Skip to main content

The Role of MASP-1/3 in Complement Activation

  • Chapter
  • First Online:
Complement Therapeutics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 735))

Abstract

The complement system, which consists of more than 30 plasma and cell surface proteins, is activated by three pathways: the classical, lectin, and alternative pathways, leading to the generation of opsonins and pathogen destruction. In the lectin pathway, mannose-binding lectin (MBL) and ficolins act as pattern recognition molecules for pathogens, resulting in the activation of MBL-associated serine proteases (MASPs: MASP-1, MASP-2, and MASP-3). Among these proteases, MASP-2 is a key enzyme that cleaves C4 and C2 to assemble a C3 convertase (C4b2a). However, the physiological function of MASP-1 and MASP-3 remains unclear. To investigate the roles of MASP-1 and MASP-3, we generated a MASP-1- and MASP-3-deficient (M1/3 KO) mouse model and found that the deficient mice lacked alternative pathway activation because factor D (Df) remained as a proenzyme in the serum. MASP-1 and MASP-3 were able to convert the proenzyme of Df to an active form in vitro. In addition, MASP-1 was able to activate MASP-2 and MASP-3 as C1r activates C1s. Thus, MASP-1 and MASP-3 seem to be involved in activation of both the lectin and alternative pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banda NK, Takahashi M, Levitt B, Glogowska M, Nicholas J, Takahashi K, Stahl GL, Fujita T, Arend WP, Holers VM (2010) Essential role of complement mannose-binding lectin-associated serine proteases-1/3 in the murine collagen antibody-induced model of inflammatory arthritis. J Immunol 185:5598–5606

    Article  CAS  Google Scholar 

  • Barnum SR, Volanakis JE (1985) In vitro biosynthesis of complement protein D by U937 cells. J Immunol 134:1799–1803

    CAS  PubMed  Google Scholar 

  • Carroll MC (2004) The complement system in regulation of adaptive immunity. Nat Immunol 5:981–986

    Article  CAS  Google Scholar 

  • Chen CB, Wallis R (2004) Two mechanisms for mannose-binding protein modulation of the activity of its associated serine proteases. J Biol Chem 279:26058–26065

    Article  CAS  Google Scholar 

  • Cook KS, Groves DL, Min HY, Spiegelman BM (1985) A developmentally regulated mRNA from 3T3 adipocytes encodes a novel serine protease homologue. Proc Natl Acad Sci USA 82:6480–6484

    Article  CAS  Google Scholar 

  • Cseh S, Vera L, Matsushita M, Fujita T, Arlaud GJ, Thielens NM (2002) Characterization of the interaction between L-ficolin/p35 and mannan-binding lectin-associated serine proteases-1 and -2. J Immunol 169:5735–5743

    Article  CAS  Google Scholar 

  • Dahl MR, Thiel S, Matsushita M, Fujita T, Willis AC, Christensen T, Vorup-Jensen T, Jensenius JC (2001) MASP-3 and its association with distinct complexes of the mannan-binding lectin complement activation pathway. Immunity 15:127–135

    Article  CAS  Google Scholar 

  • Degn SE, Hansen AG, Steffensen R, Jacobsen C, Jensenius JC, Thiel S (2009) MAp44, a human protein associated with pattern recognition molecules of the complement system and regulating the lectin pathway of complement activation. J Immunol 183:7371–7378

    Article  CAS  Google Scholar 

  • Drickamer K (1992) Engineering galactose-binding activity into a C-type mannose-binding protein. Nature 360:183–186

    Article  CAS  Google Scholar 

  • Drickamer K, Dordal MS, Reynolds L (1986) Mannose-binding proteins isolated from rat liver contain carbohydrate-recognition domains linked to collagenous tails. Complete primary structures and homology with pulmonary surfactant apoprotein. J Biol Chem 261:6878–6887

    CAS  PubMed  Google Scholar 

  • Endo Y, Sato Y, Matsushita M, Fujita T (1996) Cloning and characterization of the human lectin P35 gene and its related gene. Genomics 36:515–521

    Article  CAS  Google Scholar 

  • Endo Y, Matsushita M, Fujita T (2011) The role of ficolins in the lectin pathway of innate immunity. Int J Biochem Cell Biol 43:705–712

    Article  CAS  Google Scholar 

  • Ezekowitz RA, Day LE, Herman GA (1988) A human mannose-binding protein is an acute-phase reactant that shares sequence homology with other vertebrate lectins. J Exp Med 167:1034–1046

    Article  CAS  Google Scholar 

  • Fujita T (2002) Evolution of the lectin-complement pathway and its role in innate immunity. Nat Rev Immunol 2:346–353

    Article  CAS  Google Scholar 

  • Garlatti V, Belloy N, Martin L, Lacroix M, Matsushita M, Endo Y, Fujita T, Fontecilla-Camps JC, Arlaud GJ, Thielens NM, Gaboriaud C (2007a) Structural insights into the innate immune recognition specificities of L- and H-ficolins. EMBO J 26:623–633

    Article  CAS  Google Scholar 

  • Garlatti V, Martin L, Gout E, Reiser JB, Fujita T, Arlaud GJ, Thielens NM, Gaboriaud C (2007b) Structural basis for innate immune sensing by M-ficolin and its control by a pH-dependent conformational switch. J Biol Chem 282:35814–35820

    Article  CAS  Google Scholar 

  • Hajela K, Kojima M, Ambrus G, Wong KH, Moffatt BE, Ferluga J, Hajela S, Gal P, Sim RB (2002) The biological functions of MBL-associated serine proteases (MASPs). Immunobiology 205:467–475

    Article  CAS  Google Scholar 

  • Hansen S, Selman L, Palaniyar N, Ziegler K, Brandt J, Kliem A, Jonasson M, Skjoedt MO, Nielsen O, Hartshorn K et al (2010) Collectin 11 (CL-11, CL-K1) is a MASP-1/3-associated plasma collectin with microbial-binding activity. J Immunol 185:6096–6104

    Article  CAS  Google Scholar 

  • Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA (1999) Phylogenetic perspectives in innate immunity. Science 284:1313–1318

    Article  CAS  Google Scholar 

  • Holmskov U, Malhotra R, Sim RB, Jensenius JC (1994) Collectins: collagenous C-type lectins of the innate immune defense system. Immunol Today 15:67–74

    Article  CAS  Google Scholar 

  • Ichijo H, Hellman U, Wernstedt C, Gonez LJ, Claesson-Welsh L, Heldin CH, Miyazono K (1993) Molecular cloning and characterization of ficolin, a multimeric protein with fibrinogen- and collagen-like domains. J Biol Chem 268:14505–14513

    CAS  PubMed  Google Scholar 

  • Iwaki D, Kanno K, Takahashi M, Endo Y, Lynch NJ, Schwaeble WJ, Matsushita M, Okabe M, Fujita T (2006) Small mannose-binding lectin-associated protein plays a regulatory role in the lectin complement pathway. J Immunol 177:8626–8632

    Article  CAS  Google Scholar 

  • Iwaki D, Kanno K, Takahashi M, Endo Y, Matsushita M, Fujita T (2011) The role of mannose-binding lectin-associated serine protease-3 in activation of the alternative complement pathway. J Immunol 187:3751–3758

    Article  CAS  Google Scholar 

  • Jack DL, Klein NJ, Turner MW (2001) Mannose-binding lectin: targeting the microbial world for complement attack and opsonophagocytosis. Immunol Rev 180:86–99

    Article  CAS  Google Scholar 

  • Krarup A, Gulla KC, Gal P, Hajela K, Sim RB (2008) The action of MBL-associated serine protease 1 (MASP1) on factor XIII and fibrinogen. Biochim Biophys Acta 1784:1294–1300

    Article  CAS  Google Scholar 

  • La Bonte LR, Pavlov VI, Tan YS, Takahashi K, Takahashi M, Banda NK, Zou C, Fujita T, Stahl GL (2012) Mannose-binding lectin-associated serine protease-1 is a significant contributor to coagulation in a murine model of occlusive thrombosis. J Immunol 188:885–891

    Article  Google Scholar 

  • Liu Y, Endo Y, Iwaki D, Nakata M, Matsushita M, Wada I, Inoue K, Munakata M, Fujita T (2005) Human M-ficolin is a secretory protein that activates the lectin complement pathway. J Immunol 175:3150–3156

    Article  CAS  Google Scholar 

  • Lu J, Tay PN, Kon OL, Reid KB (1996) Human ficolin: cDNA cloning, demonstration of peripheral blood leucocytes as the major site of synthesis and assignment of the gene to chromosome 9. Biochem J 313(Pt 2):473–478

    Article  CAS  Google Scholar 

  • Matsushita M, Fujita T (1992) Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease. J Exp Med 176:1497–1502

    Article  CAS  Google Scholar 

  • Matsushita M, Fujita T (1995) Cleavage of the third component of complement (C3) by mannose-binding protein-associated serine protease (MASP) with subsequent complement activation. Immunobiology 194:443–448

    Article  CAS  Google Scholar 

  • Matsushita M, Endo Y, Taira S, Sato Y, Fujita T, Ichikawa N, Nakata M, Mizuochi T (1996) A novel human serum lectin with collagen- and fibrinogen-like domains that functions as an opsonin. J Biol Chem 271:2448–2454

    Article  CAS  Google Scholar 

  • Matsushita M, Endo Y, Fujita T (2000a) Cutting edge: complement-activating complex of ficolin and mannose-binding lectin-associated serine protease. J Immunol 164:2281–2284

    Article  CAS  Google Scholar 

  • Matsushita M, Thiel S, Jensenius JC, Terai I, Fujita T (2000b) Proteolytic activities of two types of mannose-binding lectin-associated serine protease. J Immunol 165:2637–2642

    Article  CAS  Google Scholar 

  • Matsushita M, Kuraya M, Hamasaki N, Tsujimura M, Shiraki H, Fujita T (2002) Activation of the lectin complement pathway by H-ficolin (Hakata antigen). J Immunol 168:3502–3506

    Article  CAS  Google Scholar 

  • Mizuno Y, Kozutsumi Y, Kawasaki T, Yamashina I (1981) Isolation and characterization of a mannan-binding protein from rat liver. J Biol Chem 256:4247–4252

    CAS  PubMed  Google Scholar 

  • Rooryck C, Diaz-Font A, Osborn DP, Chabchoub E, Hernandez-Hernandez V, Shamseldin H, Kenny J, Waters A, Jenkins D, Kaissi AA et al (2011) Mutations in lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrome. Nat Genet 43:197–203

    Article  CAS  Google Scholar 

  • Rosen BS, Cook KS, Yaglom J, Groves DL, Volanakis JE, Damm D, White T, Spiegelman BM (1989) Adipsin and complement factor D activity: an immune-related defect in obesity. Science 244:1483–1487

    Article  CAS  Google Scholar 

  • Schwaeble WJ, Lynch NJ, Clark JE, Marber M, Samani NJ, Ali YM, Dudler T, Parent B, Lhotta K, Wallis R et al (2011) Targeting of mannan-binding lectin-associated serine protease-2 confers protection from myocardial and gastrointestinal ischemia/reperfusion injury. Proc Natl Acad Sci USA 108:7523–7528

    Article  CAS  Google Scholar 

  • Selander B, Martensson U, Weintraub A, Holmstrom E, Matsushita M, Thiel S, Jensenius JC, Truedsson L, Sjoholm AG (2006) Mannan-binding lectin activates C3 and the alternative complement pathway without involvement of C2. J Clin Invest 116:1425–1434

    Article  CAS  Google Scholar 

  • Sheriff S, Chang CY, Ezekowitz RA (1994) Human mannose-binding protein carbohydrate recognition domain trimerizes through a triple alpha-helical coiled-coil. Nat Struct Biol 1:789–794

    Article  CAS  Google Scholar 

  • Skjoedt MO, Hummelshoj T, Palarasah Y, Honore C, Koch C, Skjodt K, Garred P (2010) A novel mannose-binding lectin/ficolin-associated protein is highly expressed in heart and skeletal muscle tissues and inhibits complement activation. J Biol Chem 285:8234–8243

    Article  CAS  Google Scholar 

  • Stover CM, Thiel S, Thelen M, Lynch NJ, Vorup-Jensen T, Jensenius JC, Schwaeble WJ (1999) Two constituents of the initiation complex of the mannan-binding lectin activation pathway of complement are encoded by a single structural gene. J Immunol 162:3481–3490

    CAS  PubMed  Google Scholar 

  • Sugimoto R, Yae Y, Akaiwa M, Kitajima S, Shibata Y, Sato H, Hirata J, Okochi K, Izuhara K, Hamasaki N (1998) Cloning and characterization of the Hakata antigen, a member of the ficolin/opsonin p35 lectin family. J Biol Chem 273:20721–20727

    Article  CAS  Google Scholar 

  • Takahashi M, Endo Y, Fujita T, Matsushita M (1999) A truncated form of mannose-binding lectin-associated serine protease (MASP)-2 expressed by alternative polyadenylation is a component of the lectin complement pathway. Int Immunol 11:859–863

    Article  CAS  Google Scholar 

  • Takahashi M, Iwaki D, Kanno K, Ishida Y, Xiong J, Matsushita M, Endo Y, Miura S, Ishii N, Sugamura K, Fujita T (2008) Mannose-binding lectin (MBL)-associated serine protease (MASP)-1 contributes to activation of the lectin complement pathway. J Immunol 180:6132–6138

    Article  CAS  Google Scholar 

  • Takahashi M, Ishida Y, Iwaki D, Kanno K, Suzuki T, Endo Y, Homma Y, Fujita T (2010) Essential role of mannose-binding lectin-associated serine protease-1 in activation of the complement factor D. J Exp Med 207:29–37

    Article  CAS  Google Scholar 

  • Tanio M, Kondo S, Sugio S, Kohno T (2007) Trivalent recognition unit of innate immunity system: crystal structure of trimeric human M-ficolin fibrinogen-like domain. J Biol Chem 282:3889–3895

    Article  CAS  Google Scholar 

  • Thiel S, Vorup-Jensen T, Stover CM, Schwaeble W, Laursen SB, Poulsen K, Willis AC, Eggleton P, Hansen S, Holmskov U et al (1997) A second serine protease associated with mannan-binding lectin that activates complement. Nature 386:506–510

    Article  CAS  Google Scholar 

  • Thielens NM, Cseh S, Thiel S, Vorup-Jensen T, Rossi V, Jensenius JC, Arlaud GJ (2001) Interaction properties of human mannan-binding lectin (MBL)-associated serine proteases-1 and -2, MBL-associated protein 19, and MBL. J Immunol 166:5068–5077

    Article  CAS  Google Scholar 

  • Vorup-Jensen T, Petersen SV, Hansen AG, Poulsen K, Schwaeble W, Sim RB, Reid KB, Davis SJ, Thiel S, Jensenius JC (2000) Distinct pathways of mannan-binding lectin (MBL)- and C1-complex autoactivation revealed by reconstitution of MBL with recombinant MBL-associated serine protease-2. J Immunol 165:2093–2100

    Article  CAS  Google Scholar 

  • Walport MJ (2001a) Complement. First of two parts. N Engl J Med 344:1058–1066

    Article  CAS  Google Scholar 

  • Walport MJ (2001b) Complement. Second of two parts. N Engl J Med 344:1140–1144

    Article  CAS  Google Scholar 

  • Weis WI, Drickamer K, Hendrickson WA (1992) Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 360:127–134

    Article  CAS  Google Scholar 

  • White RT, Damm D, Hancock N, Rosen BS, Lowell BB, Usher P, Flier JS, Spiegelman BM (1992) Human adipsin is identical to complement factor D and is expressed at high levels in adipose tissue. J Biol Chem 267:9210–9213

    CAS  PubMed  Google Scholar 

  • Zundel S, Cseh S, Lacroix M, Dahl MR, Matsushita M, Andrieu JP, Schwaeble WJ, Jensenius JC, Fujita T, Arlaud GJ, Thielens NM (2004) Characterization of recombinant mannan-binding lectin-associated serine protease (MASP)-3 suggests an activation mechanism different from that of MASP-1 and MASP-2. J Immunol 172:4342–4350

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teizo Fujita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sekine, H., Takahashi, M., Iwaki, D., Fujita, T. (2013). The Role of MASP-1/3 in Complement Activation. In: Lambris, J., Holers, V., Ricklin, D. (eds) Complement Therapeutics. Advances in Experimental Medicine and Biology, vol 735. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4118-2_3

Download citation

Publish with us

Policies and ethics