Skip to main content

Damping of Materials and Structures

  • Reference work entry
  • First Online:
Handbook of Experimental Structural Dynamics

Abstract

Damping is a phenomenon that can be observed in connection with all kind of materials: solid, liquid, or gaseous. Any kind of time-dependent change in stresses or strains of the material results in a loss of mechanical energy, which in most cases is transformed into thermal energy. However, all the other mechanisms such as the conversion into electrical energy or any kind of radiation over the system’s boundaries play a role. Typical observations that can be made in connection with damping are the occurrence of creep and relaxation processes or hysteresis curves in the case of cyclic loadings. The overall damping is influenced by a variety of mechanisms, especially for structures assembled from different components.

No matter whether the presence of damping is sought or should be avoided in technical applications, for any kind of tuning or optimization of a system under consideration, a basic understanding of the underlying physics is needed. This is especially true if calculations or simulations have to be run in order to predict the dynamical behavior of a system.

This chapter intends to introduce the reader into the subject and provide an extensive overview on the different aspects of damping regarding the fundamentals, mathematical, and numerical models as well as experimental techniques for the detection of damping properties. It shall give an overview of the state of knowledge and experience gathered in various fields of application and research. For further information, the reader is referred to various publications and textbooks whenever needed. This chapter is organized as follows: Sect. 1 provides an extensive overview on the topic, the classification of damping phenomena, and some remarks on computer-based programs. Section 2 refers to the damping of solids, while Sect. 3 extends the view on structures assembled from different components. Section 4 deals with different mathematical models toward the description of damping and relevant numerical approaches. Experimental techniques for the detection of the damping parameters needed for calculations are described in Sect. 5. This includes possible instrumentation as well as analytical methods. Finally, in Sect. 6, an application of the whole subject covering the detection of damping properties, its mathematical representation, and parameter identification along with a numerical simulation is presented as an example. Conclusions from this chapter are drawn in Sect. 7.

Lothar Gaul: deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

α :

Order of derivative

β :

Order of derivative

Φ :

Matrix of eigenvectors

B :

Spatial derivatives of matrix of shape functions

H :

Matrix of shape functions

K :

Stiffness matrix

M :

Mass matrix

u :

Relative displacement vector

χ :

Material loss factor

\(\dot {\gamma }\) :

Shear speed

γ :

Pure shear distortion

κ :

Curvature

λ :

Wavelength

ν :

Poisson’s ratio, order of derivative

ω 0 :

Natural frequency

ω d :

Natural damped frequency

Ψ(t):

shift function

ρ :

Mass density

σ :

Normal stress

τ :

shear stress

\( \underline {\boldsymbol {\sigma }}\) :

Complex stress

\( \underline {\boldsymbol {\varepsilon }}\) :

Complex strain

\( \underline {\boldsymbol {E}}\) :

Complex elastic modulus

\( \underline {\boldsymbol {G}}\) :

Complex shear modulus

\( \underline {\boldsymbol {K}}\) :

Complex bulk modulus

ε :

Strain

Ω:

Angular frequency

𝜗 :

damping ratio

ζ :

Angular phase difference

E :

Young’s modulus, spring constant

e :

Deviatoric strain

E(t):

Relaxation function

E  :

Storage modulus

E ′′ :

Loss modulus

F :

Force

H k :

Coulomb element

i :

Unit imaginary number

J(t):

Creep compliance function

K(t):

Decay function

P :

Active power

p :

Spring-pot coefficient

R k :

damping constant

So :

Sommerfeld number

T :

Temperature, time interval

t :

Time

U :

Potential energy

V :

Volume

W :

Mechanical work

W D :

dissipated mechanical energy

References

  1. Bagley RL, Torvik PJ (1986) On the fractional calculus model of viscoelastic behavior. J Rheol 30(1):133–155

    Article  MATH  Google Scholar 

  2. Christensen RM (1971) Theory of viscoelasticity – an introduction. Academic Press, New York/San Francisco/London

    Google Scholar 

  3. Ferry JD (1980) Viscoelastic properties of polymers. J. Wiley & Sons, New York/ London

    Google Scholar 

  4. Göldner H (1978) Übungsbuch der höheren Fertigkeitslehre, Elastizitätstheorie – Plastizitätstheorie – Viskoelastizitätstheorie. Physik-Verlag, Weinheim

    Google Scholar 

  5. Kolsch H (1993) Schwingungsdämpfung durch statische Hysterese; Modellierung von Bauteilen, Parameteridentifikation, Schwingungsberechnungen. Fortschr.-Ber. VDI Reihe 11 Nr. 190. Düsseldorf: VDI Verlag

    Google Scholar 

  6. Kümmlee H (1986) Ein Verfahren zur Vorhersage des nichtlinearen Steifigkeits- und Dämpfungsverhaltens sowie der Erwärmung drehelastischer Gummikupplungen bei stationärem Betrieb. Fortschr.-Ber. VDI Reihe 1 Nr. 136. VDI Verlag, Düsseldorf

    Google Scholar 

  7. Lambertz S (1995) Spannungs-Dehnungsverhalten technischer Gummiwerkstoffe. Antriebstechnisches Kolloquium ATK’95, S 1–35

    Google Scholar 

  8. Leaderman H (1943) Elastic and creep properties of filamentous materials and other high polymers. Textile Foundation, Washington, p 175

    Google Scholar 

  9. Lockett FJ (1972) Nonlinear viscoelastic solids. Academic Press, New York

    MATH  Google Scholar 

  10. Schapery RA (1969) On the characterization of nonlinear viscoelastic materials. Polym Eng Sci 9(4):295–310

    Article  Google Scholar 

  11. Steiner H (1997) Untersuchungen zum nichtlinear-viskoelastischen Materialverhalten von Kunststoffen. Herbert Utz Verlag Wissenschaft, München

    Google Scholar 

  12. Tobolsky AV (1960) Properties and structure of polymers. J. Wiley & Sons, New York/London

    Book  Google Scholar 

  13. Adams RD, Bacon DGC (1973) Measurement of the flexural damping capacity and dynamic Young’s modulus of metals and reinforced plastics. J Phys D Appl Phys 6:27–41

    Article  Google Scholar 

  14. Baker WE, Woolam WE, Young D (1967) Air and internal damping of thin cantilever beams. Int J Mech Soc 9:743–766

    Article  Google Scholar 

  15. Barr ADS, Johnston RA (1969) Acoustic and internal damping of uniform beams. J Mech Eng Soc 11(2):117–127

    Article  Google Scholar 

  16. Beards CF (1981) The damping of structural vibration by controlled interfacial slip in joints. ASME Paper, No. 81-DET-86, pp 1–5

    Google Scholar 

  17. Beck CJ, Ikegami R, Johnson DW, Walker WJ (1985) Application of viscoelastic passive damping to satellite equipment support structures. J Vib Acoust Stress Reliab Des 107(4): 367–374

    Article  Google Scholar 

  18. Bohlen S, Gaul L (1984) Zum nichtlinearen Übertragungsverhalten von Fügestellen. ZAMM 64:T45–T48

    Google Scholar 

  19. Butenschön HJ (1986) Das hydrodynamische, zylindrische Gleitlager endlicher Breite unter instationärer Belastung. Diss. TH Karlsruhe

    Google Scholar 

  20. Carbonell JR, Ungar EE (1966) On panel vibration damping due to structural joints. AIAA J 4(8):1385–1390

    Article  Google Scholar 

  21. Christensen RM (1971) Theory of viscoelasticity – an introduction. Academic Press, New York/San Francisco,London

    Google Scholar 

  22. Cremer L, Heckl M (1996) Körperschall, 2. Auflage. Springer, Berlin

    Book  MATH  Google Scholar 

  23. Fahy F (1985) Sound and structural vibration; radiation, transmission and response. Academic Press, London

    Google Scholar 

  24. Fallen M, Henn H, Sinambri GR (1984) Ingenieurakustik. F. Vieweg & Sohn, Wiesbaden, Braunschweig

    Google Scholar 

  25. Feit D, Junger MC (1972) Sound, structures and their interaction. MIT Press, Cambridge

    MATH  Google Scholar 

  26. Ferry JD (1980) Viscoelastic properties of polymers. J. Wiley and Sons, New York/London

    Google Scholar 

  27. Gaul L (1981) Zur Dämmung und Dämpfung von Biegewellen an Fügestellen. Ing Archiv 51:101–110

    Article  MATH  Google Scholar 

  28. Gaul L (1983) Zum Einfluss von Schraub-, Niet- und Klemmverbindungen auf die Dynamik von Maschinen und Strukturen. In: Maschinenbau FB (Hrsg) Festschrift 10 Jahre Hochschule der Bundeswehr Hamburg. Fachbereich Maschinenbau, S 49–58

    Google Scholar 

  29. Gaul L, Lenz J (1997) nonlinear dynamics of structures assembled with bolted joints. Acta Mech 125:169–181

    Article  MATH  Google Scholar 

  30. Gaul L, Lenz J, Sachau D (1998) Active damping of space structures by contact pressure control in joints. Mech Struct Mach 26:81–100

    Article  Google Scholar 

  31. Gaul L, Lenz J, Willner K (1994) Modellbildung des dynamischen Übertragungsverhaltens von Fügestellen. Techn. Report, Arbeitsbericht zum DFG-Projekt Az. Ga209/11-1

    Google Scholar 

  32. Gaul L, Willner K (1995) A penalty approach for contact description by FEM based on interface physics. In: Proceedings of CONMEC’95, Ferrara, pp 257–264

    Google Scholar 

  33. Glienicke J (1966) Feder-Dämpfungskonstanten von Gleitlagern für Turbomaschinen und deren Einfluss auf das Schwingungsverhalten eines einfachen Rotors. Dissertation, Technische Hochschule Karlsruhe, Karlsruhe

    Google Scholar 

  34. Glienicke J (1993) Nichtlineare Schwingungen allgemeiner gleitgelagerter Rotoren. VDI-Berichte, Nr 1082. VDI Verlag, Düsseldorf, S 299–316

    Google Scholar 

  35. Glienicke J, Schwer M (1985) Kennlinien realer Quetschöldämpfer. Konstruktion 37(8): 301–308

    Google Scholar 

  36. Göldner H (1978) Übungsbuch der höheren Festigkeitslehre, Elastizitä tstheorie – Plastizitätstheorie – Viskoelastizitätstheorie. Physik-Verlag, Weinheim

    Google Scholar 

  37. Gomperts MC (1977) Sound radiation from baffled, thin, rectangular plates. Acustica 37(2):93–102

    MATH  Google Scholar 

  38. Heckl M (1962) Measurement of absorption coefficients on plates. J Acoust Soc Am 34(6):803–806

    Article  Google Scholar 

  39. Holmer CI, Vér IL (1971) Interaction of sound waves with solid structures. In: Beranek LL (ed) Noise and vibration control, pp 270–361. McGraw-Hill Book Company, New York

    Google Scholar 

  40. Ingard KU, Morse PM (1968) Theoretical acoustics. McGraw-Hill Book Company, New York

    Google Scholar 

  41. Jeyapalan RK, Richards EJ, Wescott MW (1979) On the prediction of impact noise; Part II: ringing noise. J Sound Vib 65(3):417–451

    Google Scholar 

  42. Kümmlee H (1986) Ein Verfahren zur Vorhersage des nichtlinearen Steifigkeits- und Dämpfungsverhaltens sowie der Erwä rmung drehelastischer Gummikupplungen bei stationärem Betrieb. Fortschr.-Ber. VDI Reihe 1, Nr 136. VDI Verlag, Düsseldorf

    Google Scholar 

  43. Lambertz S (1995) Spannungs-Dehnungsverhalten technischer Gummiwerkstoffe. Antriebstechnisches Kolloquium ATK ’95, S 1–35

    Google Scholar 

  44. Lang OR, Steinhilper W (1978) Gleitlager. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  45. Lazan BJ (1968) Damping of materials and members in structural mechanics. Pergamon Press, Oxford

    Google Scholar 

  46. Lockett FJ (1972) Nonlinear viscoelastic solids. Academic Press, New York

    MATH  Google Scholar 

  47. Lund JW (1979) Evaluation of stiffness and damping coefficients of fluid-film bearings. Shock Vibration Digest 11(1):5–10

    Article  Google Scholar 

  48. Maidanik G (1962) Response of ribbed panels to reverberant acoustic fields. J Acoust Soc Am 34(6):809–826

    Article  Google Scholar 

  49. Maidanik G (1966) Energy dissipation associated with gas-pumping in structural joints. J Acoust Soc Am 40(5):1064–1072

    Article  Google Scholar 

  50. Merker H-J (1981) Über den nichtlinearen Einfluss von Gleitlagern auf die Schwingungen von Rotoren. Fortschr.-Ber. VDI Z, Reihe 11, VDI-Forschungsheft, Nr 40. VDI Verlag, Düsseldorf

    Google Scholar 

  51. Morland LW, Lee EH (1960) Stress analysis for linear viscoelastic materials with temperature variation. Trans Soc Rheol 4:233

    Article  MathSciNet  Google Scholar 

  52. Ottl D (1981) Schwingungen mechanischer Systeme mit Strukturdämpfung. VDI-Forschungsheft, Nr 603. VDI Verlag, Düsseldorf

    Google Scholar 

  53. Petersmann N (1986) Substrukturtechnik und Kondensation bei der Schwingungsanalyse. Fortschr.-Berichte VDI Reihe 11, Nr 6. VDI Verlag, Düsseldorf

    Google Scholar 

  54. Schapery RA (1969) On the characterization of nonlinear viscoelastic materials. Polym Eng Sci 9(4):295–310

    Article  Google Scholar 

  55. Schwarzl F, Staverman AJ (1952) Time-temperature dependence of linear viscoelastic behavior. J Appl Phys 23:838–843

    Article  MATH  Google Scholar 

  56. Schwarzl FR (1990) Polymermechanik. Springer, Berlin

    Book  Google Scholar 

  57. Schwer M (1986) Eigenschaften von Quetschöldämpfern. Diss. TH Karlsruhe. TH Karlsruhe

    Google Scholar 

  58. Siegl G (1981) Das Biegeschwingungsverhalten von Rotoren, die mit Blechpaketen besetzt sind. Diss. TU Berlin. TU Berlin

    Google Scholar 

  59. Someya T (1989) Journal-bearing handbook. Springer, Berlin

    Google Scholar 

  60. Steiner H (1997) Untersuchungen zum nichtlinear- viskoelastischen Materialverhalten von Kunststoffen. Herbert Utz Verlag Wissenschaft, München

    Google Scholar 

  61. Ungar EE (1980) Damping of panels due to ambient air. In: Torvik PJ (ed) Damping applications in vibration control, vol. 38, pp 73–81. American Society of Mechanical Engineers, New York

    Google Scholar 

  62. Valanis K (1971) A theory of viscoplasticity without a yield surface. Arch Mech 23(4):517–551

    MathSciNet  MATH  Google Scholar 

  63. Wallace CE (1972) Radiation resistance of a rectangular panel. J Acoust Soc Am 51(3): 946–952

    Article  Google Scholar 

  64. Weck M, Petuelli G (1981) Steifigkeits- und Dä mpfungskennwerte verschraubter Fügestellen. Konstruktion 33:241–245

    Google Scholar 

  65. Willner K (1995) Ein statistisches Modell für den Kontakt metallischer Körper. Diss. Univ. der Bundeswehr Hamburg, Univ. der Bundeswehr Hamburg

    Google Scholar 

  66. Willner K (1997) Elasto-plastic contact of rough surfaces. In: Aliabadi M, Samartin A (ed) Computational methods in contact mechanics III. Computational Mechanics Publications, Madrid

    Google Scholar 

  67. Wissbrock H (1985) Untersuchungen zur Fugendämpfung zusammengesetzter Bauteile. Fortschr.-Berichte VDI Reihe 11, Nr 68. VDI Verlag, Düsseldorf

    Google Scholar 

  68. Bathe KJ (1996) Finite element procedures. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  69. Carpenter WM (1972) Viscoelastic stress analysis. Int J Numer Methods Eng 4:357–366

    Article  MATH  Google Scholar 

  70. Caughey TK (1962) Vibration of dynamic systems with linear hysteretic damping. In: Proceedings of the fourth U.S. National Congress of Applied Mechanics 1, pp 87–97

    Google Scholar 

  71. Caughey TK, O’Kelly ME (1965) Classical normal modes in damped linear dynamic systems. J Appl Mech E 32:583–588

    Article  MathSciNet  Google Scholar 

  72. Gaul L, Fiedler C (1997) Methode der Randelemente in Statik und Dynamik. Friedrich Vieweg & Sohn, Braunschweig/Wiesbaden

    Book  MATH  Google Scholar 

  73. Gaul L, Schanz M (1999) A comparative study of three boundary element approaches to calculate the transient response of viscoelastic solids with unbounded domains. Comput Methods Appl Mech Eng 179:11–123

    Article  MATH  Google Scholar 

  74. Gaul L, Wirnitzer J (1999) Calculation of transient wave propagation problems in semi-infinite media by BEM in frequency domain. In: Proceedings of the 13th International Conference on Boundary Element Technology (BETECH99), Las Vegas, pp 185–194

    Google Scholar 

  75. Krämer E (1984) Maschinendynamik. Springer, Berlin

    Book  MATH  Google Scholar 

  76. Krings W (1976) Beitrag zur Finiten Element Methode bei linearem, viskoelastischem Stoffverhalten. Mitteilungen aus dem Institut für Mechanik der Ruhr-Universität Bochum, Nr 3, Bochum

    Google Scholar 

  77. Link, M (1984) Finite Elemente in der Statik und Dynamik. Teubner-Verlag, Stuttgart

    MATH  Google Scholar 

  78. Natke HG (1992) Einführung in Theorie und Praxis der Zeitreihen-und Modalanalyse. 3. Auflage. Vieweg-Verlag, Braunschweig

    Book  MATH  Google Scholar 

  79. Zienkiewicz OC (1984) Methode der Finiten Elemente, 2. Auflage. Carl Hanser Verlag, München/Wien

    Google Scholar 

  80. Zurmühl R, Falk S (1974) Matrizen und ihre Anwendungen, 6. Auflage. Springer-Verlag, Berlin

    MATH  Google Scholar 

  81. Gaul L, Kögl M, Wagner M (2003) Boundary element methods for engineers and scientists. An introductory course with advanced topics. Springer, Berlin

    Book  MATH  Google Scholar 

  82. Broede, J (1983) Experimentelle Untersuchungen und analytische Betrachtungen zur Deutung der Drehschwingungs-Eigendä mpfung in Kolbenmaschinen-Triebwerken. Dissertation, Technische Universität Berlin, Berlin

    Google Scholar 

  83. Dubbel (1990) Taschenbuch für den Maschinenbau, 17. Auflage. Springer, Berlin

    Google Scholar 

  84. Ewins DJ (1989) Modal testing: theory and practice, 5. Auflage. John Wiley & Sons, London/New York

    Google Scholar 

  85. Ferry JD (1980) Viscoelastic properties of polymers. J. Wiley and Sons, London/New York

    Google Scholar 

  86. Lehr, E (1925) Die Abkürzungsverfahren zur Ermittlung der Schwingungsfestigkeit von Materialien. Dissertation, Technische Hochschule Stuttgart, Stuttgart

    Google Scholar 

  87. Madigosky W (1984) Improved extensional modulus measurements for polymers and metal matrix composites. In: Rogers L (ed) Proceedings Vibration damping 1984 Workshop Proceedings, Nr. AFWAL-TR-84-3064 in Q1–Q12

    Google Scholar 

  88. Madigosky, WM, Lee GF (1979) Automated dynamic Youngs’s modulus and loss factor measurements. J Acoust Soc Am 66(2):345–349

    Article  Google Scholar 

  89. Nashif AD (1967) New method for determining damping properties of viscoelastic materials. Shock Vib Bull 36(Part 4):37–47

    Google Scholar 

  90. Natke HG (1992) Einführung in Theorie und Praxis der Zeitreihen-und Modalanalyse, 3. Auflage. Vieweg-Verlag, Braunschweig

    Book  MATH  Google Scholar 

  91. Norris DM, Young W-C (1970) Complex- modulus measurement by longitudinal testing. Exp Mech 10:93–96

    Article  Google Scholar 

  92. Oberst H, Frankenfeld K (1952) Über die Dämpfung der Biegeschwingungen dünner Bleche durch festhaftende Beläge. Acustica 2, Akustische Beihefte, Heft 4, S 181–194

    Google Scholar 

  93. Pourabdolrahim R (1979) Entwicklung und systematische Untersuchung einer Drehschwingungsprüfmaschine für umlaufende Maschinenelemente. Dissertation, Technische Universität Berlin, Berlin

    Google Scholar 

  94. Verein Deutscher Ingenieure: damping of materials and members – Experimental techniques for the determination of damping characteristics. VDI 3830 Blatt 5:2005–2011

    Google Scholar 

  95. Bagley RL, Torvik PJ (1979) A generalized derivative model for an elastomer damper. Shock Vib Bull 49:135–143

    Google Scholar 

  96. Bagley RL, Torvik PJ (1983) Fractional calculus – a different approach to the analysis of viscoelastically damped structures. AIAA J 21(5):741–748

    Article  MATH  Google Scholar 

  97. Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27(3):201–210

    Article  MATH  Google Scholar 

  98. Bagley RL, Torvik PJ (1986) On the fractional calculus model of viscoelastic behavior. J Rheol 30(1):133–155

    Article  MATH  Google Scholar 

  99. Caputo M, Mainardi F (1971) Linear models of dissipation in anelastic solids. Rivista del Nuovo Cimento 1(2):161–198

    Article  Google Scholar 

  100. Gaul L (1999) The influence of damping on waves and vibrations. Mech Syst Signal Process 13(1):1–30

    Article  Google Scholar 

  101. Koeller RC (1984) Application of fractional calculus to the theory of viscoelasticity. J Appl Mech 51:299–307

    Article  MathSciNet  MATH  Google Scholar 

  102. Oldham KB, Spanier J (1974) The fractional calculus. Academic Press, New York/London

    MATH  Google Scholar 

  103. Padovan J (1987) Computational algorithms for FE formulations involving fractional operators. Comput Mech 2:271–287

    Article  MATH  Google Scholar 

  104. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego/London

    MATH  Google Scholar 

  105. Schmidt A, Gaul L (2001) FE implementation of viscoelastic constitutive stress-strain relations involving fractional time derivatives. In: Constitutive Models for Rubber II. A.A.Balkema Publishers, Tokyo, S 79–89

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Society for Experimental Mechanics

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gaul, L., Schmidt, A. (2022). Damping of Materials and Structures. In: Allemang, R., Avitabile, P. (eds) Handbook of Experimental Structural Dynamics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4547-0_19

Download citation

Publish with us

Policies and ethics