Skip to main content

Abstract

When astrocytes were first visualized by Virchow in 1846, he characterized them as a type of “glue” filling in the interstitial space. The term “astrocyte” first appeared in 1893 when improvements in histological techniques made it possible to distinguish individual cell morphology within this cerebral “glue” [1]. The importance of these cells, though not well understood, was appreciated by the fact that astrocytes occupy a substantial amount of space in the brain, representing up to 50% of cerebral volume [2]. Interestingly, the ratio of astrocytes to neurons varies among species and according to the relative complexity of the brain [3], increasing proportionally with the complexity of the neural network. This is perhaps one of the first pieces of evidence hinting at a role for astrocytes in the integration of neuronal activity. With the advancement of staining techniques came a greater appreciation for the unique structure of these cells which subsequently provided great insight into their diverse functions. Astrocytes have multiple primary processes and fine branching processes which are able to expand and contract, allowing them to dynamically contact both synapses and microvasculature. In addition, by forming independent microdomains, with little or no overlap with neighboring astrocytes, astrocytes are able to effectively modulate communication between neuronal networks and glial–vascular coupling. For example, the end feet of astrocytes contact blood vessels and modulate blood flow via Ca2+-dependent release of vasoactive agents, effectively regulating neuronal access to nutrients required to sustain metabolic demand. Similarly, astrocyte morphology can change in response to their environment. Hormonally responsive astrocytes in the arcuate nucleus of the adult female rat respond to estradiol with dramatic changes in their morphology, including an increased coverage of neuronal perikarya, impacting synaptic communication [4]. These changes in morphology have been recently correlated with changes in glutamate–glutamine cycling, indicating functional plasticity of neuronal–glial communication in the normal adult brain [5]. Another important function of astrocytes is their role in the “tripartite synapse,” or the communication between the astrocytic process and the pre- and postsynaptic terminals [6]. Despite the complex morphology and numerous ramifications of astrocytes, it is still rather surprising to consider that a single astrocyte residing in area CA1 of the rat hippocampus can contact up to 140,000 synapses [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kettenmann H, Verkhratsky A (2008) Neuroglia: the 150 years after. Trends Neurosci 31(12):653–659

    Article  PubMed  CAS  Google Scholar 

  2. Magistretti PJ, Pellerin L (1999) Astrocytes couple synaptic activity to glucose utilization in the brain. News Physiol Sci 14:177–182

    PubMed  CAS  Google Scholar 

  3. Banaclocha MA (2007) Neuromagnetic dialogue between neuronal minicolumns and astroglial network: a new approach for memory and cerebral computation. Brain Res Bull 73(1–3):21–27

    Article  PubMed  Google Scholar 

  4. Garcia-Segura LM, Chowen JA, Duenas M, Torres-Aleman I, Naftolin F (1994) Gonadal steroids as promoters of neuro-glial plasticity. Psychoneuroendocrinology 19(5–7):445–453

    Article  PubMed  CAS  Google Scholar 

  5. Blutstein T, Baab PJ, Zielke HR, Mong JA (2009) Hormonal modulation of amino acid neurotransmitter metabolism in the arcuate nucleus of the adult female rat: a novel action of estradiol. Endocrinology 150(7):3237–3244

    Article  PubMed  CAS  Google Scholar 

  6. Haydon PG, Blendy J, Moss SJ, Rob JF (2009) Astrocytic control of synaptic transmission and plasticity: a target for drugs of abuse? Neuropharmacology 56(suppl 1):83–90

    Article  PubMed  CAS  Google Scholar 

  7. Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22(1):183–192

    PubMed  CAS  Google Scholar 

  8. Li D, Ropert N, Koulakoff A, Giaume C, Oheim M (2008) Lysosomes are the major vesicular compartment undergoing Ca2+-regulated exocytosis from cortical astrocytes. J Neurosci 28(30):7648–7658

    Article  PubMed  CAS  Google Scholar 

  9. Liu T, Sun L, Xiong Y, Shang S, Guo N, Teng S et al (2011) Calcium triggers exocytosis from two types of organelles in a single astrocyte. J Neurosci 31(29):10593–10601

    Article  PubMed  CAS  Google Scholar 

  10. Montana V, Malarkey EB, Verderio C, Matteoli M, Parpura V (2006) Vesicular transmitter release from astrocytes. Glia 54(7):700–715

    Article  PubMed  Google Scholar 

  11. Zhang Q, Pangrsic T, Kreft M, Krzan M, Li N, Sul JY et al (2004) Fusion-related release of glutamate from astrocytes. J Biol Chem 279(13):12724–12733

    Article  PubMed  CAS  Google Scholar 

  12. Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR et al (2008) What is the role of astrocyte calcium in neurophysiology? Neuron 59(6):932–946

    Article  PubMed  CAS  Google Scholar 

  13. Agulhon C, Fiacco TA, McCarthy KD (2010) Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling. Science 327(5970):1250–1254

    Article  PubMed  CAS  Google Scholar 

  14. Fiacco TA, Agulhon C, Taves SR, Petravicz J, Casper KB, Dong X et al (2007) Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity. Neuron 54(4):611–626

    Article  PubMed  CAS  Google Scholar 

  15. Fiacco TA, Agulhon C, McCarthy KD (2009) Sorting out astrocyte physiology from pharmacology. Annu Rev Pharmacol Toxicol 49:151–174

    Article  PubMed  CAS  Google Scholar 

  16. Petravicz J, Fiacco TA, McCarthy KD (2008) Loss of IP3 receptor-dependent Ca2+ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity. J Neurosci 28(19):4967–4973

    Article  PubMed  CAS  Google Scholar 

  17. Watkins JC (2000) l-glutamate as a central neurotransmitter: looking back. Biochem Soc Trans 28(4):297–309

    Article  PubMed  CAS  Google Scholar 

  18. Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL et al (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391(6664):281–285

    Article  PubMed  CAS  Google Scholar 

  19. Jeftinija SD, Jeftinija KV, Stefanovic G, Liu F (1996) Neuroligand-evoked calcium-dependent release of excitatory amino acids from cultured astrocytes. J Neurochem 66(2):676–684

    Article  PubMed  CAS  Google Scholar 

  20. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369(6483):744–747

    Article  PubMed  CAS  Google Scholar 

  21. Parpura V, Fang Y, Basarsky T, Jahn R, Haydon PG (1995) Expression of synaptobrevin II, cellubrevin and syntaxin but not SNAP-25 in cultured astrocytes. FEBS Lett 377(3):489–492

    Article  PubMed  CAS  Google Scholar 

  22. Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11(4):227–238

    Article  PubMed  CAS  Google Scholar 

  23. Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G (2004) Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43(5):729–743

    Article  PubMed  CAS  Google Scholar 

  24. Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17(20):7817–7830

    PubMed  CAS  Google Scholar 

  25. Santello M, Volterra A (2009) Synaptic modulation by astrocytes via Ca2+-dependent glutamate release. Neuroscience 158(1):253–259

    Article  PubMed  CAS  Google Scholar 

  26. Montana V, Ni Y, Sunjara V, Hua X, Parpura V (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24(11):2633–2642

    Article  PubMed  CAS  Google Scholar 

  27. Ormel L, Stensrud MJ, Bergersen LH, Gundersen V (2012) VGLUT1 is localized in astrocytic processes in several brain regions. Glia 60(2):229–238

    Article  PubMed  Google Scholar 

  28. Zhang Q, Fukuda M, Van Bockstaele E, Pascual O, Haydon PG (2004) Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci U S A 101(25):9441–9446

    Article  PubMed  CAS  Google Scholar 

  29. Aoki C, Milner TA, Sheu KF, Blass JP, Pickel VM (1987) Regional distribution of astrocytes with intense immunoreactivity for glutamate dehydrogenase in rat brain: implications for neuron-glia interactions in glutamate transmission. J Neurosci 7(7):2214–2231

    PubMed  CAS  Google Scholar 

  30. Kaneko T, Shigemoto R, Mizuno N (1988) Metabolism of glutamate and ammonia in astrocyte: an immunocytochemical study. Brain Res 457(1):160–164

    Article  PubMed  CAS  Google Scholar 

  31. Madl JE, Clements JR, Beitz AJ, Wenthold RJ, Larson AA (1988) Immunocytochemical localization of glutamate dehydrogenase in mitochondria of the cerebellum: an ultrastructural study using a monoclonal antibody. Brain Res 452(1–2):396–402

    Article  PubMed  CAS  Google Scholar 

  32. Wenthold RJ, Altschuler RA, Skaggs KK, Reeks KA (1987) Immunocytochemical characterization of glutamate dehydrogenase in the cerebellum of the rat. J Neurochem 48(2):636–643

    Article  PubMed  CAS  Google Scholar 

  33. Rothe F, Brosz M, Storm-Mathisen J (1995) Quantitative ultrastructural localization of glutamate dehydrogenase in the rat cerebellar cortex. Neuroscience 64(4):iii–xvi

    Google Scholar 

  34. Rothe F, Brosz M, Storm-Mathisen J (1994) Quantitative ultrastructural localization of glutamate dehydrogenase in the rat cerebellar cortex. Neuroscience 62(4):1133–1146

    Article  PubMed  CAS  Google Scholar 

  35. Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32(1):1–14

    Article  PubMed  CAS  Google Scholar 

  36. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    Article  PubMed  CAS  Google Scholar 

  37. Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E et al (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4(7):702–710

    Article  PubMed  CAS  Google Scholar 

  38. Bal-Price A, Moneer Z, Brown GC (2002) Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes. Glia 40(3):312–323

    Article  PubMed  Google Scholar 

  39. Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P et al (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278(2):1354–1362

    Article  PubMed  CAS  Google Scholar 

  40. Cali C, Bezzi P (2010) CXCR4-mediated glutamate exocytosis from astrocytes. J Neuroimmunol 224(1–2):13–21

    Article  PubMed  CAS  Google Scholar 

  41. Santello M, Bezzi P, Volterra A (2011) TNFalpha controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron 69(5):988–1001

    Article  PubMed  CAS  Google Scholar 

  42. Domercq M, Brambilla L, Pilati E, Marchaland J, Volterra A, Bezzi P (2006) P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-alpha and prostaglandins. J Biol Chem 281(41):30684–30696

    Article  PubMed  CAS  Google Scholar 

  43. Angulo MC, Kozlov AS, Charpak S, Audinat E (2004) Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci 24(31):6920–6927

    Article  PubMed  CAS  Google Scholar 

  44. Araque A, Sanzgiri RP, Parpura V, Haydon PG (1999) Astrocyte-induced modulation of synaptic transmission. Can J Physiol Pharmacol 77(9):699–706

    Article  PubMed  CAS  Google Scholar 

  45. Fellin T, D’Ascenzo M, Haydon PG (2007) Astrocytes control neuronal excitability in the nucleus accumbens. Sci World J 7:89–97

    Article  Google Scholar 

  46. Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86(3):1009–1031

    Article  PubMed  CAS  Google Scholar 

  47. Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M, Domercq M et al (2007) Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 10(3):331–339

    Article  PubMed  CAS  Google Scholar 

  48. Kozlov AS, Angulo MC, Audinat E, Charpak S (2006) Target cell-specific modulation of neuronal activity by astrocytes. Proc Natl Acad Sci USA 103(26):10058–10063

    Article  PubMed  CAS  Google Scholar 

  49. Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA et al (2006) Glia-derived d-serine controls NMDA receptor activity and synaptic memory. Cell 125(4):775–784

    Article  PubMed  CAS  Google Scholar 

  50. Nedergaard M, Verkhratsky A (2012) Artifact versus reality – how astrocytes contribute to synaptic events? Glia 60(7):1013–1023

    Article  PubMed  Google Scholar 

  51. Navarrete M, Perea G, de Sevilla DF, Gomez-Gonzalo M, Nunez A, Martin ED et al (2012) Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol 10(2):e1001259

    Article  PubMed  CAS  Google Scholar 

  52. Williams SM, Diaz CM, Macnab LT, Sullivan RKP, Pow DV (2006) Immunocytochemical analysis of d-serine distribution in the mammalian brain reveals novel anatomical compartmentalizations in glia and neurons. Glia 53(4):401–411

    Article  PubMed  Google Scholar 

  53. Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: A glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission. Proc Natl Acad Sci USA 96(23):13409–13414

    Article  PubMed  CAS  Google Scholar 

  54. Johnson JW, Ascher P (1987) Glycine potentiates the Nmda response in cultured mouse-brain neurons. Nature 325(6104):529–531

    Article  PubMed  CAS  Google Scholar 

  55. Schell MJ, Molliver ME, Snyder SH (1995) d-Serine, an endogenous synaptic modulator – localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA 92(9):3948–3952

    Article  PubMed  CAS  Google Scholar 

  56. Mothet JP, Parent AT, Wolosker H, Brady RO, Linden DJ, Ferris CD et al (2000) d-Serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc Natl Acad Sci USA 97(9):4926–4931

    Article  PubMed  CAS  Google Scholar 

  57. Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter d-serine. Proc Natl Acad Sci USA 102(15):5606–5611

    Article  PubMed  CAS  Google Scholar 

  58. Bergersen LH, Morland C, Ormel L, Rinholm JE, Larsson M, Wold JF et al (2011) Immunogold detection of l-glutamate and d-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. Cereb Cortex 22(7):1690–1697

    Article  PubMed  Google Scholar 

  59. Martineau M, Galli T, Baux G, Mothet JP (2008) Confocal imaging and tracking of the exocytotic routes for d-serine-mediated gliotransmission. Glia 56(12):1271–1284

    Article  PubMed  Google Scholar 

  60. Wolosker H (2011) Serine racemase and the serine shuttle between neurons and astrocytes. Biochim Biophys Acta-Proteins Proteomics 1814(11):1558–1566

    Article  CAS  Google Scholar 

  61. Rosenberg D, Kartvelishvily E, Shleper M, Klinker CMC, Bowser MT, Wolosker H (2010) Neuronal release of d-serine: a physiological pathway controlling extracellular d-serine concentration. FASEB J 24(8):2951–2961

    Article  PubMed  CAS  Google Scholar 

  62. Yoshikawa M, Takayasu N, Hashimoto A, Sato Y, Tamaki R, Tsukamoto H et al (2007) The serine racemase mRNA is predominantly expressed in rat brain neurons. Arch Histol Cytol 70(2):127–134

    Article  PubMed  CAS  Google Scholar 

  63. Miya K, Inoue R, Takata Y, Abe M, Natsume R, Sakimura K et al (2008) Serine racemase is predominantly localized in neurons in mouse brain. J Comp Neurol 510(6):641–654

    Article  PubMed  CAS  Google Scholar 

  64. Ding XH, Ma N, Nagahama M, Yamada K, Semba R (2011) Localization of d-serine and serine racemase in neurons and neuroglias in mouse brain. Neurol Sci 32(2):263–267

    Article  PubMed  Google Scholar 

  65. Henneberger C, Papouin T, Oliet SHR, Rusakov DA (2010) Long-term potentiation depends on release of d-serine from astrocytes. Nature 463(7278):232–U120

    Article  PubMed  CAS  Google Scholar 

  66. Fossat P, Turpin FR, Sacchi S, Dulong J, Shi T, Rivet JM et al (2011) Glial d-serine gates NMDA receptors at excitatory synapses in prefrontal cortex. Cereb Cortex 22(3):595–606

    Article  PubMed  Google Scholar 

  67. Benneyworth MA, Li Y, Basu AC, Bolshakov VY, Coyle JT (2012) Cell selective conditional null mutations of serine racemase demonstrate a predominate localization in cortical glutamatergic neurons. Cell Mol Neurobiol 32(4):613–624

    Article  PubMed  CAS  Google Scholar 

  68. Lake N (1992) Taurine, Gaba and Gfap immunoreactivity in the developing and adult-rat optic-nerve. Brain Res 596(1–2):124–132

    Article  PubMed  CAS  Google Scholar 

  69. Ochi S, Lim JY, Rand MN, During MJ, Sakatani K, Kocsis JD (1993) Transient presence of Gaba in astrocytes of the developing optic-nerve. Glia 9(3):188–198

    Article  PubMed  CAS  Google Scholar 

  70. Lee M, Schwab C, Mcgeer PL (2011) Astrocytes are gabaergic cells that modulate microglial activity. Glia 59(1):152–165

    Article  PubMed  Google Scholar 

  71. Sakatani K, Hassan AZ, Ching W (1991) Age-dependent extrasynaptic modulation of axonal conduction by exogenous and endogenous Gaba in the rat optic-nerve. Exp Neurol 114(3):307–314

    Article  PubMed  CAS  Google Scholar 

  72. Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1(8):683–692

    Article  PubMed  CAS  Google Scholar 

  73. Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6(3):215–229

    Article  PubMed  CAS  Google Scholar 

  74. Jia F, Pignataro L, Schofield CM, Yue M, Harrison NL, Goldstein PA (2005) An extrasynaptic GABA(A) receptor mediates tonic inhibition in thalamic VB neurons. J Neurophysiol 94(6):4491–4501

    Article  PubMed  CAS  Google Scholar 

  75. Cope DW, Hughes SW, Crunelli V (2005) GABA(A) receptor-mediated tonic inhibition in thalamic neurons. J Neurosci 25(50):11553–11563

    Article  PubMed  CAS  Google Scholar 

  76. Martin LJ, Zurek AA, MacDonald JF, Roder JC, Jackson MF, Orser BA (2010) Alpha 5GABA(A) receptor activity sets the threshold for long-term potentiation and constrains hippocampus-dependent memory. J Neurosci 30(15):5269–5282

    Article  PubMed  CAS  Google Scholar 

  77. Fleming RL, Acheson SK, Moore SD, Wilson WA, Swartzwelder HS (2011) GABA transport modulates the ethanol sensitivity of tonic inhibition in the rat dentate gyrus. Alcohol 45(6):577–583

    Article  PubMed  CAS  Google Scholar 

  78. Lee S, Yoon BE, Berglund K, Oh SJ, Park H, Shin HS et al (2010) Channel-mediated tonic GABA release from glia. Science 330(6005):790–796

    Article  PubMed  CAS  Google Scholar 

  79. Yoon BE, Jo S, Woo J, Lee JH, Kim T, Kim D et al (2011) The amount of astrocytic GABA positively correlates with the degree of tonic inhibition in hippocampal CA1 and cerebellum. Mol Brain 4(1):42

    Article  PubMed  CAS  Google Scholar 

  80. Lee M, Mcgeer EG, Mcgeer PL (2011) Mechanisms of GABA release from human astrocytes. Glia 59(11):1600–1611

    Article  PubMed  Google Scholar 

  81. Maienschein V, Marxen M, Volknandt W, Zimmermann H (1999) A plethora of presynaptic proteins associated with ATP-storing organelles in cultured astrocytes. Glia 26(3):233–244

    Article  PubMed  CAS  Google Scholar 

  82. Cotrina ML, Lin JH, Nedergaard M (1998) Cytoskeletal assembly and ATP release regulate astrocytic calcium signaling. J Neurosci 18(21):8794–8804

    PubMed  CAS  Google Scholar 

  83. Wang Z, Haydon PG, Yeung ES (2000) Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Anal Chem 72(9):2001–2007

    Article  PubMed  CAS  Google Scholar 

  84. Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, Jiang ZL et al (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40(5):971–982

    Article  PubMed  CAS  Google Scholar 

  85. Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19(2):520–528

    PubMed  CAS  Google Scholar 

  86. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY et al (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310(5745):113–116

    Article  PubMed  CAS  Google Scholar 

  87. Illes P, Verkhratsky A, Burnstock G, Franke H (2011) P2X receptors and their roles in astroglia in the central and peripheral nervous system. Neuroscientist

    Google Scholar 

  88. Peterson TS, Camden JM, Wang Y, Seye CI, Wood WG, Sun GY et al (2010) P2Y2 nucleotide receptor-mediated responses in brain cells. Mol Neurobiol 41(2–3):356–366

    Article  PubMed  CAS  Google Scholar 

  89. Tozaki-Saitoh H, Tsuda M, Inoue K (2011) Role of purinergic receptors in CNS function and neuroprotection. Adv Pharmacol 61:495–528

    Article  PubMed  CAS  Google Scholar 

  90. James G, Butt AM (2002) P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system. Eur J Pharmacol 447(2–3):247–260

    Article  PubMed  CAS  Google Scholar 

  91. Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T et al (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61(2):213–219

    Article  PubMed  CAS  Google Scholar 

  92. Panatier A, Vallee J, Haber M, Murai KK, Lacaille JC, Robitaille R (2011) Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146(5):785–798

    Article  PubMed  CAS  Google Scholar 

  93. Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, von Zastrow M et al (2002) Control of synaptic strength by glial TNF alpha. Science 295(5563):2282–2285

    Article  PubMed  CAS  Google Scholar 

  94. Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-alpha. Nature 440(7087):1054–1059

    Article  PubMed  CAS  Google Scholar 

  95. Henneberger C, Rusakov DA (2010) Synaptic plasticity and Ca(2+) signalling in astrocytes. Neuron Glia Biol 6(3):141–146

    Article  Google Scholar 

  96. Parpura V, Grubisic V, Verkhratsky A (2011) Ca(2+) sources for the exocytotic release of glutamate from astrocytes. Biochim Biophys Acta 1813(5):984–991

    Article  PubMed  CAS  Google Scholar 

  97. Di Castro MA, Chuquet J, Liaudet N, Bhaukaurally K, Santello M, Bouvier D et al (2011) Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat Neurosci 14(10):1276–1284

    Article  PubMed  CAS  Google Scholar 

  98. Shigetomi E, Kracun S, Khakh BS (2010) Monitoring astrocyte calcium microdomains with improved membrane targeted GCaMP reporters. Neuron Glia Biol 6(3):183–191

    Article  Google Scholar 

  99. Filosa A, Paixao S, Honsek SD, Carmona MA, Becker L, Feddersen B et al (2009) Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci 12(10):1285–1292

    Article  PubMed  CAS  Google Scholar 

  100. Murai KK, Pasquale EB (2011) Eph receptors and ephrins in neuron-astrocyte communication at synapses. Glia 59(11):1567–1578

    Article  PubMed  Google Scholar 

  101. Navarrete M, Araque A (2008) Endocannabinoids mediate neuron-astrocyte communication. Neuron 57(6):883–893

    Article  PubMed  CAS  Google Scholar 

  102. Navarrete M, Araque A (2010) Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron 68(1):113–126

    Article  PubMed  CAS  Google Scholar 

  103. Han J, Kesner P, Metna-Laurent M, Duan T, Xu L, Georges F et al (2012) Acute cannabinoids impair working memory through astroglial CB(1) receptor modulation of hippocampal LTD. Cell 148(5):1039–1050

    Article  PubMed  CAS  Google Scholar 

  104. Saadoun S, Papadopoulos MC (2010) Aquaporin-4 in brain and spinal cord oedema. Neuroscience 168(4):1036–1046

    Article  PubMed  CAS  Google Scholar 

  105. Skucas VA, Mathews IB, Yang J, Cheng Q, Treister A, Duffy AM et al (2011) Impairment of select forms of spatial memory and neurotrophin-dependent synaptic plasticity by deletion of glial aquaporin-4. J Neurosci 31(17):6392–6397

    Article  PubMed  CAS  Google Scholar 

  106. Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG (2007) Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27(24):6473–6477

    Article  PubMed  CAS  Google Scholar 

  107. Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6(8):626–640

    Article  PubMed  CAS  Google Scholar 

  108. Rose CR, Ransom BR (1997) Gap junctions equalize intracellular Na+ concentration in astrocytes. Glia 20(4):299–307

    Article  PubMed  CAS  Google Scholar 

  109. Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263(5154):1768–1771

    Article  PubMed  CAS  Google Scholar 

  110. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247(4941):470–473

    Article  PubMed  CAS  Google Scholar 

  111. Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54(7):716–725

    Article  PubMed  Google Scholar 

  112. Giaume C, Venance L (1998) Intercellular calcium signaling and gap junctional communication in astrocytes. Glia 24(1):50–64

    Article  PubMed  CAS  Google Scholar 

  113. Goldberg M, De Pitta M, Volman V, Berry H, Ben Jacob E (2010) Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks. PLoS Comput Biol 6(8). pii:e1000909

    Google Scholar 

  114. Kuga N, Sasaki T, Takahara Y, Matsuki N, Ikegaya Y (2011) Large-scale calcium waves traveling through astrocytic networks in vivo. J Neurosci 31(7):2607–2614

    Article  PubMed  CAS  Google Scholar 

  115. Houades V, Koulakoff A, Ezan P, Seif I, Giaume C (2008) Gap junction-mediated astrocytic networks in the mouse barrel cortex. J Neurosci 28(20):5207–5217

    Article  PubMed  CAS  Google Scholar 

  116. Roux L, Benchenane K, Rothstein JD, Bonvento G, Giaume C (2011) Plasticity of astroglial networks in olfactory glomeruli. Proc Natl Acad Sci USA 108(45):18442–18446

    Article  PubMed  CAS  Google Scholar 

  117. Pannasch U, Vargova L, Reingruber J, Ezan P, Holcman D, Giaume C et al (2011) Astroglial networks scale synaptic activity and plasticity. Proc Natl Acad Sci USA 108(20):8467–8472

    Article  PubMed  CAS  Google Scholar 

  118. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145

    Article  PubMed  CAS  Google Scholar 

  119. Magistretti PJ, Sorg O, Naichen Y, Pellerin L, de Rham S, Martin JL (1994) Regulation of astrocyte energy metabolism by neurotransmitters. Ren Physiol Biochem 17(3–4):168–171

    PubMed  CAS  Google Scholar 

  120. Pellerin L, Magistretti PJ (2011) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32(7):1152–1166

    Article  PubMed  CAS  Google Scholar 

  121. Sokoloff L, Takahashi S, Gotoh J, Driscoll BF, Law MJ (1996) Contribution of astroglia to functionally activated energy metabolism. Dev Neurosci 18(5–6):344–352

    PubMed  CAS  Google Scholar 

  122. Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R et al (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55(12):1251–1262

    Article  PubMed  Google Scholar 

  123. Kacem K, Lacombe P, Seylaz J, Bonvento G (1998) Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia 23(1):1–10

    Article  PubMed  CAS  Google Scholar 

  124. Herard AS, Dubois A, Escartin C, Tanaka K, Delzescaux T, Hantraye P et al (2005) Decreased metabolic response to visual stimulation in the superior colliculus of mice lacking the glial glutamate transporter GLT-1. Eur J Neurosci 22(7):1807–1811

    Article  PubMed  Google Scholar 

  125. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91(22):10625–10629

    Article  PubMed  CAS  Google Scholar 

  126. Schousboe A, Sickmann HM, Walls AB, Bak LK, Waagepetersen HS (2010) Functional importance of the astrocytic glycogen-shunt and glycolysis for maintenance of an intact intra/extracellular glutamate gradient. Neurotox Res 18(1):94–99

    Article  PubMed  Google Scholar 

  127. Voutsinos-Porche B, Bonvento G, Tanaka K, Steiner P, Welker E, Chatton JY et al (2003) Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex. Neuron 37(2):275–286

    Article  PubMed  CAS  Google Scholar 

  128. Bouzier-Sore AK, Merle M, Magistretti PJ, Pellerin L (2002) Feeding active neurons: (re)emergence of a nursing role for astrocytes. J Physiol Paris 96(3–4):273–282

    Article  PubMed  CAS  Google Scholar 

  129. Bouzier-Sore AK, Serres S, Canioni P, Merle M (2003) Lactate involvement in neuron-glia metabolic interaction: (13)C-NMR spectroscopy contribution. Biochimie 85(9):841–848

    Article  PubMed  CAS  Google Scholar 

  130. Itoh Y, Esaki T, Shimoji K, Cook M, Law MJ, Kaufman E et al (2003) Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci USA 100(8):4879–4884

    Article  PubMed  CAS  Google Scholar 

  131. Ivanov A, Mukhtarov M, Bregestovski P, Zilberter Y (2011) Lactate effectively covers energy demands during neuronal network activity in neonatal hippocampal slices. Front Neuroenerg 3:2

    CAS  Google Scholar 

  132. Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322(5907):1551–1555

    Article  PubMed  CAS  Google Scholar 

  133. Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11(2):87–99

    Article  PubMed  CAS  Google Scholar 

  134. Garcia-Marin V, Garcia-Lopez P, Freire M (2007) Cajal’s contributions to glia research. Trends Neurosci 30(9):479–487

    Article  PubMed  CAS  Google Scholar 

  135. Florian C, Vecsey CG, Halassa MM, Haydon PG, Abel T (2011) Astrocyte-derived adenosine and A1 receptor activity contribute to sleep loss-induced deficits in hippocampal synaptic plasticity and memory in mice. J Neurosci 31(19):6956–6962

    Article  PubMed  CAS  Google Scholar 

  136. Bachmann V, Klaus F, Bodenmann S, Schafer N, Brugger P, Huber S et al (2011) Functional ADA polymorphism increases sleep depth and reduces vigilant attention in humans. Cereb Cortex 22(4):962–970

    Article  PubMed  Google Scholar 

  137. Retey JV, Adam M, Honegger E, Khatami R, Luhmann UF, Jung HH et al (2005) A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans. Proc Natl Acad Sci USA 102(43):15676–15681

    Article  PubMed  CAS  Google Scholar 

  138. Okada T, Mochizuki T, Huang ZL, Eguchi N, Sugita Y, Urade Y et al (2003) Dominant localization of adenosine deaminase in leptomeninges and involvement of the enzyme in sleep. Biochem Biophys Res Commun 312(1):29–34

    Article  PubMed  CAS  Google Scholar 

  139. Franken P, Chollet D, Tafti M (2001) The homeostatic regulation of sleep need is under genetic control. J Neurosci 21(8):2610–2621

    PubMed  CAS  Google Scholar 

  140. Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM (2005) Adenosine and brain function. Int Rev Neurobiol 63:191–270

    Article  PubMed  CAS  Google Scholar 

  141. Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S et al (2010) Astrocytes control breathing through pH-dependent release of ATP. Science 329(5991):571–575

    Article  PubMed  CAS  Google Scholar 

  142. Schnell C, Fresemann J, Hulsmann S (2011) Determinants of functional coupling between astrocytes and respiratory neurons in the pre-Botzinger complex. PLoS One 6(10):e26309

    Article  PubMed  CAS  Google Scholar 

  143. Suh J, Jackson FR (2007) Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron 55(3):435–447

    Article  PubMed  CAS  Google Scholar 

  144. Marpegan L, Swanstrom AE, Chung K, Simon T, Haydon PG, Khan SK et al (2011) Circadian regulation of ATP release in astrocytes. J Neurosci 31(23):8342–8350

    Article  PubMed  CAS  Google Scholar 

  145. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ et al (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144(5):810–823

    Article  PubMed  CAS  Google Scholar 

  146. Avital A, Goshen I, Kamsler A, Segal M, Iverfeldt K, Richter-Levin G et al (2003) Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus 13(7):826–834

    Article  PubMed  CAS  Google Scholar 

  147. Ban EM, Sarlieve LL, Haour FG (1993) Interleukin-1 binding sites on astrocytes. Neuroscience 52(3):725–733

    Article  PubMed  CAS  Google Scholar 

  148. Goshen I, Kreisel T, Ounallah-Saad H, Renbaum P, Zalzstein Y, Ben Hur T et al (2007) A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology 32(8–10):1106–1115

    Article  PubMed  CAS  Google Scholar 

  149. Menachem-Zidon O, Avital A, Ben Menahem Y, Goshen I, Kreisel T, Shmueli EM et al (2011) Astrocytes support hippocampal-dependent memory and long-term potentiation via interleukin-1 signaling. Brain Behav Immun 25(5):1008–1016

    Google Scholar 

  150. Albensi BC, Mattson MP (2000) Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse 35(2):151–159

    Article  PubMed  CAS  Google Scholar 

  151. Meffert MK, Chang JM, Wiltgen BJ, Fanselow MS, Baltimore D (2003) NF-kappa B functions in synaptic signaling and behavior. Nat Neurosci 6(10):1072–1078

    Article  PubMed  CAS  Google Scholar 

  152. O’Mahony A, Raber J, Montano M, Foehr E, Han V, Lu SM et al (2006) NF-kappaB/Rel regulates inhibitory and excitatory neuronal function and synaptic plasticity. Mol Cell Biol 26(19):7283–7298

    Article  PubMed  CAS  Google Scholar 

  153. Yu Z, Cheng G, Wen X, Wu GD, Lee WT, Pleasure D (2002) Tumor necrosis factor alpha increases neuronal vulnerability to excitotoxic necrosis by inducing expression of the AMPA-glutamate receptor subunit GluR1 via an acid sphingomyelinase- and NF-kappaB-dependent mechanism. Neurobiol Dis 11(1):199–213

    Article  PubMed  CAS  Google Scholar 

  154. Bracchi-Ricard V, Brambilla R, Levenson J, Hu WH, Bramwell A, Sweatt JD et al (2008) Astroglial nuclear factor-kappaB regulates learning and memory and synaptic plasticity in female mice. J Neurochem 104(3):611–623

    PubMed  CAS  Google Scholar 

  155. Sofroniew MV, Bush TG, Blumauer N, Lawrence K, Mucke L, Johnson MH (1999) Genetically-targeted and conditionally-regulated ablation of astroglial cells in the central, enteric and peripheral nervous systems in adult transgenic mice. Brain Res 835(1):91–95

    Article  PubMed  CAS  Google Scholar 

  156. Herrmann JE, Imura T, Song B, Qi J, Ao Y, Nguyen TK et al (2008) STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 28(28):7231–7243

    Article  PubMed  CAS  Google Scholar 

  157. Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K et al (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12(7):829–834

    Article  PubMed  CAS  Google Scholar 

  158. Brambilla R, Bracchi-Ricard V, Hu WH, Frydel B, Bramwell A, Karmally S et al (2005) Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med 202(1):145–156

    Article  PubMed  CAS  Google Scholar 

  159. Brambilla R, Hurtado A, Persaud T, Esham K, Pearse DD, Oudega M et al (2009) Transgenic inhibition of astroglial NF-kappa B leads to increased axonal sparing and sprouting following spinal cord injury. J Neurochem 110(2):765–778

    Article  PubMed  CAS  Google Scholar 

  160. Dvoriantchikova G, Barakat D, Brambilla R, Agudelo C, Hernandez E, Bethea JR et al (2009) Inactivation of astroglial NF-kappa B promotes survival of retinal neurons following ischemic injury. Eur J Neurosci 30(2):175–185

    Article  PubMed  Google Scholar 

  161. Allaman I, Belanger M, Magistretti PJ (2011) Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci 34(2):76–87

    Article  PubMed  CAS  Google Scholar 

  162. Chung YC, Ko HW, Bok E, Park ES, Huh SH, Nam JH et al (2010) The role of neuroinflammation on the pathogenesis of Parkinson’s disease. BMB Rep 43(4):225–232

    Article  PubMed  CAS  Google Scholar 

  163. Li C, Zhao R, Gao K, Wei Z, Yin MY, Lau LT et al (2011) Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 8(1):67–80

    Article  PubMed  Google Scholar 

  164. Rossi D, Volterra A (2009) Astrocytic dysfunction: insights on the role in neurodegeneration. Brain Res Bull 80(4–5):224–232

    Article  PubMed  CAS  Google Scholar 

  165. de Lanerolle NC, Lee TS, Spencer DD (2010) Astrocytes and epilepsy. Neurotherapeutics 7(4):424–438

    Article  PubMed  CAS  Google Scholar 

  166. Hoogland G, Spierenburg HA, van Veelen CW, van Rijen PC, van Huffelen AC, de Graan PN (2004) Synaptosomal glutamate and GABA transport in patients with temporal lobe epilepsy. J Neurosci Res 76(6):881–890

    Article  PubMed  CAS  Google Scholar 

  167. Tessler S, Danbolt NC, Faull RL, Storm-Mathisen J, Emson PC (1999) Expression of the glutamate transporters in human temporal lobe epilepsy. Neuroscience 88(4):1083–1091

    Article  PubMed  CAS  Google Scholar 

  168. Mathern GW, Mendoza D, Lozada A, Pretorius JK, Dehnes Y, Danbolt NC et al (1999) Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology 52(3):453–472

    Article  PubMed  CAS  Google Scholar 

  169. Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MG, Schrama LH et al (2002) Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 125(Pt 1):32–43

    Article  PubMed  CAS  Google Scholar 

  170. Moreira JD, de Siqueira LV, Lague VM, Porciuncula LO, Vinade L, Souza DO (2011) Short-term alterations in hippocampal glutamate transport system caused by one-single neonatal seizure episode: implications on behavioral performance in adulthood. Neurochem Int 59(2):217–223

    Article  PubMed  CAS  Google Scholar 

  171. Binder DK, Steinhauser C (2006) Functional changes in astroglial cells in epilepsy. Glia 54(5):358–368

    Article  PubMed  Google Scholar 

  172. Zhang G, Raol YS, Hsu FC, Brooks-Kayal AR (2004) Long-term alterations in glutamate receptor and transporter expression following early-life seizures are associated with increased seizure susceptibility. J Neurochem 88(1):91–101

    Article  PubMed  CAS  Google Scholar 

  173. Ueda Y, Doi T, Tokumaru J, Yokoyama H, Nakajima A, Mitsuyama Y et al (2001) Collapse of extracellular glutamate regulation during epileptogenesis: down-regulation and functional failure of glutamate transporter function in rats with chronic seizures induced by kainic acid. J Neurochem 76(3):892–900

    Google Scholar 

  174. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K et al (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276(5319):1699–1702

    Article  PubMed  CAS  Google Scholar 

  175. Simantov R, Crispino M, Hoe W, Broutman G, Tocco G, Rothstein JD et al (1999) Changes in expression of neuronal and glial glutamate transporters in rat hippocampus following kainate-induced seizure activity. Brain Res Mol Brain Res 65(1):112–123

    Article  PubMed  CAS  Google Scholar 

  176. Miller HP, Levey AI, Rothstein JD, Tzingounis AV, Conn PJ (1997) Alterations in glutamate transporter protein levels in kindling-induced epilepsy. J Neurochem 68(4):1564–1570

    Article  PubMed  CAS  Google Scholar 

  177. Takahashi DK, Vargas JR, Wilcox KS (2010) Increased coupling and altered glutamate transport currents in astrocytes following kainic-acid-induced status epilepticus. Neurobiol Dis 40(3):573–585

    Article  PubMed  CAS  Google Scholar 

  178. Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD (2002) Glutamate-glutamine cycling in the epileptic human hippocampus. Epilepsia 43(7):703–710

    Article  PubMed  CAS  Google Scholar 

  179. Eid T, Thomas MJ, Spencer DD, Runden-Pran E, Lai JC, Malthankar GV et al (2004) Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363(9402):28–37

    Article  PubMed  CAS  Google Scholar 

  180. Tani H, Dulla CG, Huguenard JR, Reimer RJ (2010) Glutamine is required for persistent epileptiform activity in the disinhibited neocortical brain slice. J Neurosci 30(4):1288–1300

    Article  PubMed  CAS  Google Scholar 

  181. Ortinski PI, Dong J, Mungenast A, Yue C, Takano H, Watson DJ et al (2010) Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat Neurosci 13(5):584–591

    Article  PubMed  CAS  Google Scholar 

  182. Alvestad S, Hammer J, Qu H, Haberg A, Ottersen OP, Sonnewald U (2011) Reduced astrocytic contribution to the turnover of glutamate, glutamine, and GABA characterizes the latent phase in the kainate model of temporal lobe epilepsy. J Cereb Blood Flow Metab 31(8):1675–1686

    Article  PubMed  CAS  Google Scholar 

  183. Aronica E, Gorter JA, Jansen GH, van Veelen CW, van Rijen PC, Ramkema M et al (2003) Expression and cell distribution of group I and group II metabotropic glutamate receptor subtypes in taylor-type focal cortical dysplasia. Epilepsia 44(6):785–795

    Article  PubMed  CAS  Google Scholar 

  184. Steinhauser C, Seifert G (2002) Glial membrane channels and receptors in epilepsy: impact for generation and spread of seizure activity. Eur J Pharmacol 447(2–3):227–237

    Article  PubMed  CAS  Google Scholar 

  185. Fellin T, Gomez-Gonzalo M, Gobbo S, Carmignoto G, Haydon PG (2006) Astrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices. J Neurosci 26(36):9312–9322

    Article  PubMed  CAS  Google Scholar 

  186. Tian GF, Azmi H, Takano T, Xu Q, Peng W, Lin J et al (2005) An astrocytic basis of epilepsy. Nat Med 11(9):973–981

    PubMed  CAS  Google Scholar 

  187. Ding S, Fellin T, Zhu Y, Lee SY, Auberson YP, Meaney DF et al (2007) Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus. J Neurosci 27(40):10674–10684

    Article  PubMed  CAS  Google Scholar 

  188. Gomez-Gonzalo M, Losi G, Chiavegato A, Zonta M, Cammarota M, Brondi M et al (2010) An excitatory loop with astrocytes contributes to drive neurons to seizure threshold. PLoS Biol 8(4):e1000352

    Article  PubMed  CAS  Google Scholar 

  189. Li T, Lan JQ, Boison D (2008) Uncoupling of astrogliosis from epileptogenesis in adenosine kinase (ADK) transgenic mice. Neuron Glia Biol 4(2):91–99

    Article  PubMed  Google Scholar 

  190. Aronica E, Zurolo E, Iyer A, de Groot M, Anink J, Carbonell C et al (2011) Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy. Epilepsia 52(9):1645–1655

    Article  PubMed  CAS  Google Scholar 

  191. Theofilas P, Brar S, Stewart KA, Shen HY, Sandau US, Poulsen D et al (2011) Adenosine kinase as a target for therapeutic antisense strategies in epilepsy. Epilepsia 52(3):589–601

    Article  PubMed  Google Scholar 

  192. Wallraff A, Kohling R, Heinemann U, Theis M, Willecke K, Steinhauser C (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 26(20):5438–5447

    Article  PubMed  CAS  Google Scholar 

  193. Oberheim NA, Tian GF, Han X, Peng W, Takano T, Ransom B et al (2008) Loss of astrocytic domain organization in the epileptic brain. J Neurosci 28(13):3264–3276

    Article  PubMed  CAS  Google Scholar 

  194. Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillee S, Rule M et al (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302(5642):113–117

    Article  PubMed  CAS  Google Scholar 

  195. Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G et al (2010) In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet 19(15):3053–3067

    Article  PubMed  CAS  Google Scholar 

  196. Halliday GM, Stevens CH (2011) Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord 26(1):6–17

    Article  PubMed  Google Scholar 

  197. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2(12):679–689

    Article  PubMed  CAS  Google Scholar 

  198. Salmina AB (2009) Neuron-glia interactions as therapeutic targets in neurodegeneration. J Alzheimers Dis 16(3):485–502

    PubMed  CAS  Google Scholar 

  199. Mallajosyula JK, Kaur D, Chinta SJ, Rajagopalan S, Rane A, Nicholls DG et al (2008) MAO-B elevation in mouse brain astrocytes results in Parkinson’s pathology. PLoS One 3(2):e1616

    Article  PubMed  CAS  Google Scholar 

  200. Escartin C, Bonvento G (2008) Targeted activation of astrocytes: a potential neuroprotective strategy. Mol Neurobiol 38(3):231–241

    Article  PubMed  CAS  Google Scholar 

  201. Serrano-Pozo A, Mielke ML, Gomez-Isla T, Betensky RA, Growdon JH, Frosch MP et al (2011) Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am J Pathol 179(3):1373–1384

    Article  PubMed  Google Scholar 

  202. Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12(9):1005–1015

    PubMed  CAS  Google Scholar 

  203. Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F et al (2003) Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 9(4):453–457

    Article  PubMed  CAS  Google Scholar 

  204. Mcgeer EG, Mcgeer PL (2010) Neuroinflammation in Alzheimer’s disease and mild cognitive impairment: a field in its infancy. J Alzheimers Dis 19(1):355–361

    PubMed  Google Scholar 

  205. Ralay RH, Craft JM, Hu W, Guo L, Wing LK, Van Eldik LJ et al (2006) Glia as a therapeutic target: selective suppression of human amyloid-beta-induced upregulation of brain proinflammatory cytokine production attenuates neurodegeneration. J Neurosci 26(2):662–670

    Article  CAS  Google Scholar 

  206. Leuba G, Savioz A, Vernay A, Carnal B, Kraftsik R, Tardif E et al (2008) Differential changes in synaptic proteins in the Alzheimer frontal cortex with marked increase in PSD-95 postsynaptic protein. J Alzheimers Dis 15(1):139–151

    PubMed  CAS  Google Scholar 

  207. Llano DA, Li J, Waring JF, Ellis T, Devanarayan V, Witte DG et al (2011) Cerebrospinal fluid cytokine dynamics differ between alzheimer disease patients and elderly controls. Alzheimer Dis Assoc Disord

    Google Scholar 

  208. Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323(5918):1211–1215

    Article  PubMed  CAS  Google Scholar 

  209. Rossi D, Brambilla L, Valori CF, Crugnola A, Giaccone G, Capobianco R et al (2005) Defective tumor necrosis factor-alpha-dependent control of astrocyte glutamate release in a transgenic mouse model of Alzheimer disease. J Biol Chem 280(51):42088–42096

    Article  PubMed  CAS  Google Scholar 

  210. Stix B, Reiser G (1998) Beta-amyloid peptide 25-35 regulates basal and hormone-stimulated Ca2+ levels in cultured rat astrocytes. Neurosci Lett 243(1–3):121–124

    Article  PubMed  CAS  Google Scholar 

  211. Haughey NJ, Mattson MP (2003) Alzheimer’s amyloid beta-peptide enhances ATP/gap junction-mediated calcium-wave propagation in astrocytes. Neuromolecular Med 3(3):173–180

    Article  PubMed  Google Scholar 

  212. Li S, Mallory M, Alford M, Tanaka S, Masliah E (1997) Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol 56(8):901–911

    Article  PubMed  CAS  Google Scholar 

  213. Jacob CP, Koutsilieri E, Bartl J, Neuen-Jacob E, Arzberger T, Zander N et al (2007) Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer’s disease. J Alzheimers Dis 11(1):97–116

    PubMed  CAS  Google Scholar 

  214. Jung ES, An K, Seok HH, Kim JH, Mook-Jung I (2012) Astrocyte-originated ATP protects abeta1-42-induced impairment of synaptic plasticity. J Neurosci 32(9):3081–3087

    Article  PubMed  CAS  Google Scholar 

  215. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62

    Article  PubMed  CAS  Google Scholar 

  216. Hall ED, Oostveen JA, Gurney ME (1998) Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. Glia 23(3):249–256

    Article  PubMed  CAS  Google Scholar 

  217. Kawamata T, Akiyama H, Yamada T, Mcgeer PL (1992) Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am J Pathol 140(3):691–707

    PubMed  CAS  Google Scholar 

  218. Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, Brooks DJ et al (2004) Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis 15(3):601–609

    Article  PubMed  CAS  Google Scholar 

  219. Chiu IM, Phatnani H, Kuligowski M, Tapia JC, Carrasco MA, Zhang M et al (2009) Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice. Proc Natl Acad Sci USA 106(49):20960–20965

    Article  PubMed  CAS  Google Scholar 

  220. Nagy D, Kato T, Kushner PD (1994) Reactive astrocytes are widespread in the cortical gray matter of amyotrophic lateral sclerosis. J Neurosci Res 38(3):336–347

    Article  PubMed  CAS  Google Scholar 

  221. Kushner PD, Stephenson DT, Wright S (1991) Reactive astrogliosis is widespread in the subcortical white matter of amyotrophic lateral sclerosis brain. J Neuropathol Exp Neurol 50(3):263–277

    Article  PubMed  CAS  Google Scholar 

  222. Schiffer D, Cordera S, Cavalla P, Migheli A (1996) Reactive astrogliosis of the spinal cord in amyotrophic lateral sclerosis. J Neurol Sci 139(suppl):27–33

    Article  PubMed  Google Scholar 

  223. Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G et al (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312(5778):1389–1392

    Article  PubMed  CAS  Google Scholar 

  224. Pramatarova A, Laganiere J, Roussel J, Brisebois K, Rouleau GA (2001) Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment. J Neurosci 21(10):3369–3374

    PubMed  CAS  Google Scholar 

  225. Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH et al (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11(3):251–253

    Article  PubMed  CAS  Google Scholar 

  226. Bristol LA, Rothstein JD (1996) Glutamate transporter gene expression in amyotrophic lateral sclerosis motor cortex. Ann Neurol 39(5):676–679

    Article  PubMed  CAS  Google Scholar 

  227. Sasaki S, Komori T, Iwata M (2000) Excitatory amino acid transporter 1 and 2 immunoreactivity in the spinal cord in amyotrophic lateral sclerosis. Acta Neuropathol 100(2):138–144

    Article  PubMed  CAS  Google Scholar 

  228. Ferraiuolo L, Higginbottom A, Heath PR, Barber S, Greenald D, Kirby J et al (2011) Dysregulation of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain 134(Pt 9):2627–2641

    Article  PubMed  Google Scholar 

  229. Philips T, Robberecht W (2011) Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol 10(3):253–263

    Article  PubMed  CAS  Google Scholar 

  230. West M, Mhatre M, Ceballos A, Floyd RA, Grammas P, Gabbita SP et al (2004) The arachidonic acid 5-lipoxygenase inhibitor nordihydroguaiaretic acid inhibits tumor necrosis factor alpha activation of microglia and extends survival of G93A-SOD1 transgenic mice. J Neurochem 91(1):133–143

    Article  PubMed  CAS  Google Scholar 

  231. Kiaei M, Petri S, Kipiani K, Gardian G, Choi DK, Chen J et al (2006) Thalidomide and lenalidomide extend survival in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci 26(9):2467–2473

    Article  PubMed  CAS  Google Scholar 

  232. Beitner-Johnson D, Guitart X, Nestler EJ (1993) Glial fibrillary acidic protein and the mesolimbic dopamine system: regulation by chronic morphine and Lewis-Fischer strain differences in the rat ventral tegmental area. J Neurochem 61(5):1766–1773

    Article  PubMed  CAS  Google Scholar 

  233. Bruce-Keller AJ, Turchan-Cholewo J, Smart EJ, Geurin T, Chauhan A, Reid R et al (2008) Morphine causes rapid increases in glial activation and neuronal injury in the striatum of inducible HIV-1 Tat transgenic mice. Glia 56(13):1414–1427

    Article  PubMed  Google Scholar 

  234. Evrard SG, Duhalde-Vega M, Tagliaferro P, Mirochnic S, Caltana LR, Brusco A (2006) A low chronic ethanol exposure induces morphological changes in the adolescent rat brain that are not fully recovered even after a long abstinence: an immunohistochemical study. Exp Neurol 200(2):438–459

    Article  PubMed  CAS  Google Scholar 

  235. Lewohl JM, Wixey J, Harper CG, Dodd PR (2005) Expression of MBP, PLP, MAG, CNP, and GFAP in the Human Alcoholic Brain. Alcohol Clin Exp Res 29(9):1698–1705

    Article  PubMed  CAS  Google Scholar 

  236. Miguel-Hidalgo JJ, Overholser JC, Meltzer HY, Stockmeier CA, Rajkowska G (2006) Reduced glial and neuronal packing density in the orbitofrontal cortex in alcohol dependence and its relationship with suicide and duration of alcohol dependence. Alcohol Clin Exp Res 30(11):1845–1855

    Article  PubMed  CAS  Google Scholar 

  237. Miguel-Hidalgo JJ (2006) Withdrawal from free-choice ethanol consumption results in increased packing density of glutamine synthetase-immunoreactive astrocytes in the prelimbic cortex of alcohol-preferring rats. Alcohol Alcohol 41(4):379–385

    PubMed  CAS  Google Scholar 

  238. Miguel-Hidalgo JJ, Waltzer R, Whittom AA, Austin MC, Rajkowska G, Stockmeier CA (2010) Glial and glutamatergic markers in depression, alcoholism, and their comorbidity. J Affect Disord 127(1–3):230–240

    Article  PubMed  CAS  Google Scholar 

  239. Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY et al (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45(9):1085–1098

    Article  PubMed  CAS  Google Scholar 

  240. Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF et al (2000) Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol Psychiatry 5(2):142–149

    Article  PubMed  CAS  Google Scholar 

  241. Miguel-Hidalgo JJ, Baucom C, Dilley G, Overholser JC, Meltzer HY, Stockmeier CA et al (2000) Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry 48(8):861–873

    Article  PubMed  CAS  Google Scholar 

  242. Si X, Miguel-Hidalgo JJ, O’Dwyer G, Stockmeier CA, Rajkowska G (2004) Age-dependent reductions in the level of glial fibrillary acidic protein in the prefrontal cortex in major depression. Neuropsychopharmacology 29(11):2088–2096

    Article  PubMed  CAS  Google Scholar 

  243. Sander T, Ostapowicz A, Samochowiec J, Smolka M, Winterer G, Schmidt LG (2000) Genetic variation of the glutamate transporter EAAT2 gene and vulnerability to alcohol dependence. Psychiatr Genet 10(3):103–107

    Article  PubMed  CAS  Google Scholar 

  244. Spanagel R, Pendyala G, Abarca C, Zghoul T, Sanchis-Segura C, Magnone MC et al (2005) The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med 11(1):35–42

    Article  PubMed  CAS  Google Scholar 

  245. Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28(3):138–145

    Article  PubMed  CAS  Google Scholar 

  246. Okun E, Griffioen KJ, Lathia JD, Tang SC, Mattson MP, Arumugam TV (2009) Toll-like receptors in neurodegeneration. Brain Res Rev 59(2):278–292

    Article  PubMed  CAS  Google Scholar 

  247. Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, Sanchez-Vera I, Guerri C (2010) Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci 30(24):8285–8295

    Article  PubMed  CAS  Google Scholar 

  248. Pascual M, Balino P, Alfonso-Loeches S, Aragon CM, Guerri C (2011) Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage. Brain Behav Immun 25(suppl 1):S80–S91

    Article  PubMed  CAS  Google Scholar 

  249. Waak J, Weber SS, Waldenmaier A, Gorner K, Alunni-Fabbroni M, Schell H et al (2009) Regulation of astrocyte inflammatory responses by the Parkinson’s disease-associated gene DJ-1. FASEB J 23(8):2478–2489

    Article  PubMed  CAS  Google Scholar 

  250. Salaria S, Badkoobehi H, Rockenstein E, Crews L, Chana G, Masliah E et al (2007) Toll-like receptor pathway gene expression is associated with human immunodeficiency virus-associated neurodegeneration. J Neurovirol 13(6):496–503

    Article  PubMed  CAS  Google Scholar 

  251. Holm TH, Draeby D, Owens T (2012) Microglia are required for astroglial Toll-like receptor 4 response and for optimal TLR2 and TLR3 response. Glia 60(4):630–638

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip G. Haydon Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

McIver, S.R., Faideau, M., Haydon, P.G. (2013). Astrocyte–Neuron Communications. In: Cui, C., Grandison, L., Noronha, A. (eds) Neural-Immune Interactions in Brain Function and Alcohol Related Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4729-0_2

Download citation

Publish with us

Policies and ethics