Skip to main content

Parallelization Strategies for the Characteristic Basis Function Method

  • Chapter
  • First Online:
Computational Electromagnetics

Abstract

Nowadays, the parallelization of computer codes plays a very important role, because it enables codes to run on multiple processors, resulting in considerable time-saving if the algorithm scales efficiently as the number of processors is increased progressively. The CBFM is specially well-suited for parallelization. In this chapter, it is showed some strategies of parallelization for this technique for two different types of computational elements: central processing units and graphic processing units. Some analyses are shown and reader can see the advantages of the use of these parallelization techniques as compared with using only one-processor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laza VA, Matekovits L, Vecchi G (2005) Synthetic-functions decomposition of large complex structures. Antennas and propagation society international symposium, Albuquerque, July 2005

    Google Scholar 

  2. Matekovits L, Vecchi G, Dassano D, Orefice M (2001) Synthetic function analysis of large printed structures: the solution space sampling approach. Antennas and propagation society international symposium, Boston, July 2001

    Google Scholar 

  3. Prakash VVS, Mittra R (2003) Characteristic basis function method: a new technique for efficient solution of method of moments matrix equation. Microw Opt Technol Lett 36(2):95–100

    Article  Google Scholar 

  4. Tiberi G, Degiorgi M, Monorchio A, Manara G, Mittra R (2005) A class of physical optics-SVD derived basis functions for solving electromagnetic scattering problems. Antennas and propagation society international symposium, Washington, DC, July 2005

    Google Scholar 

  5. Lucente E, Monorchio A, Mittra R (2008) An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic problems. IEEE Trans Antenn Propag 56(4):999–1007

    Article  Google Scholar 

  6. Engheta N, Murphy WD, Rokhlin V, Vassiliou MS (1992) The fast multipole method (FMM) for electromagnetic scattering problems. IEEE Trans Antenn Propag 40(6):634–641

    Article  MathSciNet  MATH  Google Scholar 

  7. Chew WC, Jin J, Michielssen E, Song J (eds) (2001) Fast and efficient algorithms in computational electromagnetics. Artech House Inc., Boston

    Google Scholar 

  8. Farin G (1988) Curves and surfaces for computer aided geometric design: a practical guide. Academic, Boston

    MATH  Google Scholar 

  9. Delgado C, Mittra R, Cátedra F (2008) Accurate representation of the edge behavior of current when using PO-derived characteristic basis functions. IEEE Antenn Wireless Propag Lett 7:43–45

    Article  Google Scholar 

  10. Pacheco PS (1997) Parallel programming with MPI. Morgan Kaufmann Publishers, Inc., San Francisco

    MATH  Google Scholar 

  11. Ergul O, Gurel L (2008) Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems. IEEE Trans Antenn Propag 56(8):2335–2345

    Article  MathSciNet  Google Scholar 

  12. Ergul O, Gurel L (2009) A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm. IEEE Trans Antenn Propag 57(6):1740–1750

    Article  MathSciNet  Google Scholar 

  13. Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC (2008) GPU computing. Proc IEEE 96(5):879–899

    Article  Google Scholar 

  14. Sanders J, Kandrot E (2010) CUDA by example. Addison-Wesley Professional, Boston

    Google Scholar 

  15. Delgado C, Cátedra MF, Mitra R (2008) Application of the characteristic basis function method utilizing a class of basis and testing functions defined on NURBS patches. IEEE Trans Antenn Propag 56(3):784–790

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported in part by the Comunidad de Madrid Project S-2009/TIC1485, the Castilla-La Mancha Project PPII10-0192-0083 and the Spanish Department of Science, Technology Projects TEC2010-15706, and the Comunidad de Madrid Alcala University Project UAH2011/EXP-015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliseo García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

García, E., Pérez, J.I., de Frutos, J.A., Cátedra, F., Mittra, R. (2014). Parallelization Strategies for the Characteristic Basis Function Method. In: Mittra, R. (eds) Computational Electromagnetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4382-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4382-7_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4381-0

  • Online ISBN: 978-1-4614-4382-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics