Skip to main content

Targeting the BAFF/APRIL Cytokine Network in Multiple Myeloma

  • Chapter
  • First Online:
Advances in Biology and Therapy of Multiple Myeloma

Abstract

The BAFF/APRIL cytokine network is intimately linked through three different receptors to the survival and fitness of B lineage cells, from the first expression of a complete B cell receptor to their differentiation to memory B and plasma cells. The specific, pervasive, and survival-linked nature of the relationship between B lineage cells and this cytokine network make it both a likely disease modifier and a tantalizing target for therapeutic intervention in humoral immune pathologies. Some current therapeutics directly targeting the BAFF/APRIL cytokine network have been developed and undergone clinical trials in the context of autoimmunity with some limited success. Despite a powerful rationale and a constantly deepening mechanistic understanding of the BAFF/APRIL cytokine network in normal and malignant plasma cells, trials of cytokine network-targeted therapeutics in multiple myeloma are still in their infancy and have shown only minor promise. There is significantly greater potential in inhibiting NF-kB, a downstream mediator of BAFF/APRIL signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore PA, Belvedere O, Orr A et al (1999) BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285:260–263

    Article  PubMed  CAS  Google Scholar 

  2. Mukhopadhyay A, Ni J, Zhai Y et al (1999) Identification and characterization of a novel cytokine, THANK, a TNF homologue that activates apoptosis, nuclear factor-kappaB, and c-Jun NH2-terminal kinase. J Biol Chem 274:15978–15981

    Article  PubMed  CAS  Google Scholar 

  3. Schneider P, MacKay F, Steiner V et al (1999) BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 189:1747–1756

    Article  PubMed  CAS  Google Scholar 

  4. Shu HB, Hu WH, Johnson H (1999) TALL-1 is a novel member of the TNF family that is ­down-regulated by mitogens. J Leukoc Biol 65:680–683

    PubMed  CAS  Google Scholar 

  5. Tribouley C, Wallroth M, Chan V et al (1999) Characterization of a new member of the TNF family expressed on antigen presenting cells. Biol Chem 380:1443–1447

    Article  PubMed  CAS  Google Scholar 

  6. Gross JA, Johnston J, Mudri S et al (2000) TACI and BCMA are receptors for a TNF ­homologue implicated in B-cell autoimmune disease. Nature 404:995–999

    Article  PubMed  CAS  Google Scholar 

  7. Hahne M, Kataoka T, Schroter M et al (1998) APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor cell growth. J Exp Med 188:1185–1190

    Article  PubMed  CAS  Google Scholar 

  8. Kelly K, Manos E, Jensen G et al (2000) APRIL/TRDL-1, a tumor necrosis factor-like ligand, stimulates cell death. Cancer Res 60:1021–1027

    PubMed  CAS  Google Scholar 

  9. Bossen C, Schneider P (2006) BAFF, APRIL and their receptors: structure, function and ­signaling. Semin Immunol 18:263–275

    Article  PubMed  CAS  Google Scholar 

  10. Gavin AL, Ait-Azzouzene D, Ware CF et al (2003) DeltaBAFF, an alternate splice isoform that regulates receptor binding and biopresentation of the B cell survival cytokine, BAFF. J Biol Chem 278:38220–38228

    Article  PubMed  CAS  Google Scholar 

  11. Pradet-Balade B, Medema JP, Lopez-Fraga M et al (2002) An endogenous hybrid mRNA encodes TWE-PRIL, a functional cell surface TWEAK-APRIL fusion protein. EMBO J 21:5711–5720

    Article  PubMed  CAS  Google Scholar 

  12. Gavin AL, Duong B, Skog P et al (2005) deltaBAFF, a splice isoform of BAFF, opposes ­full-length BAFF activity in vivo in transgenic mouse models. J Immunol 175:319–328

    PubMed  CAS  Google Scholar 

  13. Kanakaraj P, Migone TS, Nardelli B et al (2001) BLyS binds to B cells with high affinity and induces activation of the transcription factors NF-kappaB and ELF-1. Cytokine 13:25–31

    Article  PubMed  CAS  Google Scholar 

  14. Karpusas M, Cachero TG, Qian F et al (2002) Crystal structure of extracellular human BAFF, a TNF family member that stimulates B lymphocytes. J Mol Biol 315:1145–1154

    Article  PubMed  CAS  Google Scholar 

  15. Lopez-Fraga M, Fernandez R, Albar JP et al (2001) Biologically active APRIL is secreted ­following intracellular processing in the Golgi apparatus by furin convertase. EMBO Rep 2:945–951

    Article  PubMed  CAS  Google Scholar 

  16. Wallweber HJA, Compaan DM, Starovasnik MA et al (2004) The crystal structure of a ­proliferation-inducing ligand, APRIL. J Mol Biol 343:283–290

    Article  PubMed  CAS  Google Scholar 

  17. Schwaller J, Went P, Matthes T et al (2007) Paracrine promotion of tumor development by the TNF ligand APRIL in Hodgkin’s Disease. Leukemia 21:1324–1327

    Article  PubMed  CAS  Google Scholar 

  18. Huard B, McKee T, Bosshard C et al (2008) APRIL secreted by neutrophils binds to heparan sulfate proteoglycans to create plasma cell niches in human mucosa. J Clin Invest 118:2887–2895

    PubMed  CAS  Google Scholar 

  19. Liu Y, Xu L, Opalka N et al (2002) Crystal structure of sTALL-1 reveals a virus-like assembly of TNF family ligands. Cell 108:383–394

    Article  PubMed  CAS  Google Scholar 

  20. Liu Y, Hong X, Kappler J et al (2003) Ligand-receptor binding revealed by the TNF family member TALL-1. Nature 423:49–56

    Article  PubMed  CAS  Google Scholar 

  21. Cachero TG, Schwartz IM, Qian F et al (2006) Formation of virus-like clusters is an intrinsic property of the tumor necrosis factor family member BAFF (B cell activating factor). Biochemistry 45:2006–2013

    Article  PubMed  CAS  Google Scholar 

  22. Pelletier M, Thompson JS, Qian F et al (2003) Comparison of soluble decoy IgG fusion p­roteins of BAFF-R and BCMA as antagonists for BAFF. J Biol Chem 278:33127–33133

    Article  PubMed  CAS  Google Scholar 

  23. Zhukovsky EA, Lee J-O, Villegas M et al (2004) TNF ligands: is TALL-1 a trimer or a ­virus-like cluster? Nature 427:413–414 (discussion 414)

    Article  PubMed  CAS  Google Scholar 

  24. Bossen C, Cachero TG, Tardivel A et al (2008) TACI, unlike BAFF-R, is solely activated by oligomeric BAFF and APRIL to support survival of activated B cells and plasmablasts. Blood 111:1004–1012

    Article  PubMed  CAS  Google Scholar 

  25. Ingold K, Zumsteg A, Tardivel A et al (2005) Identification of proteoglycans as the ­APRIL-specific binding partners. J Exp Med 201:1375–1383

    Article  PubMed  CAS  Google Scholar 

  26. Moreaux J, Sprynski A-C, Dillon SR et al (2009) APRIL and TACI interact with syndecan-1 on the surface of multiple myeloma cells to form an essential survival loop. Eur J Haematol 83:119–129

    Article  PubMed  CAS  Google Scholar 

  27. Nardelli B, Belvedere O, Roschke V et al (2001) Synthesis and release of B-lymphocyte ­stimulator from myeloid cells. Blood 97:198–204

    Article  PubMed  CAS  Google Scholar 

  28. Litinskiy MB, Nardelli B, Hilbert DM et al (2002) DCs induce CD40-independent ­immunoglobulin class switching through BLyS and APRIL. Nat Immunol 3:822–829

    Article  PubMed  CAS  Google Scholar 

  29. Scapini P, Nardelli B, Nadali G et al (2003) G-CSF-stimulated neutrophils are a prominent source of functional BLyS. J Exp Med 197:297–302

    Article  PubMed  CAS  Google Scholar 

  30. Huard B, Arlettaz L, Ambrose C et al (2004) BAFF production by antigen-presenting cells provides T cell co-stimulation. Int Immunol 16:467–475

    Article  PubMed  CAS  Google Scholar 

  31. Gorelik L, Gilbride K, Dobles M et al (2003) Normal B cell homeostasis requires B cell activation factor production by radiation-resistant cells. J Exp Med 198:937–945

    Article  PubMed  CAS  Google Scholar 

  32. Novak AJ, Bram RJ, Kay NE et al (2002) Aberrant expression of B-lymphocyte stimulator by B chronic lymphocytic leukemia cells: a mechanism for survival. Blood 100:2973–2979

    Article  PubMed  CAS  Google Scholar 

  33. He B, Chadburn A, Jou E et al (2004) Lymphoma B cells evade apoptosis through the TNF family members BAFF/BLyS and APRIL. J Immunol 172:3268–3279 [Erratum appears in J Immunol. 2004 Apr. 15; 172(8): following 5127]

    PubMed  CAS  Google Scholar 

  34. Kern C, Cornuel J-F, Billard C et al (2004) Involvement of BAFF and APRIL in the resistance to apoptosis of B-CLL through an autocrine pathway. Blood 103:679–688

    Article  PubMed  CAS  Google Scholar 

  35. Novak AJ, Darce JR, Arendt BK et al (2004) Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood 103:689–694

    Article  PubMed  CAS  Google Scholar 

  36. Chu VT, Enghard P, Riemekasten G et al (2007) In vitro and in vivo activation induces BAFF and APRIL expression in B cells. J Immunol 179:5947–5957

    PubMed  CAS  Google Scholar 

  37. Thompson JS, Bixler SA, Qian F et al (2001) BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 293:2108–2111

    Article  PubMed  CAS  Google Scholar 

  38. Yan M, Brady JR, Chan B et al (2001) Identification of a novel receptor for B lymphocyte ­stimulator that is mutated in a mouse strain with severe B cell deficiency. Curr Biol 11:1547–1552

    Article  PubMed  CAS  Google Scholar 

  39. von Bulow GU, Bram RJ (1997) NF-AT activation induced by a CAML-interacting member of the tumor necrosis factor receptor superfamily. Science 278:138–141

    Article  Google Scholar 

  40. Wu Y, Bressette D, Carrell JA et al (2000) Tumor necrosis factor (TNF) receptor superfamily member TACI is a high affinity receptor for TNF family members APRIL and BLyS. J Biol Chem 275:35478–35485

    Article  PubMed  CAS  Google Scholar 

  41. Xia XZ, Treanor J, Senaldi G et al (2000) TACI is a TRAF-interacting receptor for TALL-1, a tumor necrosis factor family member involved in B cell regulation. J Exp Med 192:137–143

    Article  PubMed  CAS  Google Scholar 

  42. Yan M, Marsters SA, Grewal IS et al (2000) Identification of a receptor for BLyS demonstrates a crucial role in humoral immunity. Nat Immunol 1:37–41

    Article  PubMed  CAS  Google Scholar 

  43. Yu G, Boone T, Delaney J et al (2000) APRIL and TALL-I and receptors BCMA and TACI: system for regulating humoral immunity. Nat Immunol 1:252–256

    Article  PubMed  CAS  Google Scholar 

  44. Laabi Y, Gras MP, Carbonnel F et al (1992) A new gene, BCM, on chromosome 16 is fused to the interleukin 2 gene by a t(4;16)(q26;p13) translocation in a malignant T cell lymphoma. EMBO J 11:3897–3904

    PubMed  CAS  Google Scholar 

  45. Shu HB, Johnson H (2000) B cell maturation protein is a receptor for the tumor necrosis factor family member TALL-1. Proc Natl Acad Sci USA 97:9156–9161

    Article  PubMed  CAS  Google Scholar 

  46. Thompson JS, Schneider P, Kalled SL et al (2000) BAFF binds to the tumor necrosis factor receptor-like molecule B cell maturation antigen and is important for maintaining the ­peripheral B cell population. J Exp Med 192:129–135

    Article  PubMed  CAS  Google Scholar 

  47. Hatzoglou A, Roussel J, Bourgeade MF et al (2000) TNF receptor family member BCMA (B cell maturation) associates with TNF receptor-associated factor (TRAF) 1, TRAF2, and TRAF3 and activates NF-kappa B, elk-1, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase. J Immunol 165:1322–1330

    PubMed  CAS  Google Scholar 

  48. Xu L-G, Shu H-B (2002) TNFR-associated factor-3 is associated with BAFF-R and negatively regulates BAFF-R-mediated NF-kappa B activation and IL-10 production. J Immunol 169:6883–6889

    PubMed  CAS  Google Scholar 

  49. Ni C-Z, Oganesyan G, Welsh K et al (2004) Key molecular contacts promote recognition of the BAFF receptor by TNF receptor-associated factor 3: implications for intracellular s­ignaling regulation. J Immunol 173:7394–7400

    PubMed  CAS  Google Scholar 

  50. Hendriks J, Planelles L, de Jong-Odding J et al (2005) Heparan sulfate proteoglycan binding promotes APRIL-induced tumor cell proliferation. Cell Death Differ 12:637–648

    Article  PubMed  CAS  Google Scholar 

  51. Kimberley FC, van Bostelen L, Cameron K et al (2009) The proteoglycan (heparan sulfate proteoglycan) binding domain of APRIL serves as a platform for ligand multimerization and cross-linking. FASEB J 23:1584–1595

    Article  PubMed  CAS  Google Scholar 

  52. Sakurai D, Hase H, Kanno Y et al (2007) TACI regulates IgA production by APRIL in ­collaboration with HSPG. Blood 109:2961–2967

    PubMed  CAS  Google Scholar 

  53. Ng LG, Sutherland APR, Newton R et al (2004) B cell-activating factor belonging to the TNF family (BAFF)-R is the principal BAFF receptor facilitating BAFF costimulation of ­circulating T and B cells. J Immunol 173:807–817

    PubMed  CAS  Google Scholar 

  54. Darce JR, Arendt BK, Wu X et al (2007) Regulated expression of BAFF-binding receptors during human B cell differentiation. J Immunol 179:7276–7286

    PubMed  CAS  Google Scholar 

  55. Groom JR, Fletcher CA, Walters SN et al (2007) BAFF and MyD88 signals promote a ­lupuslike disease independent of T cells. J Exp Med 204:1959–1971

    Article  PubMed  CAS  Google Scholar 

  56. Mihalcik SA, Huddleston PM 3rd, Wu X et al (2010) The Structure of the TNFRSF13C ­promoter enables differential expression of BAFF-R during B cell ontogeny and terminal ­differentiation. J Immunol 185(2):1045–1054

    Article  PubMed  CAS  Google Scholar 

  57. O’Connor BP, Raman VS, Erickson LD et al (2004) BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med 199:91–98

    Article  PubMed  Google Scholar 

  58. Avery DT, Kalled SL, Ellyard JI et al (2003) BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J Clin Invest 112:286–297 [Erratum appears in J Clin Invest. 113(7):1069]

    PubMed  CAS  Google Scholar 

  59. Benson MJ, Dillon SR, Castigli E et al (2008) Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J Immunol 180:3655–3659

    PubMed  CAS  Google Scholar 

  60. Moreaux J, Legouffe E, Jourdan E et al (2004) BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 103:3148–3157

    Article  PubMed  CAS  Google Scholar 

  61. Broyl A, Hose D, Lokhorst H et al (2010) Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood. doi:10.1182/blood-2009-12-261032

  62. Moreaux J, Cremer FW, Reme T et al (2005) The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 106:1021–1030

    Article  PubMed  CAS  Google Scholar 

  63. Moreaux J, Hose D, Jourdan M et al (2007) TACI expression is associated with a mature bone marrow plasma cell signature and C-MAF overexpression in human myeloma cell lines. Haematologica 92:803–811

    Article  PubMed  CAS  Google Scholar 

  64. Abe M, Kido S, Hiasa M et al (2006) BAFF and APRIL as osteoclast-derived survival factors for myeloma cells: a rationale for TACI-Fc treatment in patients with multiple myeloma. Leukemia 20:1313–1315

    Article  PubMed  CAS  Google Scholar 

  65. Tai Y-T, Li X-F, Breitkreutz I et al (2006) Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res 66:6675–6682

    Article  PubMed  CAS  Google Scholar 

  66. Yaccoby S, Pennisi A, Li X et al (2008) Atacicept (TACI-Ig) inhibits growth of TACI(high) primary myeloma cells in SCID-hu mice and in coculture with osteoclasts. Leukemia 22:406–413

    Article  PubMed  CAS  Google Scholar 

  67. Batten M, Groom J, Cachero TG et al (2000) BAFF mediates survival of peripheral immature B lymphocytes. J Exp Med 192:1453–1466

    Article  PubMed  CAS  Google Scholar 

  68. Groom J, Kalled SL, Cutler AH et al (2002) Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren’s syndrome. J Clin Invest 109:59–68

    PubMed  CAS  Google Scholar 

  69. Planelles L, Carvalho-Pinto CE, Hardenberg G et al (2004) APRIL promotes B-1 cell-associated neoplasm. Cancer Cell 6:399–408

    Article  PubMed  CAS  Google Scholar 

  70. Briones J, Timmerman JM, Hilbert DM et al (2002) BLyS and BLyS receptor expression in non-Hodgkin’s lymphoma. Exp Hematol 30:135–141

    Article  PubMed  CAS  Google Scholar 

  71. Novak AJ, Grote DM, Stenson M et al (2004) Expression of BLyS and its receptors in B-cell non-Hodgkin lymphoma: correlation with disease activity and patient outcome. Blood 104:2247–2253

    Article  PubMed  CAS  Google Scholar 

  72. Haiat S, Billard C, Quiney C et al (2006) Role of BAFF and APRIL in human B-cell chronic lymphocytic leukaemia. Immunology 118:281–292

    Article  PubMed  CAS  Google Scholar 

  73. Planelles L, Castillo-Gutierrez S, Medema JP et al (2007) APRIL but not BLyS serum levels are increased in chronic lymphocytic leukemia: prognostic relevance of APRIL for survival. Haematologica 92:1284–1285

    Article  PubMed  CAS  Google Scholar 

  74. Bojarska-Junak A, Hus I, Chocholska S et al (2009) BAFF and APRIL expression in B-cell chronic lymphocytic leukemia: correlation with biological and clinical features. Leuk Res 33:1319–1327

    Article  PubMed  CAS  Google Scholar 

  75. Molica S, Digiesi G, Battagliai C et al (2010) Baff Serum Level Predicts Time to First Treatment in Early Chronic Lymphocytic Leukemia. Eur J Haematol. doi:10.1111/j.1600-0609.2010.01482.x

  76. Ryan MC, Grewal IS (2009) Targeting of BAFF and APRIL for autoimmunity and oncology. Adv Exp Med Biol 647:52–63

    Article  PubMed  CAS  Google Scholar 

  77. Rossi J-F, Moreaux J, Rose M et al (2006) A Phase I/II Study of Atacicept (TACI-Ig) To Neutralize APRIL and BLyS in Patients with Refractory or Relapsed Multiple Myeloma (MM) or Active Previously Treated Waldenstrom’s Macroglobulinemia (WM). ASH Annual Meeting Abstracts 108:3578

    Google Scholar 

  78. Rossi JF, Moreaux J, Hose D et al (2009) Atacicept in relapsed/refractory multiple myeloma or active Waldenstrom’s macroglobulinemia: a phase I study. Br J Cancer 101:1051–1058

    Article  PubMed  Google Scholar 

  79. Blade J, Samson D, Reece D et al (1998) Criteria for evaluating disease response and ­progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Myeloma Subcommittee of the EBMT. European Group for Blood and Marrow Transplant. Br J Haematol 102:1115–1123

    Article  PubMed  CAS  Google Scholar 

  80. Dall’Era M, Chakravarty E, Wallace D et al (2007) Reduced B lymphocyte and i­mmunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum 56:4142–4150

    Article  PubMed  Google Scholar 

  81. Munafo A, Priestley A, Nestorov I et al (2007) Safety, pharmacokinetics and ­pharmacodynamics of atacicept in healthy volunteers. Eur J Clin Pharmacol 63:647–656

    Article  PubMed  CAS  Google Scholar 

  82. Ansell SM, Witzig TE, Inwards DJ et al (2008) Phase I clinical study of atacicept in patients with relapsed and refractory B-cell non-Hodgkin’s lymphoma. Clin Cancer Res 14:1105–1110

    Article  PubMed  CAS  Google Scholar 

  83. Nestorov I, Munafo A, Papasouliotis O et al (2008) Pharmacokinetics and biological activity of atacicept in patients with rheumatoid arthritis. J Clin Pharmacol 48:406–417

    Article  PubMed  CAS  Google Scholar 

  84. Tak PP, Thurlings RM, Rossier C et al (2008) Atacicept in patients with rheumatoid arthritis: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating, single- and repeated-dose study. Arthritis Rheum 58:61–72

    Article  PubMed  CAS  Google Scholar 

  85. Pena-Rossi C, Nasonov E, Stanislav M et al (2009) An exploratory dose-escalating study investigating the safety, tolerability, pharmacokinetics and pharmacodynamics of intravenous atacicept in patients with systemic lupus erythematosus. Lupus 18:547–555

    Article  PubMed  CAS  Google Scholar 

  86. Elsawa SF, Novak AJ, Grote DM et al (2006) B-lymphocyte stimulator (BLyS) stimulates immunoglobulin production and malignant B-cell growth in Waldenstrom macroglobulinemia. Blood 107:2882–2888

    Article  PubMed  CAS  Google Scholar 

  87. Lyu M-A, Cheung LH, Hittelman WN et al (2007) The rGel/BLyS fusion toxin specifically targets malignant B cells expressing the BLyS receptors BAFF-R, TACI, and BCMA. Mol Cancer Ther 6:460–470

    Article  PubMed  CAS  Google Scholar 

  88. Nimmanapalli R, Lyu M-A, Du M et al (2007) The growth factor fusion construct containing B-lymphocyte stimulator (BLyS) and the toxin rGel induces apoptosis specifically in BAFF-R-positive CLL cells. Blood 109:2557–2564

    Article  PubMed  CAS  Google Scholar 

  89. Lyu MA, Rai D, Ahn KS et al (2010) The rGel/BLyS fusion toxin inhibits diffuse large B-cell lymphoma growth in vitro and in vivo. Neoplasia 12:366–375

    PubMed  CAS  Google Scholar 

  90. Belch A, McEwan A, Hewitt J, et al. (2003) Early clinical data for LymphoRad-131 (LR131; Iodine I-131 labeled B-lymphocyte stimulator) in patients with relapsed/refractory non-Hodgkin’s lymphoma. ASH Annual Meeting Abstracts: 1481.

    Google Scholar 

  91. Sung C, Stabin M, Brill AB, et al. (2003) LymphoRad-131 Pharmacokinetics and dosimetry in ongoing phase I multiple myeloma and non-Hodgkin’s lymphoma trials. ASH Annual Meeting Abstracts: 2537.

    Google Scholar 

  92. Belch A, McEwan A, Hewitt J et al (2004) Tumor targeting, dosimetry and clinical response data for Lymphorad-131 (LR131; Iodine I-131 Labeled B-Lymphocyte Stimulator) in patients with relapsed/refractory non-Hodgkin’s lymphoma. ASH Annual Meeting Abstracts 104:750

    Google Scholar 

  93. Annunziata CM, Davis RE, Demchenko Y et al (2007) Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12:115–130

    Article  PubMed  CAS  Google Scholar 

  94. Keats JJ, Fonseca R, Chesi M et al (2007) Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12:131–144

    Article  PubMed  CAS  Google Scholar 

  95. Lee CH, Jeon Y-T, Kim S-H et al (2007) NF-kappaB as a potential molecular target for cancer therapy. Biofactors 29:19–35

    Article  PubMed  CAS  Google Scholar 

  96. Baud V, Karin M (2009) Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 8:33–40

    Article  PubMed  CAS  Google Scholar 

  97. Tas SW, Vervoordeldonk MJBM, Tak PP (2009) Gene therapy targeting nuclear factor-kappaB: towards clinical application in inflammatory diseases and cancer. Curr Gene Ther 9:160–170

    Article  PubMed  CAS  Google Scholar 

  98. Lin Y, Bai L, Chen W et al (2010) The NF-kappaB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets 14:45–55

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grants CA105258 and CA062242 (to D.F.J.). We would also like to thank the numerous investigators whose work informed the review, but whose work was not specifically cited due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane F. Jelinek Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mihalcik, S.A., Jelinek, D.F. (2013). Targeting the BAFF/APRIL Cytokine Network in Multiple Myeloma. In: Munshi, N., Anderson, K. (eds) Advances in Biology and Therapy of Multiple Myeloma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4666-8_10

Download citation

Publish with us

Policies and ethics