominsky L, Mclaughlin EA, Hodgson DM (2011) Neonatal lipopolysaccharide exposure impairs sexual development and reproductive success in the Wistar rat. Brain Behav Immun 25:674–684

    PubMed  CAS  Google Scholar 

  211. Weissman MN, Bland R, Joyce PR, Newman S, Wells JE, Wittchen HU (1993) Sex differences in rates of depression: cross-national perspectives. J Affect Disord 29:77–84

    PubMed  CAS  Google Scholar 

  212. Kessler RC, McGonagle KA, Zhao S, Nelson CB, Hughes M, Eshleman S, Wittchen HU, Kendler KS (1994) Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: results from the National Comorbidity Survey. Arch Gen Psychiatry 51:8–19

    PubMed  CAS  Google Scholar 

  213. Cowen PJ, Parry-Billings M, Newsholme EA (1989) Decreased plasma tryptophan levels in major depression. J Affect Disord 16:27–31

    PubMed  CAS  Google Scholar 

  214. Maes M, Minner B, Suy E (1991) The relationships between the availability of l-tryptophan to the brain, the spontaneous HPA-axis activity, and the HPA-axis responses to dexamethasone in depressed patients. J Amino Acids 1:57–65

    CAS  Google Scholar 

  215. Maes M, Schotte C, D’Hondt P, Claes M, Vandewoude M, Scharpe S, Cosyns P (1991) Biological heterogeneity of melancholia: results of pattern recognition methods. J Psychiatr Res 25:95–108

    PubMed  CAS  Google Scholar 

  216. Quintana J (1992) Platelet serotonin and plasma tryptophan decreases in endogenous depression. Clinical, therapeutic, and biological correlations. J Affect Disord 24:55–62

    PubMed  CAS  Google Scholar 

  217. Song C, Lin A, Bonaccorse S, Heide C, Verkerk R, Kenis G, Bosmans E, Scharpé S, Whelan A, Cosyns P, de Jongh R, Maes M (1998) The inflammatory response system and the availability of plasma tryptophan in patients with primary sleep disorders and major depression. J Affect Disord 49:211–219

    PubMed  CAS  Google Scholar 

  218. Guilleman GJ, Smythe G, Takikawa O, Brew BJ (2005) Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes and neurons. Glia 49:15–23

    Google Scholar 

  219. Kwidzinski E, Bechmann I (2007) IDO expression in the brain: a double-edged sword. J Mol Med 85:1351–1359

    PubMed  Google Scholar 

  220. Heyes MP, Achim CL, Wiley CA, Major EO, Saito K, Markey SP (1996) Human microglia convert l-tryptophan into the neurotoxin quinolinic acid. Biochem J 320:595–597

    PubMed  CAS  Google Scholar 

  221. Myint AM, Kim YK, Verkerk R, Scharpé S, Syeinbusch H, Leonard B (2007) Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 98:143–151

    PubMed  CAS  Google Scholar 

  222. Myint AM, Schwarz MJ, Verkerk R, Mueller HH, Zach J, Scharpé S, Steinbusch HWM, Leonard BE, Kim YK (2011) Reversal of imbalance between kynurenic acid and 3-hydroxykynurenine by antipsychotics in medication-naïve and medication-free schizophrenic patients. Brain Behav Immun 25:1576–1581. doi:10.1016/j.bbi.2011.05.005

    PubMed  CAS  Google Scholar 

  223. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193

    PubMed  CAS  Google Scholar 

  224. Mellor AL, Munn DH (2000) Immunology at the maternal–fetal interface: lessons for T cell tolerance and suppression. Annu Rev Immunol 18:367–391

    PubMed  CAS  Google Scholar 

  225. Mellor AL, Sivakumar J, Chandler P, Smith K, Molina H, Mao D, Munn DH (2001) Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy. Nat Immunol 2:64–68

    PubMed  CAS  Google Scholar 

  226. Capuron L, Neurauter G, Musselman DL, Lawson DH, Nemeroff CB, Fuchs D, Miller AH (2003) Interferon-alpha-induced changes in tryptophan metabolism: relationship to depression and paroxetine treatment. Biol Psychiatry 54:906–914

    PubMed  CAS  Google Scholar 

  227. Capuron L, Ravaud A, Neveu PJ, Miller AH, Maes M, Dantzer R (2002) Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol Psychiatry 7:468–473

    PubMed  CAS  Google Scholar 

  228. Wichers MC, Koek GH, Robays G, Verkerk R, Scharpé S, Maes M (2005) IDO and interferon-α-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity. Mol Psychiatry 10:538–544

    PubMed  CAS  Google Scholar 

  229. Raison CL, Dantzer R, Kelley KW, Lawson MA, Wool Wine BJ, Vogt G, Spivey JR, Saito K, Miller AH (2010) CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-α: relationship to CNS immune responses and depression. Mol Psychiatry 15:393–403

    PubMed  CAS  Google Scholar 

  230. Sublette ME, Galfalvy HC, Fuchs D, Lapidus M, Grunebaum MF, Oquendo MA, Mann JJ, Postolache TT (2011) Plasma kynurenine levels are elevated in suicide attempters with major depressive disorder. Brain Behav Immun 25:1272–1278

    PubMed  CAS  Google Scholar 

  231. Moreau M, Lestage J, Verrier D, Mormede C, Kelley KW, Dantzer R, Castanon N (2005) Bacille calmette-guerin inoculation induces chronic activation of peripheral and brain indoleamine 2,3-dioxygenase in mice. J Infect Dis 192:537–544

    PubMed  CAS  Google Scholar 

  232. Godbout JP, Moreau M, Lestage J, Chen J, Sparkman NL, O’Connor J, Castanon N, Kelley KW, Dantzer R, Johnson RW (2008) Aging exacerbates depressive-like behavior in mice in response to activation of the peripheral innate immune system. Neuropsychopharmacology 33:2341–2351

    PubMed  CAS  Google Scholar 

  233. Yadav MC, Burudi EM, Alirezaei M, Flynn CC, Watry DD, Lanigan CM, Fox HS (2007) IFN-gamma-induced IDO and WRS expression in microglia is differentially regulated by IL-4. Glia 55:1385–1396

    PubMed  Google Scholar 

  234. Müller N, Schwarz MJ (2007) The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 12:988–1000

    PubMed  Google Scholar 

  235. Funakoshi H, Kanai M, Nakamura T (2011) Modulation of tryptophan metabolism, promotion of neurogenesis and alteration of anxiety-related behavior in tryptophan 2,3-dioxygenase-deficient mice. Int J Tryptophan Res 4:7–18

    CAS  Google Scholar 

  236. Metz R, Du Hadaway JB, Kamasani U, Laury-Kleintop L, Muller AJ, Prendergast JC (2007) Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. Cancer Res 67:7082–7087

    PubMed  CAS  Google Scholar 

  237. Branchey L, Lieber CS (1982) Activation of tryptophan pyrrolase after chronic alcohol administration. Subst Alcohol Actions Misuse 3:225–229

    PubMed  CAS  Google Scholar 

  238. Badawy AA-B, Dougherty DM, Marsh-Richard DM, Steptoe A (2009) Activation of liver tryptophan pyrrolase mediates the decrease in tryptophan availability to the brain after acute alcohol consumption in normal subjects. Alcohol Alcohol 44:267–271

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grant RO1 AG029573 to Keith W. Kelley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith W. Kelley Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walker, A.K., Dantzer, R., Kelley, K.W. (2013). Mood Disorders and Immunity. In: Cui, C., Grandison, L., Noronha, A. (eds) Neural-Immune Interactions in Brain Function and Alcohol Related Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4729-0_6

Download citation

Publish with us

Policies and ethics