Skip to main content

Mathematics Behind Microstructures: A Lead to Generalizations of Convexity

  • Conference paper
  • First Online:
Bridging Mathematics, Statistics, Engineering and Technology

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 24))

  • 1011 Accesses

Abstract

We consider a mathematical model aimed at explaining pattern formation in microstructures. Usually such models are also useful for understanding problems of solid–solid phase transitions in material science. Our goal is to analyze the limiting behavior of certain non-linear energy type functionals, with restrictions, from a variational point of view. In order to better understand this problem we develop some generalizations for the notions of rank-one convexity and quasi-convexity and demonstrate their relevance in the context of energy minimizing sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces. Academic Press (1975)

    Google Scholar 

  2. Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86, 125–145 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubin, J.-P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  4. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63, 337–403 (1977)

    Article  MATH  Google Scholar 

  5. Ball, J.M.: A version of the fundamental theorem for Young measures. In: Partial Differential Equations and Continuum Models of Phase Transitions. Lecture Notes in Physics, vol. 344. Springer, Berlin (1988)

    Google Scholar 

  6. Ball, J.M., James, R.D.: Proposed experimental tests of a theory of fine microstructures and the two well problem. Phil. Trans. Roy. Soc. London. 338A, 389–450 (1992)

    Google Scholar 

  7. Ball, J.M., Murat, F.: W 1, p-Quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58, 225–253 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brooks, J., Chacon, R.: Continuity and compactness of measures. Adv. Math. 37, 16–26 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buttazzo, G.: Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Pitman Research Notes in Mathematics, Vol. 207. Longman, Harlow (1989)

    Google Scholar 

  10. Cellina, A.: On minima of a functional of the gradient: Sufficient conditions. Nonlinear Anal. 20(4), 343–347 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coifman, R., Lions, P.-L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. 72(9), 247–286 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, New York (1989)

    Book  MATH  Google Scholar 

  13. Dacorogna, B., Marcellini, P.: ‘Implicit Partial Differential Equations. Birkhäuser, Boston (1999)

    Book  MATH  Google Scholar 

  14. De Figueiredo, D.G.: The Ekeland Variational Principle with Applications and Detours. Tata Institute Lecture, Springer, Berlin (1989)

    MATH  Google Scholar 

  15. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Evans, L.C.: Quasiconvexity and partial regularity in the calculus of variations Arch. Rational Mech. Anal. 95, 227–252 (1986)

    Article  MATH  Google Scholar 

  17. Evans, L.C.: Weak Convergence Methods for Nonlinear Partial Differential Equations. In: CBMS Regional Conference Series in Mathematics, Vol. 74. AMS, Providence, RI (1990)

    Google Scholar 

  18. Fonseca, I., MĂ¼ller, S.: A-quasiconvexity, lower semicontinuity and Young measures. SIAM J.Math. Anal. 30, 1355–1390 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, Princeton (1983)

    MATH  Google Scholar 

  20. Kinderlehrer, D., Pedregal, P.: Gradient Young measures generated by sequences in sobolev spaces. J. Geomet. Anal. 4(1) (1994)

    Google Scholar 

  21. Lee, J., MĂ¼ller, P.F.X., MĂ¼ller, S.: Compensated Compactness, Separately Convex Functions and Interpolatory Estimates between Riesz Transforms and Haar Projections. Preprint Max Planck Institute (2008)

    Google Scholar 

  22. Marcellini, P.: On the definition and the lower semicontinuity of certain quasiconvex integrals. Ann. Inst. H.Poincaré Analyse non linéaire. 3(5), 391–409 (1986)

    Google Scholar 

  23. Marcellini, P., Sbordone, C.: On the existence of minima of multiple integrals. J. Math. Pures Appl. 62, 1–9 (1983)

    MathSciNet  MATH  Google Scholar 

  24. Meyers, N., Elcrat, A.: Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions. Duke Math. J. 42, 121–136 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  25. Milnor, J.: Topology from the Differentiable Viewpoint. University of Virginia Press (1965)

    Google Scholar 

  26. Morrey, C.B.: Quasiconvexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2, 25–53 (1952)

    MathSciNet  MATH  Google Scholar 

  27. Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966)

    MATH  Google Scholar 

  28. MĂ¼ller, S.: Higher integrability of determinants and weak convergence in L 1, . J. Reine Angew. Math. 412, 20–34 (1990)

    MathSciNet  MATH  Google Scholar 

  29. MĂ¼ller, S.: Variational models for microstructure and phase transitions. In: Calculus of Variations and Geometric Evolution Problems, (Cetraro, 1996). Lecture Notes in Math, Vol. 1713, pp 85–210. Springer (1999)

    Google Scholar 

  30. MĂ¼ller, S.: Rank-one convexity implies quasiconvexity on diagonal matrices. Int. Math. Res. Not. 20, 1087–1095 (1999)

    Article  Google Scholar 

  31. MĂ¼ller, S., Å verĂ¡k, V.: Attainment results for the two-well problem by convex integration. In: Jost, J. (ed.) Geometric Analysis and the Calculus of Variations, pp 239–251. Internat. Press, Cambridge, MA (1996)

    Google Scholar 

  32. Murat, F.: A survey on compensated compactness. In: Contributions to modern calculus of variations (Bologna, 1985), 145–183, Putman Res. Notes Math. Ser., 148, Longman Sci. Tech., Harlow (1987)

    Google Scholar 

  33. Palombaro, M., Smyshlyaev, V.P.: Relaxation of three solenoidal wells and characterization of extremal three-phase H-measures. Arch. Ration. Mech. Anal. 194(3), 775–722 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pedregal, P.: Parameterized Measures and Variational Principles. Birkhäuser, Besel (1997)

    Book  Google Scholar 

  35. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. In: CBMS Regional Conference Series in Mathematics, Vol. 65. AMS, Providence, RI (1986)

    Google Scholar 

  36. Santos, P.: \(\mathcal{A}\)-quasiconvexity with variable coefficients. Proc. Roy. Soc. Edinburgh. 134(6), 1219–1237(19) (2004)

    Google Scholar 

  37. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  38. Å verĂ¡k, V.: Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh. 120A, 185–189 (1992)

    Google Scholar 

  39. Å verĂ¡k, V.: On the problem of two wells. In: Kinderlehrer, D. et al. (eds) Microstructure and Phase Transition, IMA Math. Appl. Vol. 54, pp 183–190. Springer, New York (1993)

    Google Scholar 

  40. Å verĂ¡k, V.: Lower semicontinuity for variational integral functionals and compensated compactness. In: Chatterji, S.D. (ed.) Proceedings of the International Congress of Mathematicians, ZĂ¼rich, 1994, pp 1153–1158. Birkhäuser, Basel (1995)

    Google Scholar 

  41. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1972)

    Google Scholar 

  42. Tartar, L.: Compensated compactness and applications to partial differential equations. In: Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV, pp 136–212. Res. Notes in Math. Vol. 39. Pitman, Boston, Mass.-London (1979)

    Google Scholar 

  43. Yan, B.: Remarks about W 1, p-stability of the conformal set in higher dimensions. Ann. Inst. H. Poincaré, Analyse non linéaire. 13(6), 691–705 (1996)

    Google Scholar 

  44. Yan, B.: On rank-one convex and polyconvex conformal energy functions with slow growth. Proc. Roy. Soc. Edinburgh. 127A, 651–663 (1997)

    Article  Google Scholar 

  45. Yan, B., Zhou, Z.: A theorem on improving regularity of minimizing sequences by reverse Hölder inequalities. Michigan Math. J. 44 (1997), 543–553.

    Article  MathSciNet  MATH  Google Scholar 

  46. Yan, B., Zhou, Z.: Stability of weakly almost conformal mappings. Proc. Am. Math. Soc. 126, 481–489 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. Young, L.C.: Lectures on Calculus of Variations and Optimal Control Theory. W.B. Saunders (1969)

    MATH  Google Scholar 

  48. Zhang, K.: A construction of quasiconvex functions with linear growth at infinity. Ann. Scuola Norm. Sup. Pisa. 19, 313–326 (1992)

    MATH  Google Scholar 

  49. Zhang, K.: On various semiconvex hulls in the calculus of variations. Calc. Var. Partial Differ. Equat. 6, 143–160 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Vasiliu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this paper

Cite this paper

Vasiliu, D. (2012). Mathematics Behind Microstructures: A Lead to Generalizations of Convexity. In: Toni, B., Williamson, K., Ghariban, N., Haile, D., Xie, Z. (eds) Bridging Mathematics, Statistics, Engineering and Technology. Springer Proceedings in Mathematics & Statistics, vol 24. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4559-3_8

Download citation

Publish with us

Policies and ethics