Skip to main content

Role of Wnt Signaling Pathways in Multiple Myeloma Pathogenesis

  • Chapter
  • First Online:
Advances in Biology and Therapy of Multiple Myeloma

Abstract

Multiple myeloma (MM) is a complex and still incurable disease which strongly relies on a network of humoral and cellular interactions within the human bone marrow milieu. The canonical Wnt/b-catenin and the alternative Wnt/RhoA-signaling pathways play important roles in the tropism between MM cells and BM microenvironment, and they have recently been implicated in MM pathogenesis and development of MM bone disease. However, their precise role in growth and survival of myeloma cells remains controversial and needs further investigation. We here summarize the most recent updates of the Wnt/β-catenin signaling pathway in myeloma, and discuss how its various components contribute to MM pathogenesis and related bone disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rajkumar SV, Kyle RA (2005) Multiple myeloma: diagnosis and treatment. Mayo Clin Proc 80:1371–1382

    Article  PubMed  Google Scholar 

  2. Mitsiades CS, Mitsiades N, Munshi NC, Anderson KC (2004) Focus on multiple myeloma. Cancer Cell 6:439–444

    Article  PubMed  CAS  Google Scholar 

  3. Kuehl WM, Bergsagel PL (2002) Multiple myeloma: evolving genetic events and host ­interactions. Nat Rev Cancer 2:175–187

    Article  PubMed  CAS  Google Scholar 

  4. Carrasco DR, Tonon G, Huang Y et al (2006) High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell 9:313–325

    Article  PubMed  CAS  Google Scholar 

  5. Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC (2007) Understanding ­multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 7:585–598

    Article  PubMed  CAS  Google Scholar 

  6. Podar K, Chauhan D, Anderson KC (2009) Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia 23:10–24

    Article  PubMed  CAS  Google Scholar 

  7. Qiang YW, Endo Y, Rubin JS, Rudikoff S (2003) Wnt signaling in B-cell neoplasia. Oncogene 22:1536–1545

    Article  PubMed  CAS  Google Scholar 

  8. Fulciniti M, Tassone P, Hideshima T et al (2009) Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 114:371–379

    Article  PubMed  CAS  Google Scholar 

  9. Giuliani N, Morandi F, Tagliaferri S et al (2007) Production of Wnt inhibitors by myeloma cells: potential effects on canonical Wnt pathway in the bone microenvironment. Cancer Res 67:7665–7674

    Article  PubMed  CAS  Google Scholar 

  10. Barker N, Clevers H (2006) Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov 5:997–1014

    Article  PubMed  CAS  Google Scholar 

  11. Wodarz A, Nusse R (1998) Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14:59–88

    Article  PubMed  CAS  Google Scholar 

  12. Veeman MT, Axelrod JD, Moon RT (2003) A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 5:367–377

    Article  PubMed  CAS  Google Scholar 

  13. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  PubMed  CAS  Google Scholar 

  14. He X, Semenov M, Tamai K, Zeng X (2004) LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development 131:1663–1677

    Article  PubMed  CAS  Google Scholar 

  15. Wharton KA Jr (2003) Runnin’ with the Dvl: proteins that associate with Dsh/Dvl and their significance to Wnt signal transduction. Dev Biol 253:1–17

    Article  PubMed  CAS  Google Scholar 

  16. Moon RT, Bowerman B, Boutros M, Perrimon N (2002) The promise and perils of Wnt ­signaling through beta-catenin. Science 296:1644–1646

    Article  PubMed  CAS  Google Scholar 

  17. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14:1837–1851

    PubMed  CAS  Google Scholar 

  18. Willert K, Nusse R (1998) Beta-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev 8:95–102

    Article  PubMed  CAS  Google Scholar 

  19. Ben-Ze’ev A, Geiger B (1998) Differential molecular interactions of beta-catenin and ­plakoglobin in adhesion, signaling and cancer. Curr Opin Cell Biol 10:629–639

    Article  PubMed  Google Scholar 

  20. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R (1997) beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16:3797–3804

    Article  PubMed  CAS  Google Scholar 

  21. Molenaar M, van de Wetering M, Oosterwegel M et al (1996) XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86:391–399

    Article  PubMed  CAS  Google Scholar 

  22. Behrens J, von Kries JP, Kuhl M et al (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382:638–642

    Article  PubMed  CAS  Google Scholar 

  23. He TC, Sparks AB, Rago C et al (1998) Identification of c-MYC as a target of the APC ­pathway. Science 281:1509–1512

    Article  PubMed  CAS  Google Scholar 

  24. Shtutman M, Zhurinsky J, Simcha I et al (1999) The cyclin D1 gene is a target of the ­beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96:5522–5527

    Article  PubMed  CAS  Google Scholar 

  25. Roose J, Huls G, van Beest M et al (1999) Synergy between tumor suppressor APC and the beta-catenin-Tcf4 target Tcf1. Science 285:1923–1926

    Article  PubMed  CAS  Google Scholar 

  26. Staal FJ, Clevers HC (2005) WNT signalling and haematopoiesis: a WNT-WNT situation. Nat Rev Immunol 5:21–30

    Article  PubMed  CAS  Google Scholar 

  27. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    Article  PubMed  CAS  Google Scholar 

  28. Vermeulen L, De Sousa EMF, van der Heijden M et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12:468–476

    Article  PubMed  CAS  Google Scholar 

  29. Wielenga VJ, Smits R, Korinek V et al (1999) Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol 154:515–523

    Article  PubMed  CAS  Google Scholar 

  30. Strutt DI, Weber U, Mlodzik M (1997) The role of RhoA in tissue polarity and Frizzled ­signalling. Nature 387:292–295

    Article  PubMed  CAS  Google Scholar 

  31. Winter CG, Wang B, Ballew A et al (2001) Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell 105:81–91

    Article  PubMed  CAS  Google Scholar 

  32. Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    Article  PubMed  CAS  Google Scholar 

  33. Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303:1483–1487

    Article  PubMed  CAS  Google Scholar 

  34. Weeraratna AT, Jiang Y, Hostetter G et al (2002) Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1:279–288

    Article  PubMed  CAS  Google Scholar 

  35. Ouko L, Ziegler TR, Gu LH, Eisenberg LM, Yang VW (2004) Wnt11 signaling promotes proliferation, transformation, and migration of IEC6 intestinal epithelial cells. J Biol Chem 279:26707–26715

    Article  PubMed  CAS  Google Scholar 

  36. Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT (2000) The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 16:279–283

    Article  PubMed  CAS  Google Scholar 

  37. Wang HY, Malbon CC (2003) Wnt signaling, Ca2+, and cyclic GMP: visualizing Frizzled functions. Science 300:1529–1530

    Article  PubMed  CAS  Google Scholar 

  38. Derksen PW, Tjin E, Meijer HP et al (2004) Illegitimate WNT signaling promotes ­proliferation of multiple myeloma cells. Proc Natl Acad Sci USA 101:6122–6127

    Article  PubMed  CAS  Google Scholar 

  39. Sukhdeo K, Mani M, Zhang Y et al (2007) Targeting the beta-catenin/TCF transcriptional complex in the treatment of multiple myeloma. Proc Natl Acad Sci USA 104:7516–7521

    Article  PubMed  Google Scholar 

  40. Kramps T, Peter O, Brunner E et al (2002) Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell 109:47–60

    Article  PubMed  CAS  Google Scholar 

  41. Mani M, Carrasco DE, Zhang Y et al (2009) BCL9 promotes tumor progression by conferring enhanced proliferative, metastatic, and angiogenic properties to cancer cells. Cancer Res 69:7577–7586

    Article  PubMed  CAS  Google Scholar 

  42. Dutta-Simmons J, Zhang Y, Gorgun G et al (2009) Aurora kinase A is a target of Wnt/beta-catenin involved in multiple myeloma disease progression. Blood 114:2699–2708

    Article  PubMed  CAS  Google Scholar 

  43. Reya T, Duncan AW, Ailles L et al (2003) A role for Wnt signalling in self-renewal of ­haematopoietic stem cells. Nature 423:409–414

    Article  PubMed  CAS  Google Scholar 

  44. van de Wetering M, de Lau W, Clevers H (2002) WNT signaling and lymphocyte development. Cell 109(Suppl):S13–S19

    Article  PubMed  Google Scholar 

  45. Ashihara E, Kawata E, Nakagawa Y et al (2009) beta-catenin small interfering RNA ­successfully suppressed progression of multiple myeloma in a mouse model. Clin Cancer Res 15:2731–2738

    Article  PubMed  CAS  Google Scholar 

  46. Lepourcelet M, Chen YN, France DS et al (2004) Small-molecule antagonists of the ­oncogenic Tcf/beta-catenin protein complex. Cancer Cell 5:91–102

    Article  PubMed  CAS  Google Scholar 

  47. Chim CS, Pang R, Fung TK, Choi CL, Liang R (2007) Epigenetic dysregulation of Wnt signaling pathway in multiple myeloma. Leukemia 21:2527–2536

    Article  PubMed  CAS  Google Scholar 

  48. Qiang YW, Shaughnessy JD Jr, Yaccoby S (2008) Wnt3a signaling within bone inhibits multiple myeloma bone disease and tumor growth. Blood 112:374–382

    Article  PubMed  CAS  Google Scholar 

  49. Edwards CM, Edwards JR, Lwin ST et al (2008) Increasing Wnt signaling in the bone marrow microenvironment inhibits the development of myeloma bone disease and reduces tumor burden in bone in vivo. Blood 111:2833–2842

    Article  PubMed  CAS  Google Scholar 

  50. Gunn WG, Krause U, Lee N, Gregory CA (2011) Pharmaceutical inhibition of g­lycogen-­synthetase-kinase-3-beta reduces multiple myeloma-induced bone disease in a novel murine p­lasmacytoma xenograft model. Blood 117(5):1641–1651

    Article  PubMed  CAS  Google Scholar 

  51. Piazza F, Manni S, Tubi LQ et al (2010) Glycogen Synthase Kinase-3 regulates multiple myeloma cell growth and bortezomib-induced cell death. BMC Cancer 10:526

    Article  PubMed  CAS  Google Scholar 

  52. Noda T, Nagano H, Takemasa I et al (2009) Activation of Wnt/beta-catenin signalling pathway induces chemoresistance to interferon-alpha/5-fluorouracil combination therapy for ­hepatocellular carcinoma. Br J Cancer 100:1647–1658

    Article  PubMed  CAS  Google Scholar 

  53. Cimbora-Zovko T, Ambriovic-Ristov A, Loncarek J, Osmak M (2007) Altered cell-cell adhesion in cisplatin-resistant human carcinoma cells: a link between beta-catenin/plakoglobin ratio and cisplatin resistance. Eur J Pharmacol 558:27–36

    Article  PubMed  CAS  Google Scholar 

  54. Flahaut M, Meier R, Coulon A et al (2009) The Wnt receptor FZD1 mediates chemoresistance in neuroblastoma through activation of the Wnt/beta-catenin pathway. Oncogene 28:2245–2256

    Article  PubMed  CAS  Google Scholar 

  55. De Toni F, Racaud-Sultan C, Chicanne G et al (2006) A crosstalk between the Wnt and the adhesion-dependent signaling pathways governs the chemosensitivity of acute myeloid ­leukemia. Oncogene 25:3113–3122

    Article  PubMed  Google Scholar 

  56. Kobune M, Chiba H, Kato J et al (2007) Wnt3/RhoA/ROCK signaling pathway is involved in adhesion-mediated drug resistance of multiple myeloma in an autocrine mechanism. Mol Cancer Ther 6:1774–1784

    Article  PubMed  CAS  Google Scholar 

  57. Bjorklund CC, Ma W, Wang ZQ et al (2011) Evidence of a role for activation of Wnt/{beta}-catenin signaling in the resistance of plasma cells to lenalidomide. J Biol Chem 286(13):11009–11020

    Article  PubMed  CAS  Google Scholar 

  58. Qiang YW, Walsh K, Yao L et al (2005) Wnts induce migration and invasion of myeloma plasma cells. Blood 106:1786–1793

    Article  PubMed  CAS  Google Scholar 

  59. Roodman GD (2004) Pathogenesis of myeloma bone disease. Blood Cells Mol Dis 32:290–292

    Article  PubMed  CAS  Google Scholar 

  60. Sezer O (2005) Myeloma bone disease. Hematology 10(Suppl 1):19–24

    Article  PubMed  CAS  Google Scholar 

  61. Coleman RE, Major P, Lipton A et al (2005) Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. J Clin Oncol 23:4925–4935

    Article  PubMed  CAS  Google Scholar 

  62. Pearse RN, Sordillo EM, Yaccoby S et al (2001) Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci USA 98:11581–11586

    Article  PubMed  CAS  Google Scholar 

  63. Vanderkerken K, De Leenheer E, Shipman C et al (2003) Recombinant osteoprotegerin decreases tumor burden and increases survival in a murine model of multiple myeloma. Cancer Res 63:287–289

    PubMed  CAS  Google Scholar 

  64. Abe M, Hiura K, Wilde J et al (2004) Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: a vicious cycle between bone destruction and myeloma expansion. Blood 104:2484–2491

    Article  PubMed  CAS  Google Scholar 

  65. Yaccoby S, Wezeman MJ, Henderson A et al (2004) Cancer and the microenvironment: myeloma-osteoclast interactions as a model. Cancer Res 64:2016–2023

    Article  PubMed  CAS  Google Scholar 

  66. Yaccoby S, Wezeman MJ, Zangari M et al (2006) Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel culture systems and a myelomatous mouse model. Haematologica 91:192–199

    PubMed  CAS  Google Scholar 

  67. Li X, Pennisi A, Yaccoby S (2008) Role of decorin in the antimyeloma effects of osteoblasts. Blood 112:159–168

    Article  PubMed  CAS  Google Scholar 

  68. Mukherjee S, Raje N, Schoonmaker JA et al (2008) Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J Clin Invest 118:491–504

    PubMed  CAS  Google Scholar 

  69. Giuliani N, Rizzoli V, Roodman GD (2006) Multiple myeloma bone disease: pathophysiology of osteoblast inhibition. Blood 108:3992–3996

    Article  PubMed  CAS  Google Scholar 

  70. Feng R, Anderson G, Xiao G et al (2007) SDX-308, a nonsteroidal anti-inflammatory agent, inhibits NF-kappaB activity, resulting in strong inhibition of osteoclast formation/activity and multiple myeloma cell growth. Blood 109:2130–2138

    Article  PubMed  CAS  Google Scholar 

  71. Anderson G, Gries M, Kurihara N et al (2006) Thalidomide derivative CC-4047 inhibits ­osteoclast formation by down-regulation of PU.1. Blood 107:3098–3105

    Article  PubMed  CAS  Google Scholar 

  72. Stewart JP, Shaughnessy JD Jr (2006) Role of osteoblast suppression in multiple myeloma. J Cell Biochem 98:1–13

    Article  PubMed  CAS  Google Scholar 

  73. Baron R, Rawadi G, Roman-Roman S (2006) Wnt signaling: a key regulator of bone mass. Curr Top Dev Biol 76:103–127

    Article  PubMed  CAS  Google Scholar 

  74. Gong Y, Slee RB, Fukai N et al (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523

    Article  PubMed  CAS  Google Scholar 

  75. Kato M, Patel MS, Levasseur R et al (2002) Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt ­coreceptor. J Cell Biol 157:303–314

    Article  PubMed  CAS  Google Scholar 

  76. Kulkarni NH, Onyia JE, Zeng Q et al (2006) Orally bioavailable GSK-3alpha/beta dual ­inhibitor increases markers of cellular differentiation in vitro and bone mass in vivo. J Bone Miner Res 21:910–920

    Article  PubMed  CAS  Google Scholar 

  77. Qiang YW, Chen Y, Brown N et al (2010) Characterization of Wnt/beta-catenin signalling in osteoclasts in multiple myeloma. Br J Haematol 148:726–738

    Article  PubMed  CAS  Google Scholar 

  78. Boyden LM, Mao J, Belsky J et al (2002) High bone density due to a mutation in ­LDL-receptor-related protein 5. N Engl J Med 346:1513–1521

    Article  PubMed  CAS  Google Scholar 

  79. Glass DA II, Bialek P, Ahn JD et al (2005) Canonical Wnt signaling in differentiated ­osteoblasts controls osteoclast differentiation. Dev Cell 8:751–764

    Article  PubMed  CAS  Google Scholar 

  80. Li J, Sarosi I, Cattley RC et al (2006) Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 39:754–766

    Article  PubMed  CAS  Google Scholar 

  81. Morvan F, Boulukos K, Clement-Lacroix P et al (2006) Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 21:934–945

    Article  PubMed  CAS  Google Scholar 

  82. Qiang YW, Hu B, Chen Y et al (2009) Bortezomib induces osteoblast differentiation via ­Wnt-independent activation of beta-catenin/TCF signaling. Blood 113:4319–4330

    Article  PubMed  CAS  Google Scholar 

  83. Tian E, Zhan F, Walker R et al (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349:2483–2494

    Article  PubMed  CAS  Google Scholar 

  84. Politou MC, Heath DJ, Rahemtulla A et al (2006) Serum concentrations of Dickkopf-1 protein are increased in patients with multiple myeloma and reduced after autologous stem cell ­transplantation. Int J Cancer 119:1728–1731

    Article  PubMed  CAS  Google Scholar 

  85. Kaiser M, Mieth M, Liebisch P et al (2008) Serum concentrations of DKK-1 correlate with the extent of bone disease in patients with multiple myeloma. Eur J Haematol 80:490–494

    Article  PubMed  CAS  Google Scholar 

  86. Qiang YW, Barlogie B, Rudikoff S, Shaughnessy JD Jr (2008) Dkk1-induced inhibition of Wnt signaling in osteoblast differentiation is an underlying mechanism of bone loss in multiple myeloma. Bone 42:669–680

    Article  PubMed  CAS  Google Scholar 

  87. Hurson CJ, Butler JS, Keating DT et al (2007) Gene expression analysis in human osteoblasts exposed to dexamethasone identifies altered developmental pathways as putative drivers of osteoporosis. BMC Musculoskelet Disord 8:12

    Article  PubMed  Google Scholar 

  88. Colla S, Zhan F, Xiong W et al (2007) The oxidative stress response regulates DKK1 ­expression through the JNK signaling cascade in multiple myeloma plasma cells. Blood 109:4470–4477

    Article  PubMed  CAS  Google Scholar 

  89. Shaughnessy JD Jr, Barlogie B (2003) Interpreting the molecular biology and clinical behavior of multiple myeloma in the context of global gene expression profiling. Immunol Rev 194:140–163

    Article  PubMed  CAS  Google Scholar 

  90. Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy JD Jr (2007) Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 109:2106–2111

    Article  PubMed  CAS  Google Scholar 

  91. Oshima T, Abe M, Asano J et al (2005) Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood 106:3160–3165

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Carrasco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fulciniti, M., Carrasco, D.R. (2013). Role of Wnt Signaling Pathways in Multiple Myeloma Pathogenesis. In: Munshi, N., Anderson, K. (eds) Advances in Biology and Therapy of Multiple Myeloma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4666-8_5

Download citation

Publish with us

Policies and ethics