Skip to main content

Patch Alignment for Graph Embedding

  • Chapter
  • First Online:
Graph Embedding for Pattern Analysis
  • 1731 Accesses

Abstract

Dozens of manifold learning-based dimensionality reduction algorithms have been proposed in the literature. The most representative ones are locally linear embedding (LLE) [65], ISOMAP [76], Laplacian eigenmaps (LE) [4], Hessian eigenmaps (HLLE) [20], and local tangent space alignment (LTSA) [102]. LLE uses linear coefficients, which reconstruct a given example by its neighbors, to represent the local geometry, and then seeks a low-dimensional embedding, in which these coefficients are still suitable for reconstruction. ISOMAP preserves global geodesic distances of all the pairs of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trec video retrieval evaluation 2008, 2008.

    Google Scholar 

  2. Alpaydm E (1999) Combined 5 × 2 cv f test for comparing supervised classification learning algorithms. Neural Comput 11(8):1885–1892

    Article  Google Scholar 

  3. Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Google Scholar 

  4. Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. MIT Press, In: Advances in neural information processing systems, pp 585–591

    Google Scholar 

  5. Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399–2434

    MathSciNet  MATH  Google Scholar 

  6. Bengio Y, Paiement J, Vincent P, Delalleau O, Le Roux N, Ouimet M (2004) Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering. MIT Press, In: Advances in neural information processing systems, pp 177–184

    Google Scholar 

  7. Bian W, Tao D (2010) Biased discriminant euclidean embedding for content-based image retrieval. IEEE Trans Image Process 19(2):545–554

    Article  MathSciNet  Google Scholar 

  8. Bian W, Tao, D (2011) Max-min distance analysis by using sequential sdp relaxation for dimension reduction. IEEE Trans Pattern Anal Mach Intell 33(5):1037–1050

    Article  Google Scholar 

  9. Bishop C, Svensén M, Williams C (1998) Gtm: The generative topographic mapping. Neural Comput 10(1):215–234

    Article  Google Scholar 

  10. Bregman L (1967) The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput Math Math Phys 7(3):200–217

    Article  Google Scholar 

  11. Cai D, He X (2012) Manifold adaptive experimental design for text categorization. IEEE Trans Knowl Data Eng 24(4):707–719

    Article  Google Scholar 

  12. Cai D, He X, Han J (2005) Using graph model for face analysis. Tech. Rep. 2636, Department of Computer Science, University of Illinois at Urbana-Champaign

    Google Scholar 

  13. Cai D, He X, Han J (2007) Semi-supervised discriminant analysis. In: IEEE international conference on computer vision, pp 1–7

    Google Scholar 

  14. Cai D, He X, Han J (2008) Srda: An efficient algorithm for large-scale discriminant analysis. IEEE Trans Knowl Data Eng 20(1):1–12

    Article  Google Scholar 

  15. Cai D, He X, Han J, Huang T (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33(8):1548–1560

    Article  Google Scholar 

  16. Chang E, Tong S, Goh K, Chang C (2005) Support vector machine concept-dependent active learning for image retrieval. IEEE Trans Multimed 2:1–35

    Google Scholar 

  17. Chen H, Chang H, Liu T (2005) Local discriminant embedding and its variants. In: IEEE conference on computer vision and pattern recognition, vol 2, pp 846–853

    Google Scholar 

  18. d’Aspremont A, El Ghaoui L, Jordan M, Lanckriet G (2007) A direct formulation for sparse pca using semidefinite programming. SIAM Rev 49(3):434–448

    Google Scholar 

  19. Dietterich T (1998) Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 10(7):1895–1923

    Article  Google Scholar 

  20. Donoho D, Grimes C (2003) Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Nat Acad Sci USA 100(10):5591–5596

    Article  MathSciNet  MATH  Google Scholar 

  21. Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32(2):407–499

    Article  MathSciNet  MATH  Google Scholar 

  22. Escolano F, Hancock E, Lozano M (2011) Graph matching through entropic manifold alignment. In: IEEE Conference on Comput Vision Pattern Recogn, pp 2417–2424

    Google Scholar 

  23. Fan J, Fan Y (2008) High dimensional classification using features annealed independence rules. Ann Stat 36(6):2605–2637

    Article  MATH  Google Scholar 

  24. Fan J, Lv J (2010) A selective overview of variable selection in high dimensional feature space. Stat Sinica 20(1):101

    MathSciNet  MATH  Google Scholar 

  25. Fan Y, Li R (2012) Variable selection in linear mixed effects models. Ann Stat

    Google Scholar 

  26. Fu Y, Huang T (2008) Human age estimation with regression on discriminative aging manifold. IEEE Trans Multimed 10(4):578–584

    Article  Google Scholar 

  27. Fu Y, Huang T (2008) Image classification using correlation tensor analysis. IEEE Trans Image Process 17(2):226–234

    Article  MathSciNet  Google Scholar 

  28. Fu Y, Yan S, Huang T (2008) Correlation metric for generalized feature extraction. IEEE Trans Pattern Anal Mach Intell 30(12):2229–2235

    Article  Google Scholar 

  29. Gao X, Zhang K, Tao D, Li X (2012) Image super-resolution with sparse neighbor embedding. IEEE Trans Image Process 21(7):3194–3205

    Article  MathSciNet  Google Scholar 

  30. Geng B, Tao D, Xu C (2010) DAML: Domain adaptation metric learning. IEEE Trans Image Process 20(10):2980–2989

    Article  MathSciNet  Google Scholar 

  31. Geng B, Tao D, Xu C, Yang L, Hua X (2012) Ensemble manifold regularization. IEEE Trans Pattern Anal Mach Intell 34(6):1227–1233

    Article  Google Scholar 

  32. Griffin G, Holub A, Perona P (2007) California Institute of Technology, Caltech-256 object category dataset

    Google Scholar 

  33. Guan N, Tao D, Luo Z, Yuan B (2010) Fast gradient descent for non-negative patch alignment framework. Tech. Rep., University of Technology, Sydney

    Google Scholar 

  34. Guan N, Tao D, Luo Z, Yuan B (2011) Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent. IEEE Trans Image Process 20(7):2030–2048

    Article  MathSciNet  Google Scholar 

  35. Guan N, Tao D, Luo Z, Yuan B (2011) Non-negative patch alignment framework. IEEE Trans Neural Networks 22(8):1218–1230

    Article  Google Scholar 

  36. Guan N, Tao D, Luo Z, Yuan B (2012) Nenmf: An optimal gradient method for nonnegative matrix factorization. IEEE Trans Signal Process 60(6):2882–2898

    Article  MathSciNet  Google Scholar 

  37. Guan N, Tao D, Luo Z, Yuan B (2012) Online nonnegative matrix factorization with robust stochastic approximation. IEEE Trans Neural Networks Learn Syst 23(7):1087–1099

    Article  Google Scholar 

  38. He X, Cai D, Shao Y, Bao H, Han J (2011) Laplacian regularized gaussian mixture model for data clustering. IEEE Trans Knowl Data Eng 23(9):1406–1418

    Article  Google Scholar 

  39. He X, Cai D, Yan S, Zhang H (2005) Neighborhood preserving embedding. In: IEEE international conference on computer vision, pp 1208–1213

    Google Scholar 

  40. He X, Ji M, Zhang C, Bao H (2011) A variance minimization criterion to feature selection using laplacian regularization. IEEE Trans Pattern Anal Mach Intell 33(10):2013–2025

    Article  Google Scholar 

  41. He X, Niyogi P (2004) Locality preserving projections. MIT Press, In: Advances in neural information processing systems, pp 153–160

    Google Scholar 

  42. Hsu W, Kennedy L, Chang S (2006) Video search reranking via information bottleneck principle. In: ACM international conference on multimedia, pp 35–44

    Google Scholar 

  43. Ji S, Ye J (2009) Linear dimensionality reduction for multi-label classification. Morgan Kaufmann Publishers Inc. In: International joint conference on artifical intelligence, pp 1077–1082

    Google Scholar 

  44. Jiang X (2009) Asymmetric principal component and discriminant analyses for pattern classification. IEEE Trans Pattern Anal Mach Intell 31(5):931–937

    Article  Google Scholar 

  45. Jiang X (2011) Linear subspace learning-based dimensionality reduction. IEEE Signal Process Mag 28(2):16–26

    Article  Google Scholar 

  46. Jiang X, Mandal B, Kot A (2009) Complete discriminant evaluation and feature extraction in kernel space for face recognition. Mach Vision Appl 20(1):35–46

    Article  Google Scholar 

  47. Kokiopoulou E, Saad Y (2007) Orthogonal neighborhood preserving projections: A projection-based dimensionality reduction technique. IEEE Trans Pattern Anal Mach Intell 29(12):2143–2156

    Article  Google Scholar 

  48. Lee D, Seung H et al (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791

    Article  Google Scholar 

  49. Li S, Hou X, Zhang H, Cheng Q (2001) Learning spatially localized, parts-based representation. In: IEEE conference on computer vision and pattern recognition, pp 1–207

    Google Scholar 

  50. Li X, Long X, Laurienti P, Wyatt C (2012) Registration of images with varying topology using embedded maps. IEEE Trans Med Imag 31(3):749–765

    Article  Google Scholar 

  51. Li X, Long X, Wyatt C (2011) Registration of images with topological change via riemannian embedding. In: IEEE international symposium on biomedical imaging: from nano to macro, pp 1247–1252

    Google Scholar 

  52. Lin Y, Liu T, Chen H (2005) Semantic manifold learning for image retrieval. In: ACM international conference on multimedia, pp 249–258

    Google Scholar 

  53. Liu J, Chen J, Ye J (2009) Large-scale sparse logistic regression. In: ACM international conference on knowledge discovery and data mining, pp 547–556

    Google Scholar 

  54. Liu J, Ye J (2009) Efficient euclidean projections in linear time. In: International conference on machine learning, pp 657–664

    Google Scholar 

  55. Liu J, Yuan L, Ye J (2010) An efficient algorithm for a class of fused lasso problems. In: ACM international conference on knowledge discovery and data mining, pp 323–332

    Google Scholar 

  56. Liu M, Vemuri B (2011) Rboost: Riemannian distance based regularized boosting. In: 2011 IEEE international symposium on biomedical imaging: from nano to macro, pp 1831–1834

    Google Scholar 

  57. Liu M, Vemuri B (2011) Robust and efficient regularized boosting using total bregman divergence. In: IEEE conference on computer vision and pattern recognition, pp 2897–2902

    Google Scholar 

  58. Liu M, Vemuri B, Amari S, Nielsen F (2010) Total bregman divergence and its applications to shape retrieval. In: IEEE conference on computer vision and pattern recognition, pp 3463–3468

    Google Scholar 

  59. Long B, Yu P, Zhang Z (2008) A general model for multiple view unsupervised learning. In: SIAM international conference on data mining, pp 822–833

    Google Scholar 

  60. Lu H, Plataniotis K, Venetsanopoulos A (2008) Mpca: Multilinear principal component analysis of tensor objects. IEEE Trans Neural Networks 19(1):18–39

    Article  Google Scholar 

  61. Lu H, Plataniotis K, Venetsanopoulos A (2009) Uncorrelated multilinear principal component analysis for unsupervised multilinear subspace learning. IEEE Trans Neural Networks 20(11):1820–1836

    Article  Google Scholar 

  62. Lu H, Plataniotis K, Venetsanopoulos A (2011) A survey of multilinear subspace learning for tensor data. Pattern Recogn 44(7):1540–1551

    Article  MATH  Google Scholar 

  63. Lv J, Fan Y (2009) A unified approach to model selection and sparse recovery using regularized least squares. Ann Stat 37(6A):3498–3528

    Article  MathSciNet  MATH  Google Scholar 

  64. Pan S, Kwok J, Yang Q (2008) Transfer learning via dimensionality reduction. AAAI Press, In: National conference on artificial intelligence, pp 677–682

    Google Scholar 

  65. Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326

    Article  Google Scholar 

  66. Samaria F, Harter A (1994) Parameterisation of a stochastic model for human face identification. In: IEEE workshop on applications of computer vision, pp 138–142

    Google Scholar 

  67. Si S, Tao D, Chan K (2010) Evolutionary cross-domain discriminative hessian eigenmaps. IEEE Trans Image Process 19(4):1075–1086

    Article  MathSciNet  Google Scholar 

  68. Si S, Tao D, Geng B (2010) Bregman divergence-based regularization for transfer subspace learning. IEEE Trans Knowl Data Eng 22(7):929–942

    Article  Google Scholar 

  69. Song D, Tao D (2010) Biologically inspired feature manifold for scene classification. IEEE Trans Image Process 19(1):174–184

    Article  MathSciNet  Google Scholar 

  70. Song M, Tao D, Chen C, Bu J, Luo J, Zhang C (2012) Probabilistic exposure fusion. IEEE Trans Image Process 21(1):341–357

    Article  MathSciNet  Google Scholar 

  71. Song M, Tao D, Chen C, Li X, Chen C (2010) Color to gray: Visual cue preservation. IEEE Trans Pattern Anal Mach Intell 32(9):1537–1552

    Article  Google Scholar 

  72. Sun L, Ceran B, Ye J (2010) A scalable two-stage approach for a class of dimensionality reduction techniques. In: ACM international conference on knowledge discovery and data mining, pp 313–322

    Google Scholar 

  73. Tao D, Li X, Wu X, Hu W, Maybank S (2007) Supervised tensor learning. Knowl Inform Syst 13(1):1–42

    Article  Google Scholar 

  74. Tao D, Li X, Wu X, Maybank S (2007) General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans Pattern Anal Mach Intell 29(10):1700–1715

    Article  Google Scholar 

  75. Tao D, Li X, Wu X, Maybank S (2009) Geometric mean for subspace selection. IEEE Trans Pattern Anal Mach Intell 31(2):260–274

    Article  Google Scholar 

  76. Tenenbaum J, Silva V, Langford J (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

    Article  Google Scholar 

  77. Tian X, Tao D, Hua X, Wu X (2010) Active reranking for web image search. IEEE Trans Image Process 19(3):805–820

    Article  MathSciNet  Google Scholar 

  78. Tian X, Yang L, Wang J, Yang Y, Wu X, Hua X (2008) Bayesian video search reranking. In: ACM international conference on multimedia, pp 131–140

    Google Scholar 

  79. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc Ser B (Methodol), 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  80. Tikhonov A (1963) Regularization of incorrectly posed problems. Soviet Math Dokl 4:1624–1627

    MATH  Google Scholar 

  81. Tipping M, Bishop C (1999) Probabilistic principal component analysis. J Roy Stat Soc Ser B (Stat Methodol) 61(3):611–622

    Article  MathSciNet  MATH  Google Scholar 

  82. Turk M, Pentland A (1991) Face recognition using eigenfaces. In: IEEE conference on computer vision and pattern recognition, pp 586–591

    Google Scholar 

  83. Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416

    Article  MathSciNet  Google Scholar 

  84. Wang F, Wang X (2009) Neighborhood discriminant tensor mapping. Neurocomputing 72(7–9):2035–2039

    Article  Google Scholar 

  85. Wang F, Wang X, Li T (2009) Maximum margin clustering on data manifolds. In: IEEE international conference on data mining, pp 1028–1033

    Google Scholar 

  86. Wang F, Zhao B, Zhang C (2011) Unsupervised large margin discriminative projection. IEEE Trans Neural Networks 22(9):1446–1456

    Article  Google Scholar 

  87. Wang M, Hua X, Yuan X, Song Y, Dai L (2007) Optimizing multi-graph learning: towards a unified video annotation scheme. In: ACM international conference on multimedia, pp 862–871

    Google Scholar 

  88. Wang X, Tao D, Li Z (2011) Subspaces indexing model on grassmann manifold for image search. IEEE Trans Image Process 20(9):2627–2635

    Article  MathSciNet  Google Scholar 

  89. Wilson R, Hancock E (2010) Spherical embedding and classification. Struct Syntact Stat Pattern Recogn, 6218:589–599

    Article  Google Scholar 

  90. Wilson R, Hancock E, Pekalska E, Duin R (2010) Spherical embeddings for non-euclidean dissimilarities. In: IEEE conference on computer vision and pattern recognition, pp 1903–1910

    Google Scholar 

  91. Xia T, Tao D, Mei T, Zhang Y (2010) Multiview spectral embedding. IEEE Trans Syst Man Cybernet Part B: Cybernet 40(6):1438–1446

    Article  Google Scholar 

  92. Xie B, Mu Y, Tao D, Huang K (2011) m-sne: Multiview stochastic neighbor embedding. IEEE Trans Syst Man Cybernet Part B: Cybernet 41(4):1088–1096

    Google Scholar 

  93. Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S (2007) Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51

    Article  Google Scholar 

  94. Yu J, Liu D, Tao D, Seah H (2011) Complex object correspondence construction in two-dimensional animation. IEEE Trans Image Process 20(11):3257–3269

    Article  MathSciNet  Google Scholar 

  95. Yu J, Tao D, Wang M, Cheng J (2011) Semi-automatic cartoon generation by motion planning. Multimedia Syst 17(5):409–419

    Article  Google Scholar 

  96. Zafeiriou S, Tefas A, Buciu I, Pitas I (2006) Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification. IEEE Trans Neural Networks 17(3):683–695

    Article  Google Scholar 

  97. Zhang L, Tao D, Huang X (2012) On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans Geosci Remote Sensing 50(3):879–893

    Article  Google Scholar 

  98. Zhang T, Tao D, Li X, Yang J (2009) Patch alignment for dimensionality reduction. IEEE Trans Knowl Data Eng 21(9):1299–1313

    Article  Google Scholar 

  99. Zhang T, Yang J, Zhao D, Ge X (2007) Linear local tangent space alignment and application to face recognition. Neurocomputing 70(7):1547–1553

    Article  Google Scholar 

  100. Zhang Z, Hancock E (2012) Localized graph-based feature selection for clustering. Springer, Image Analysis and Recognition, pp 1–10

    Google Scholar 

  101. Zhang Z, Tao D (2012) Slow feature analysis for human action recognition. IEEE Trans Pattern Anal Mach Intell 34(3):436–450

    Article  Google Scholar 

  102. Zhang Z, Zha H (2005) Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM J Scientif Comput 26(1):313–338

    Article  MathSciNet  Google Scholar 

  103. Zhou T, Tao D, Wu X (2011) Manifold elastic net: A unified framework for sparse dimension reduction. Data Mining Knowl Discov 22(3):340–371

    Article  MathSciNet  MATH  Google Scholar 

  104. Zhou X, Huang T (2001) Small sample learning during multimedia retrieval using biasmap. In: IEEE conference on computer vision and pattern recognition, vol 1, pp 1–11

    Google Scholar 

  105. Zhu X, Lafferty J, Ghahramani Z (2003) Combining active learning and semi-supervised learning using gaussian fields and harmonic functions. Elsevier, In: International conference on machine learning, pp 58–65

    Google Scholar 

  106. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J Roy Stat Soc Ser B (Stat Methodol) 67(2):301–320

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dacheng Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Luo, Y., Tao, D., Xu, C. (2013). Patch Alignment for Graph Embedding. In: Fu, Y., Ma, Y. (eds) Graph Embedding for Pattern Analysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4457-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4457-2_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4456-5

  • Online ISBN: 978-1-4614-4457-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics