Skip to main content

Molecular Biology of Burkitt Lymphoma

  • Chapter
  • First Online:
Burkitt’s Lymphoma

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Burkitt lymphoma is characterized by very well-defined chromosomal translocations involving the MYC gene and one of the immunoglobulin loci. While these translocations have been recognized for more than 30 years, our understanding of the cause and consequences of these genetic rearrangements has been evolving slowly, as has the identification of other molecular alterations found in Burkitt lymphoma. This is partially due to the complexities of MYC transcriptional and posttranscriptional regulation, and Myc protein function. It is now thought that Myc is involved in the coordination of many essential cellular pathways that are in general related to cell growth, but range from genetic stability to metabolism. The altered expression of Myc is coupled in Burkitt lymphomas with genetic events that protect the cells from apoptotic death, which may be cellular or viral in origin. This review focuses on our current understanding of the molecular complexity of Burkitt lymphoma with respect to the etiopathogenesis of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burkitt D (1958) A sarcoma involving the jaws in African children. Br J Surg 46:218–223

    Article  PubMed  CAS  Google Scholar 

  2. Hutt MS, Burkitt D (1965) Geographical distribution of cancer in East Africa: a new clinicopathological approach. Br Med J 2:719–722

    Article  PubMed  CAS  Google Scholar 

  3. Epstein MA, Achong BG, Barr YM (1964) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1:702–703

    Article  PubMed  CAS  Google Scholar 

  4. Piccaluga PP, De Falco G, Kustagi M et al (2011) Gene expression analysis uncovers similarity and differences among Burkitt lymphoma subtypes. Blood 117:3596–3608

    Article  PubMed  CAS  Google Scholar 

  5. Haralambieva E, Schuuring E, Rosati S et al (2004) Interphase fluorescence in situ hybridization for detection of 8q24/MYC breakpoints on routine histologic sections: validation in Burkitt lymphomas from three geographic regions. Genes Chromosomes Cancer 40:10–18

    Article  PubMed  CAS  Google Scholar 

  6. Hummel M, Bentink S, Berger H et al (2006) A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med 354:2419–2430

    Article  PubMed  CAS  Google Scholar 

  7. Lai JL, Fenaux P, Zandecki M, Nelken B, Huart JJ, Deminatti M (1989) Cytogenetic studies in 30 patients with Burkitt’s lymphoma or L3 acute lymphoblastic leukemia with special reference to additional chromosome abnormalities. Ann Genet 32:26–32

    PubMed  CAS  Google Scholar 

  8. Lones MA, Sanger WG, Le Beau MM et al (2004) Chromosome abnormalities may correlate with prognosis in Burkitt/Burkitt-like lymphomas of children and adolescents: a report from Children’s Cancer Group Study CCG-E08. J Pediatr Hematol Oncol 26:169–178

    Article  PubMed  Google Scholar 

  9. Onciu M, Schlette E, Zhou Y et al (2006) Secondary chromosomal abnormalities predict outcome in pediatric and adult high-stage Burkitt lymphoma. Cancer 107:1084–1092

    Article  PubMed  Google Scholar 

  10. Poirel HA, Cairo MS, Heerema NA et al (2009) Specific cytogenetic abnormalities are associated with a significantly inferior outcome in children and adolescents with mature B-cell non-Hodgkin’s lymphoma: results of the FAB/LMB 96 international study. Leukemia 23:323–331

    Article  PubMed  CAS  Google Scholar 

  11. Nelson M, Perkins SL, Dave BJ et al (2010) An increased frequency of 13q deletions detected by fluorescence in situ hybridization and its impact on survival in children and adolescents with Burkitt lymphoma: results from the Children’s Oncology Group study CCG-5961. Br J Haematol 148:600–610

    Article  PubMed  Google Scholar 

  12. Vennstrom B, Sheiness D, Zabielski J, Bishop JM (1982) Isolation and characterization of c-myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 29. J Virol 42:773–779

    PubMed  CAS  Google Scholar 

  13. Blackwood EM, Eisenman RN (1991) Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251:1211–1217

    Article  PubMed  CAS  Google Scholar 

  14. McMahon SB, Wood MA, Cole MD (2000) The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol Cell Biol 20:556–562

    Article  PubMed  CAS  Google Scholar 

  15. God JM, Haque A (2010) Burkitt lymphoma: pathogenesis and immune evasion. J Oncol 2010. pii 516047

    Google Scholar 

  16. Peukert K, Staller P, Schneider A, Carmichael G, Hanel F, Eilers M (1997) An alternative pathway for gene regulation by Myc. EMBO J 16:5672–5686

    Article  PubMed  CAS  Google Scholar 

  17. Smith K, Dalton S (2010) Myc transcription factors: key regulators behind establishment and maintenance of pluripotency. Regen Med 5:947–959

    Article  PubMed  CAS  Google Scholar 

  18. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  19. Wernig M, Meissner A, Foreman R et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324

    Article  PubMed  CAS  Google Scholar 

  20. Dominguez-Sola D, Ying CY, Grandori C et al (2007) Non-transcriptional control of DNA replication by c-Myc. Nature 448:445–451

    Article  PubMed  CAS  Google Scholar 

  21. Dang CV, Enigmatic MYC (2010) Conducts MYC conducts an unfolding systems biology symphony. Genes Cancer 1:526–531

    Article  PubMed  CAS  Google Scholar 

  22. Gomez-Roman N, Grandori C, Eisenman RN, White RJ (2003) Direct activation of RNA polymerase III transcription by c-Myc. Nature 421:290–294

    Article  PubMed  CAS  Google Scholar 

  23. Arabi A, Wu S, Ridderstrale K et al (2005) c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol 7:303–310

    Article  PubMed  CAS  Google Scholar 

  24. Dang CV (2010) Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res 70:859–862

    Article  PubMed  CAS  Google Scholar 

  25. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79:7824–7827

    Article  PubMed  CAS  Google Scholar 

  26. Taub R, Kirsch I, Morton C et al (1982) Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA 79:7837–7841

    Article  PubMed  CAS  Google Scholar 

  27. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–563

    Article  PubMed  CAS  Google Scholar 

  28. Ramiro AR, Jankovic M, Eisenreich T et al (2004) AID is required for c-myc/IgH chromosome translocations in vivo. Cell 118:431–438

    Article  PubMed  CAS  Google Scholar 

  29. Robbiani DF, Bothmer A, Callen E et al (2008) AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135:1028–1038

    Article  PubMed  CAS  Google Scholar 

  30. Oliveira TY, Resch W, Jankovic M, Casellas R, Nussenzweig MC, Klein IA (2012) Translocation capture sequencing: a method for high throughput mapping of chromosomal rearrangements. J Immunol Methods 375(1–2):176–181

    Article  PubMed  CAS  Google Scholar 

  31. Klein IA, Resch W, Jankovic M et al (2011) Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 147:95–106

    Article  PubMed  CAS  Google Scholar 

  32. Shiramizu B, Barriga F, Neequaye J et al (1991) Patterns of chromosomal breakpoint locations in Burkitt’s lymphoma: relevance to geography and Epstein-Barr virus association. Blood 77:1516–1526

    PubMed  CAS  Google Scholar 

  33. Cesarman E, Dalla-Favera R, Bentley D, Groudine M (1987) Mutations in the first exon are associated with altered transcription of c-myc in Burkitt lymphoma. Science 238:1272–1275

    Article  PubMed  CAS  Google Scholar 

  34. Siebenlist U, Hennighausen L, Battey J, Leder P (1984) Chromatin structure and protein binding in the putative regulatory region of the c-myc gene in Burkitt lymphoma. Cell 37:381–391

    Article  PubMed  CAS  Google Scholar 

  35. Taub R, Moulding C, Battey J et al (1984) Activation and somatic mutation of the translocated c-myc gene in burkitt lymphoma cells. Cell 36:339–348

    Article  PubMed  CAS  Google Scholar 

  36. Spencer CA, LeStrange RC, Novak U, Hayward WS, Groudine M (1990) The block to transcription elongation is promoter dependent in normal and Burkitt’s lymphoma c-myc alleles. Genes Dev 4:75–88

    Article  PubMed  CAS  Google Scholar 

  37. Rabbitts TH, Hamlyn PH, Baer R (1983) Altered nucleotide sequences of a translocated c-myc gene in Burkitt lymphoma. Nature 306:760–765

    Article  PubMed  CAS  Google Scholar 

  38. Showe LC, Ballantine M, Nishikura K, Erikson J, Kaji H, Croce CM (1985) Cloning and sequencing of a c-myc oncogene in a Burkitt’s lymphoma cell line that is translocated to a germ line alpha switch region. Mol Cell Biol 5:501–509

    PubMed  CAS  Google Scholar 

  39. Bhatia K, Huppi K, Spangler G, Siwarski D, Iyer R, Magrath I (1993) Point mutations in the c-Myc transactivation domain are common in Burkitt’s lymphoma and mouse plasmacytomas. Nat Genet 5:56–61

    Article  PubMed  CAS  Google Scholar 

  40. Yano T, Sander CA, Clark HM, Dolezal MV, Jaffe ES, Raffeld M (1993) Clustered mutations in the second exon of the MYC gene in sporadic Burkitt’s lymphoma. Oncogene 8:2741–2748

    PubMed  CAS  Google Scholar 

  41. Bahram F, von der Lehr N, Cetinkaya C, Larsson LG (2000) c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood 95:2104–2110

    PubMed  CAS  Google Scholar 

  42. Leucci E, Cocco M, Onnis A et al (2008) MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation. J Pathol 216:440–450

    Article  PubMed  CAS  Google Scholar 

  43. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  44. Onnis A, De Falco G, Antonicelli G et al (2010) Alteration of microRNAs regulated by c-Myc in Burkitt lymphoma. PLoS One 5(9). pii: e12960

    Google Scholar 

  45. Lombardi L, Newcomb EW, Dalla-Favera R (1987) Pathogenesis of Burkitt lymphoma: expression of an activated c-myc oncogene causes the tumorigenic conversion of EBV-infected human B lymphoblasts. Cell 49:161–170

    Article  PubMed  CAS  Google Scholar 

  46. Polack A, Hortnagel K, Pajic A et al (1996) c-myc activation renders proliferation of Epstein-Barr virus (EBV)-transformed cells independent of EBV nuclear antigen 2 and latent membrane protein 1. Proc Natl Acad Sci USA 93:10411–10416

    Article  PubMed  CAS  Google Scholar 

  47. Pajic A, Staege MS, Dudziak D et al (2001) Antagonistic effects of c-myc and Epstein-Barr virus latent genes on the phenotype of human B cells. Int J Cancer 93:810–816

    Article  PubMed  CAS  Google Scholar 

  48. Schlee M, Holzel M, Bernard S et al (2007) C-myc activation impairs the NF-kappaB and the interferon response: implications for the pathogenesis of Burkitt’s lymphoma. Int J Cancer 120:1387–1395

    Article  PubMed  CAS  Google Scholar 

  49. Staege MS, Lee SP, Frisan T et al (2002) MYC overexpression imposes a nonimmunogenic phenotype on Epstein-Barr virus-infected B cells. Proc Natl Acad Sci USA 99:4550–4555

    Article  PubMed  CAS  Google Scholar 

  50. Adams JM, Harris AW, Pinkert CA et al (1985) The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318:533–538

    Article  PubMed  CAS  Google Scholar 

  51. Kovalchuk AL, Qi CF, Torrey TA et al (2000) Burkitt lymphoma in the mouse. J Exp Med 192:1183–1190

    Article  PubMed  CAS  Google Scholar 

  52. Wilda M, Bruch J, Harder L et al (2004) Inactivation of the ARF-MDM-2-p53 pathway in sporadic Burkitt’s lymphoma in children. Leukemia 18:584–588

    Article  PubMed  CAS  Google Scholar 

  53. Bhatia KG, Gutierrez MI, Huppi K, Siwarski D, Magrath IT (1992) The pattern of p53 mutations in Burkitt’s lymphoma differs from that of solid tumors. Cancer Res 52:4273–4276

    PubMed  CAS  Google Scholar 

  54. Capoulade C, Bressac-de paillerets B, lefrere I et al (1998) Overexpression of MDM2, due to enhanced translation, results in inactivation of wild-type p53 in Burkitt’s lymphoma cells. Oncogene 16:1603–1610

    Article  PubMed  CAS  Google Scholar 

  55. Cherney BW, Bhatia KG, Sgadari C et al (1997) Role of the p53 tumor suppressor gene in the tumorigenicity of Burkitt’s lymphoma cells. Cancer Res 57:2508–2515

    PubMed  CAS  Google Scholar 

  56. Vousden KH, Crook T, Farrell PJ (1993) Biological activities of p53 mutants in Burkitt’s lymphoma cells. J Gen Virol 74(Pt 5):803–810

    Article  PubMed  CAS  Google Scholar 

  57. Lindstrom MS, Klangby U, Wiman KG (2001) p14ARF homozygous deletion or MDM2 overexpression in Burkitt lymphoma lines carrying wild type p53. Oncogene 20:2171–2177

    Article  PubMed  CAS  Google Scholar 

  58. Klangby U, Okan I, Magnusson KP, Wendland M, Lind P, Wiman KG (1998) p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt’s lymphoma. Blood 91:1680–1687

    PubMed  CAS  Google Scholar 

  59. Stiegler P, Giordano A (1998) Big brothers are watching: the retinoblastoma family and growth control. Prog Mol Subcell Biol 20:25–42

    Article  PubMed  CAS  Google Scholar 

  60. Cinti C, Claudio PP, Howard CM et al (2000) Genetic alterations disrupting the nuclear localization of the retinoblastoma-related gene RB2/p130 in human tumor cell lines and primary tumors. Cancer Res 60:383–389

    PubMed  CAS  Google Scholar 

  61. Cinti C, Leoncini L, Nyongo A et al (2000) Genetic alterations of the retinoblastoma-related gene RB2/p130 identify different pathogenetic mechanisms in and among Burkitt’s lymphoma subtypes. Am J Pathol 156:751–760

    Article  PubMed  CAS  Google Scholar 

  62. De Falco G, Bellan C, Lazzi S et al (2003) Interaction between HIV-1 Tat and pRb2/p130: a possible mechanism in the pathogenesis of AIDS-related neoplasms. Oncogene 22:6214–6219

    Article  PubMed  Google Scholar 

  63. Lazzi S, Bellan C, De Falco G et al (2002) Expression of RB2/p130 tumor-suppressor gene in AIDS-related non-Hodgkin’s lymphomas: implications for disease pathogenesis. Hum Pathol 33:723–731

    Article  PubMed  CAS  Google Scholar 

  64. De Falco G, Leucci E, Lenze D et al (2007) Gene-expression analysis identifies novel RBL2/p130 target genes in endemic Burkitt lymphoma cell lines and primary tumors. Blood 110:1301–1307

    Article  PubMed  Google Scholar 

  65. Egle A, Harris AW, Bouillet P, Cory S (2004) Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc Natl Acad Sci USA 101:6164–6169

    Article  PubMed  CAS  Google Scholar 

  66. Strasser A (2005) The role of BH3-only proteins in the immune system. Nat Rev Immunol 5:189–200

    Article  PubMed  CAS  Google Scholar 

  67. Hemann MT, Bric A, Teruya-Feldstein J et al (2005) Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436:807–811

    Article  PubMed  CAS  Google Scholar 

  68. Kennedy G, Komano J, Sugden B (2003) Epstein-Barr virus provides a survival factor to Burkitt’s lymphomas. Proc Natl Acad Sci USA 100:14269–14274

    Article  PubMed  CAS  Google Scholar 

  69. Hong M, Murai Y, Kutsuna T et al (2006) Suppression of Epstein-Barr nuclear antigen 1 (EBNA1) by RNA interference inhibits proliferation of EBV-positive Burkitt’s lymphoma cells. J Cancer Res Clin Oncol 132:1–8

    Article  PubMed  CAS  Google Scholar 

  70. Yin Q, Flemington EK (2006) siRNAs against the Epstein Barr virus latency replication factor, EBNA1, inhibit its function and growth of EBV-dependent tumor cells. Virology 346:385–393

    Article  PubMed  CAS  Google Scholar 

  71. Saridakis V, Sheng Y, Sarkari F et al (2005) Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol Cell 18:25–36

    Article  PubMed  CAS  Google Scholar 

  72. O’Nions J, Turner A, Craig R, Allday MJ (2006) Epstein-Barr virus selectively deregulates DNA damage responses in normal B cells but has no detectable effect on regulation of the tumor suppressor p53. J Virol 80:12408–12413

    Article  PubMed  Google Scholar 

  73. Lu J, Murakami M, Verma SC et al (2011) Epstein-Barr virus nuclear antigen 1 (EBNA1) confers resistance to apoptosis in EBV-positive B-lymphoma cells through up-regulation of survivin. Virology 410:64–75

    Article  PubMed  CAS  Google Scholar 

  74. Kelly G, Bell A, Rickinson A (2002) Epstein-Barr virus-associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA2. Nat Med 8:1098–1104

    Article  PubMed  CAS  Google Scholar 

  75. Kelly GL, Milner AE, Tierney RJ et al (2005) Epstein-Barr virus nuclear antigen 2 (EBNA2) gene deletion is consistently linked with EBNA3A, -3B, and -3C expression in Burkitt’s lymphoma cells and with increased resistance to apoptosis. J Virol 79:10709–10717

    Article  PubMed  CAS  Google Scholar 

  76. Henderson S, Huen D, Rowe M, Dawson C, Johnson G, Rickinson A (1993) Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc Natl Acad Sci USA 90:8479–8483

    Article  PubMed  CAS  Google Scholar 

  77. Fanidi A, Hancock DC, Littlewood TD (1998) Suppression of c-Myc-induced apoptosis by the Epstein-Barr virus gene product BHRF1. J Virol 72:8392–8395

    PubMed  CAS  Google Scholar 

  78. Kelly GL, Long HM, Stylianou J et al (2009) An Epstein-Barr virus anti-apoptotic protein constitutively expressed in transformed cells and implicated in burkitt lymphomagenesis: the Wp/BHRF1 link. PLoS Pathog 5:e1000341

    Article  PubMed  Google Scholar 

  79. Watanabe A, Maruo S, Ito T, Ito M, Katsumura KR, Takada K (2010) Epstein-Barr virus-encoded Bcl-2 homologue functions as a survival factor in Wp-restricted Burkitt lymphoma cell line P3HR-1. J Virol 84:2893–2901

    Article  PubMed  CAS  Google Scholar 

  80. Swerdlow SH, Campo E, Harris NL et al (2008) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. IARC Press, Lyon

    Google Scholar 

  81. Dave SS, Fu K, Wright GW et al (2006) Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med 354:2431–2442

    Article  PubMed  CAS  Google Scholar 

  82. Lenze D, Leoncini L, Hummel M et al (2011) The different epidemiologic subtypes of Burkitt lymphoma share a homogenous micro RNA profile distinct from diffuse large B-cell lymphoma. Leukemia 25(12):1869–1876

    Article  PubMed  CAS  Google Scholar 

  83. Robertus JL, Kluiver J, Weggemans C et al (2010) MiRNA profiling in B non-Hodgkin lymphoma: a MYC-related miRNA profile characterizes Burkitt lymphoma. Br J Haematol 149:896–899

    Article  PubMed  CAS  Google Scholar 

  84. Meyer N, Penn LZ (2008) Reflecting on 25 years with MYC. Nat Rev Cancer 8:976–990

    Article  PubMed  CAS  Google Scholar 

  85. Delmore JE, Issa GC, Lemieux ME et al (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146:904–917

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ethel Cesarman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer New York

About this chapter

Cite this chapter

Giulino-Roth, L., Cesarman, E. (2013). Molecular Biology of Burkitt Lymphoma. In: Robertson, E. (eds) Burkitt’s Lymphoma. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4313-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4313-1_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4312-4

  • Online ISBN: 978-1-4614-4313-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics