Skip to main content

Interaction of Oxygen and Carbon Dioxide at High Pressure and Temperature

  • Conference paper
  • First Online:
Dynamic Behavior of Materials, Volume 1

Abstract

The interaction potential parameters of original molecules and those of atoms and molecules of dissociation products are determined by shock Hugoniot data of molecular fluid in this article. At low pressure, Ross’s modification of hard-sphere perturbation theory is used to evaluate interaction potential parameters of original molecules. At high pressure, potential parameters of dissociation products are calculated using chemical equilibrium method originated from statistical mechanical theory. Comparing to those from the corresponding states scaling relations, the potential parameters obtained in this article using the above method have a better description for impact experiments in a wide pressure range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ree FH (1984) A statistical mechanical theory of chemically reacting multiphase mixtures: application to the detonation properties of PETN. J Chem Phys 81(3):1251

    Article  Google Scholar 

  2. Ree FH, Bender CF (1974) Nonadditive interaction in molecular hydrogen at high pressure. Phys Rev Lett 32(3):85

    Article  Google Scholar 

  3. Ree FH, Winter NW (1980) Ab initio and Gordon–Kim intermolecular potentials for two nitrogen molecules. J Chem Phys 73(1):322

    Article  Google Scholar 

  4. Matsuoka O, Clementi E, Yoshimine M (1976) CI study of the water dimer potential surface. J Chem Phys 64(4):1351

    Article  Google Scholar 

  5. Ross M, Ree FH (1980) Repulsive forces of simple molecules and mixtures at high density and temperature. J Chem Phys 73(12):6146

    Article  Google Scholar 

  6. Zhao YH, Liu HF, Zhang GM (2007) Equation of state of detonation products based on statistical mechanical theory. Acta Phys Sin 56(8):4791

    MathSciNet  Google Scholar 

  7. Zhao YH, Liu HF, Zhang GM (2009) Equation of state of detonation products for PETN explosive. Chin J High Pres Phys 23(2):143

    Google Scholar 

  8. Gu YJ, Zheng J, Chen ZY, Chen QF, Cai LC (2010) The equation of state of H2 + He fluid mixture in the region of partial dissociation. Acta Phys Sin 59(7):4508

    Google Scholar 

  9. Chen QF, Cai LC, Chen DQ, Jing FQ (2005) Pressure dissociation of dense hydrogen. Chin Phys 14(10):2077

    Article  Google Scholar 

  10. Yang XD, Xie W, Wu BJ, Hu D, Jing FQ (1998) Theoretical calculation for the Hugniot curves of liquid nitrogen. Chin J HighPres Phys 12(1):1

    Article  Google Scholar 

  11. Liu FS, Chen XM, Chen PS, Sun Y, Jing FQ (1998) Equation of state of liquid CO2 at high temperature and high densities. Chin J HighPres Phys 12(1):28

    Google Scholar 

  12. Yang XD, Hu D, Jing FQ (1999) Studies of EOS for detonation products: liquid nitrogen, liquid helium and water. Chin J HighPres Phys 13(2):93

    Google Scholar 

  13. Chen QF, Cai LC, Jing FQ, Chen DQ (1999) Theoretical calculation of the Hugonoit curves for liquid deuterium and hydrogen. Acta Phys Sin 48(3):485

    Google Scholar 

  14. Mader CL (1979) Numerical modeling of detonation. University of California Press, Berkeley

    Google Scholar 

  15. Ross M (1979) A high-density fluid perturbation theory based on an inverse 12th power hard-sphere reference system. J Chem Phys 71(4):1567

    Article  Google Scholar 

  16. Ree FH (1983) Simple mixing rule for mixtures with exp-6 interactions. J Chem Phys 78(1):409

    Article  Google Scholar 

  17. Liu HF, Chen DQ, Zhang SZ (1996) Equation of state of detonation products and the possible phase transition for CHBr3. Chin J HighPres Phys 10(4):284

    MathSciNet  Google Scholar 

  18. Nellis WJ, Mitchell AC (1980) Shock compression of liquid argon, nitrogen, and oxygen to 90 GPa (900 kbar). J Chem Phys 73(12):6137

    Article  Google Scholar 

  19. Marsh SP (1980) LASL shock Hugoniot data. University of California Press, Berkeley

    Google Scholar 

  20. Nellis WJ, Mitchell AC, Ree FH, Ross M, Holmes NC, Trainor RJ, Erskine DJ (1991) Equation of state of shock-compressed liquids: carbon dioxide and air. J Chem Phys 95(7):5268

    Article  Google Scholar 

Download references

Acknowledgements

Our thanks are due to Profs. Guangcai Zhang, Haifeng Song, Guicun Ma, Hui Zheng, and Drs. Gongmu Zhang, Qili Zhang,Hongzhou Song, Bo Sun, Shuaichuang Wang, Mingfeng Tian, for helpful comments and discussions. This work was supported by the National Natural Science Foundation of China (Grant No. 11102026) and the Science Foundation of China Academy of Engineering Physics (Grant Nos. 2009A0101004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Haifeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Haifeng, L., Yanhong, Z., Guo, L. (2013). Interaction of Oxygen and Carbon Dioxide at High Pressure and Temperature. In: Chalivendra, V., Song, B., Casem, D. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4238-7_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4238-7_46

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4237-0

  • Online ISBN: 978-1-4614-4238-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics