Skip to main content

The Effects of Selective Complement and CD14 Inhibition on the E. coli-Induced Tissue Factor mRNA Upregulation, Monocyte Tissue Factor Expression, and Tissue Factor Functional Activity in Human Whole Blood

  • Chapter
  • First Online:
Complement Therapeutics

Abstract

Background: The complement pathway and CD14 play essential roles in inflammation, but little is known about the relative roles of complement and CD14 in E. coli-induced tissue factor (TF) mRNA upregulation, expression by monocytes, and functional activity in human whole blood. Methods: Whole E. coli bacteria were incubated for up to 4 h in human whole blood containing the anticoagulant lepirudin, which does not affect complement activation. TF mRNA levels were analyzed using reverse transcription, quantitative real-time PCR (RT-qPCR), and the expression of TF on the cell surface was analyzed using flow cytometry. Complement was selectively inhibited using the C3 convertase inhibitor compstatin or a C5a receptor antagonist (C5aRa), while CD14 was blocked by an anti-CD14 F(ab′)2 monoclonal antibody. Results: The E. coli-induced TF mRNA upregulation was reduced to virtually background levels by compstatin, whereas anti-CD14 had no effect. Monocyte TF expression and TF activity in plasma microparticles were significantly reduced by C5aRa. Anti-CD14 alone only slightly reduced E. coli-induced monocyte TF expression but showed a modest additive effect when combined with the complement inhibitors. Inhibiting complement and CD14 efficiently reduced the expression of the E. coli-induced cytokines IL-1β, IL-6, IL-8, and platelet-derived growth factor bb. Conclusion: Our results indicate that E. coli-induced TF mRNA upregulation is mainly dependent on complement activation, while CD14 plays a modest role in monocyte TF expression and the plasma TF activity in human whole blood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brandtzaeg P, Mollnes TE, Kierulf P (1989) Complement activation and endotoxin levels in systemic meningococcal disease. J Infect Dis 160(1):58–65

    Article  CAS  PubMed  Google Scholar 

  • Brekke OL, Christiansen D, Fure H, Fung M, Mollnes TE (2007) The role of complement C3 opsonization, C5a receptor, and CD14 in E. coli-induced up-regulation of granulocyte and monocyte CD11b/CD18 (CR3), phagocytosis, and oxidative burst in human whole blood. J Leukoc Biol 81(6):1404–1413

    Article  CAS  PubMed  Google Scholar 

  • Brekke OL, Christiansen D, Fure H, Pharo A, Fung M, Riesenfeld J et al (2008) Combined inhibition of complement and CD14 abolish E. coli-induced cytokine-, chemokine- and growth factor-synthesis in human whole blood. Mol Immunol 45(14):3804–3813

    Article  CAS  PubMed  Google Scholar 

  • Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407(6801):258–264

    Article  CAS  PubMed  Google Scholar 

  • Del Conde I, Shrimpton CN, Thiagarajan P, Lopez JA (2005) Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 106(5):1604–1611

    Article  CAS  PubMed  Google Scholar 

  • Eligini S, Brambilla M, Banfi C, Camera M, Sironi L, Barbieri SS et al (2002) Oxidized phospholipids inhibit cyclooxygenase-2 in human macrophages via nuclear factor-kappaB/IkappaB- and ERK2-dependent mechanisms. Cardiovasc Res 55(2):406–415

    Article  CAS  PubMed  Google Scholar 

  • Engstad CS, Lia K, Rekdal O, Olsen JO, Osterud B (1995) A novel biological effect of platelet factor 4 (PF4): enhancement of LPS-induced tissue factor activity in monocytes. J Leukoc Biol 58(5):575–581

    Article  CAS  PubMed  Google Scholar 

  • Ernofsson M, Siegbahn A (1996) Platelet-derived growth factor-BB and monocyte chemotactic protein-1 induce human peripheral blood monocytes to express tissue factor. Thromb Res 83(4):307–320

    Article  CAS  PubMed  Google Scholar 

  • Ernofsson M, Tenno T, Siegbahn A (1996) Inhibition of tissue factor surface expression in human peripheral blood monocytes exposed to cytokines. Br J Haematol 95(2):249–257

    Article  CAS  PubMed  Google Scholar 

  • Gabay C, Lamacchia C, Palmer G (2010) IL-1 pathways in inflammation and human diseases. Nat Rev Rheumatol 6(4):232–241

    Article  CAS  PubMed  Google Scholar 

  • Gregory SA, Morrissey JH, Edgington TS (1989) Regulation of tissue factor gene expression in the monocyte procoagulant response to endotoxin. Mol Cell Biol 9(6):2752–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriksson CE, Klingenberg O, Ovstebo R, Joo GB, Westvik AB, Kierulf P (2005) Discrepancy between tissue factor activity and tissue factor expression in endotoxin-induced monocytes is associated with apoptosis and necrosis. Thromb Haemost 94(6):1236–1244

    CAS  PubMed  Google Scholar 

  • Hiller E, Saal JG, Riethmuller G (1977) Procoagulant activity of activated monocytes. Haemostasis 6(6):347–350

    CAS  PubMed  Google Scholar 

  • Huber-Lang MS, Riedeman NC, Sarma JV, Younkin EM, McGuire SR, Laudes IJ et al (2002) Protection of innate immunity by C5aR antagonist in septic mice. FASEB J 16(12):1567–1574

    Article  CAS  PubMed  Google Scholar 

  • Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR et al (2006) Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 12(6):682–687

    Article  CAS  PubMed  Google Scholar 

  • Janssen BJ, Halff EF, Lambris JD, Gros P (2007) Structure of compstatin in complex with complement component C3c reveals a new mechanism of complement inhibition. J Biol Chem 282(40):29241–29247

    Article  CAS  PubMed  Google Scholar 

  • Kambas K, Markiewski M, Pneumatikos I, Rafail S, Theodorou V, Konstantonis D et al (2008) C5a and TNF-alpha up-regulate the expression of tissue factor in intra-alveolar neutrophils of patients with the acute respiratory distress syndrome. J Immunol 180:7368–7375

    Article  CAS  PubMed  Google Scholar 

  • Kappelmayer J, Bernabei A, Edmunds LH Jr, Edgington TS, Colman RW (1993) Tissue factor is expressed on monocytes during simulated extracorporeal circulation. Circ Res 72(5):1075–1081

    Article  CAS  PubMed  Google Scholar 

  • Katragadda M, Magotti P, Sfyroera G, Lambris JD (2006) Hydrophobic effect and hydrogen bonds account for the improved activity of a complement inhibitor, compstatin. J Med Chem 49(15):4616–4622

    Article  CAS  PubMed  Google Scholar 

  • Lappegard KT, Christiansen D, Pharo A, Thorgersen EB, Hellerud BC, Lindstad J et al (2009) Human genetic deficiencies reveal the roles of complement in the inflammatory network: lessons from nature. Proc Natl Acad Sci USA 106:15861–15866

    Article  PubMed  PubMed Central  Google Scholar 

  • Levi M, de Jonge E, van der Poll T (2006) Plasma and plasma components in the management of disseminated intravascular coagulation. Best Pract Res Clin Haematol 19(1):127–142

    Article  CAS  PubMed  Google Scholar 

  • Lyberg T, Prydz H (1982) Thromboplastin (factor III) activity in human monocytes induced by immune complexes. Eur J Clin Invest 12(3):229–234

    Article  CAS  PubMed  Google Scholar 

  • Mackman N (2009) The many faces of tissue factor. J Thromb Haemost 7(Suppl 1):136–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malarstig A, Siegbahn A (2007) The intersubject variability of tissue factor mRNA production in human monocytes–relation with the toll-like receptor 4. Thromb Res 120(3):407–413

    Article  PubMed  Google Scholar 

  • Meszaros K, Aberle S, Dedrick R, Machovich R, Horwitz A, Birr C et al (1994) Monocyte tissue factor induction by lipopolysaccharide (LPS): dependence on LPS-binding protein and CD14, and inhibition by a recombinant fragment of bactericidal/permeability-increasing protein. Blood 83(9):2516–2525

    CAS  PubMed  Google Scholar 

  • Mohan Rao LV, Mackman N (2010) Factor VIIa and tissue factor – from cell biology to animal models. Thromb Res 125(S1):S1–S3

    Google Scholar 

  • Mollnes TE, Lea T, Froland SS, Harboe M (1985) Quanepsication of the terminal complement complex in human plasma by an enzyme-linked immunosorbent assay based on monoclonal antibodies against a neoantigen of the complex. Scand J Immunol 22(2):197–202

    Article  CAS  PubMed  Google Scholar 

  • Mollnes TE, Brekke OL, Fung M, Fure H, Christiansen D, Bergseth G et al (2002) Essential role of the C5a receptor in E. coli-induced oxidative burst and phagocytosis revealed by a novel lepirudin-based human whole blood model of inflammation. Blood 100(5):1869–1877

    CAS  PubMed  Google Scholar 

  • Nakae H, Endo S, Inada K, Yoshida M (1996) Chronological changes in the complement system in sepsis. Surg Today 26(4):225–229

    Article  CAS  PubMed  Google Scholar 

  • Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD (2007) The role of complement in biomaterial-induced inflammation. Mol Immunol 44(1–3):82–94

    Article  CAS  PubMed  Google Scholar 

  • Oeth PA, Parry GC, Kunsch C, Nantermet P, Rosen CA, Mackman N (1994) Lipopolysaccharide induction of tissue factor gene expression in monocytic cells is mediated by binding of c-Rel/p65 heterodimers to a kappa B-like site. Mol Cell Biol 14(6):3772–3781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osnes LT, Westvik AB, Joo GB, Okkenhaug C, Kierulf P (1996) Inhibition of IL-1 induced tissue factor (TF) synthesis and procoagulant activity (PCA) in purified human monocytes by IL-4, IL-10 and IL-13. Cytokine 8(11):822–827

    Article  CAS  PubMed  Google Scholar 

  • Osterud B (1995) Cellular interactions in tissue factor expression by blood monocytes. Blood Coagul Fibrinolysis 6(Suppl 1):S20–S25

    Article  PubMed  Google Scholar 

  • Osterud B, Olsen JO, Benjaminsen AW (1984) The role of complement in the induction of thromboplastin synthesis. Haemostasis 14(5):386–392

    CAS  PubMed  Google Scholar 

  • Osterud B, Breimo ES, Olsen JO (2008) Blood borne tissue factor revisited. Thromb Res 122(3):432–434

    Article  CAS  PubMed  Google Scholar 

  • Prydz H, Allison AC, Schorlemmer HU (1977) Further link between complement activation and blood coagulation. Nature 270(5633):173–174

    Article  CAS  PubMed  Google Scholar 

  • Riedemann NC, Guo RF, Ward PA (2003) A key role of C5a/C5aR activation for the development of sepsis. J Leukoc Biol 74(6):966–970

    Article  CAS  PubMed  Google Scholar 

  • Sahu A, Kay BK, Lambris JD (1996) Inhibition of human complement by a C3-binding peptide isolated from a phage-displayed random peptide library. J Immunol 157(2):884–891

    CAS  PubMed  Google Scholar 

  • Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD, Mathison JC et al (1990) Structure and function of lipopolysaccharide binding protein. Science 249(4975):1429–1431

    Article  CAS  PubMed  Google Scholar 

  • Siegbahn A (2000) Cellular consequences upon factor VIIa binding to tissue factor. Haemostasis 30(Suppl 2):41–47

    CAS  PubMed  Google Scholar 

  • Siegbahn A, Johnell M, Sorensen BB, Petersen LC, Heldin CH (2005) Regulation of chemotaxis by the cytoplasmic domain of tissue factor. Thromb Haemost 93(1):27–34

    Article  CAS  PubMed  Google Scholar 

  • Steinemann S, Ulevitch RJ, Mackman N (1994) Role of the lipopolysaccharide (LPS)-binding protein/CD14 pathway in LPS induction of tissue factor expression in monocytic cells. Arterioscler Thromb 14(7):1202–1209

    Article  CAS  PubMed  Google Scholar 

  • Strey CW, Markiewski M, Mastellos D, Tudoran R, Spruce LA, Greenbaum LE et al (2003) The proinflammatory mediators C3a and C5a are essential for liver regeneration. J Exp Med 198(6):913–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Veerdonk FL, Netea MG, Dinarello CA, Joosten LA (2011) Inflammasome activation and IL-1beta and IL-18 processing during infection. Trends Immunol 32(3):110–116

    Article  PubMed  Google Scholar 

  • Ward PA (2004) The dark side of C5a in sepsis. Nat Rev Immunol 4(2):133–142

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The technical assistance of Grethe Bergseth is greatly acknowledged. This work was supported by NIH grants AI-068730 and GM 62134 and grants from Helse Nord RHF.

Conflict of Interest Statement The author Professor J.D. Lambris has submitted several patent applications on ­complement inhibitors. None of the other authors have conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Mollnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brekke, OL. et al. (2013). The Effects of Selective Complement and CD14 Inhibition on the E. coli-Induced Tissue Factor mRNA Upregulation, Monocyte Tissue Factor Expression, and Tissue Factor Functional Activity in Human Whole Blood. In: Lambris, J., Holers, V., Ricklin, D. (eds) Complement Therapeutics. Advances in Experimental Medicine and Biology, vol 735. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4118-2_8

Download citation

Publish with us

Policies and ethics