Skip to main content

Research Needs for Bioaugmentation

  • Chapter
  • First Online:
Bioaugmentation for Groundwater Remediation

Part of the book series: SERDP ESTCP Environmental Remediation Technology ((SERDP/ESTCP))

Abstract

Bioaugmentation represents a remarkable success story of applied research, and future research should lead to more successful applications. This chapter provides an introduction to the future potential of bioaugmentation (and bioremediation in general), and seeks to identify the research needs that, if addressed, will help realize this potential. First, a discussion of bioremediation at the molecular, organismal, community and ecosystem scales is presented. Cultivating a deeper understanding and/or developing new techniques at any of these levels may lead to advances and novel discoveries, and some future initiatives are suggested. Three linchpin concepts that will likely direct the future of bioremediation are examined in detail: niche specialization as a means to enhance bioremediation specificity; microcosms as valuable tools for directed research; and the enrichment paradox, which enacts a balance between research ideals, regulatory requirements and remediation activities. From these three concepts, an optimal scenario for successful bioremediation is proposed. Some practical applied research needs are outlined, and finally, future perspectives are described. While not presently feasible or in practice, these ideas give hints as to what may eventually be possible within the field of bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian L. 2009. ERC-group microflex: Microbiology of Dehalococcoides-like Chloroflexi. Rev Environ Sci Biotechnol 8:1569–1705.

    Article  Google Scholar 

  • Adrian L, Rahnenfuhrer J, Gobom J, Holscher T. 2007. Identification of a chlorobenzene reductive dehalogenase in Dehalococcoides sp. strain CBDB1. Appl Environ Microbiol 73:7717–7724.

    Article  CAS  Google Scholar 

  • Ahsanul Islam M, Edwards EA, Mahadevan R. 2010. Characterizing the metabolism of Dehalococcoides with a constraint-based model. PLoS Comput Biol 6:e1000887. doi:10.1371/journal.pcbi.1000887.

    Article  Google Scholar 

  • Arora P K, Kumar M, Chauhan A, Raghava GP, Jain RK. 2009. OxDBase: A database of oxygenases involved in biodegradation. BMC Res Notes 2:doi:10.1186/1756-0500-2-67.

  • Bisaillon A, Beaudet R, Lepine F, Deziel E, Villemur R. 2010. Identification and characterization of a novel CprA reductive dehalogenase specific to highly chlorinated phenols from Desulfitobacterium hafniense strain PCP-1. Appl Environ Microbiol 76:7536–7540.

    Article  CAS  Google Scholar 

  • Bosma T, Damborsky J, Stucki G, Janssen DB. 2002. Biodegradation of 1,2,3-trichloropropane through directed evolution and heterologous expression of a haloalkane dehalogenase gene. Appl Environ Microbiol 68:3582–3587.

    Article  CAS  Google Scholar 

  • Cameron RA, Yeung CW, Greer CW, Gould WD, Mortazavi S, Bedard PL, Morin L, Lortie L, Dinardo O, Kennedy KJ. 2010. The bacterial community structure during bioleaching of a low-grade nickel sulphide ore in stirred-tank reactors at different combinations of temperature and pH. Hydrometall 104:207–215.

    Article  CAS  Google Scholar 

  • Chan WY, Wong M, Guthrie J, Savchenko AV, Yakunin AF, Pai EF, Edwards EA. 2010. Sequence- and activity-based screening of microbial genomes for novel dehalogenases. Microb Biotechnol 3:107–120.

    Article  CAS  Google Scholar 

  • Cheng D, He J. 2009. Isolation and characterization of Dehalococcoides sp. strain MB, which dechlorinates tetrachloroethene to trans-1,2-dichloroethene. Appl Environ Microbiol 75:5910–5918.

    Article  CAS  Google Scholar 

  • Cortez D, Forterre P, Gribaldo S. 2009. A hidden reservoir of integrative elements is the major source of recently acquired foreign genes and ORFans in archaeal and bacterial genomes. Genome Biol 10(6):R65, doi:10.1186/gb-2009-10-6-r65.

    Article  Google Scholar 

  • Da Silva MLB, Daprato RC, Gomez DE, Hughes JB, Ward CH, Alvarez PJJ. 2006. Comparison of bioaugmentation and biostimulation for the enhancement of dense nonaqueous phase liquid source zone bioremediation. Water Environ Res 78:2456–2465.

    Article  Google Scholar 

  • Dawson JJ, Iroegbu CO, Maciel H, Paton GI. 2008. Application of luminescent biosensors for monitoring the degradation and toxicity of BTEX compounds in soils. J Appl Microbiol 104:141–151.

    CAS  Google Scholar 

  • De Lorenzo V. 2009. Recombinant bacteria for environmental release: what went wrong and what we have learnt from it. Clin Microbiol Infect 15 (Suppl 1):63–65.

    Article  Google Scholar 

  • Dhillon JK, Drew PD, Porter AJ. 1999. Bacterial surface display of an anti-pollutant antibody fragment. Lett Appl Microbiol 28:350–354.

    Article  CAS  Google Scholar 

  • Duhamel M, Mo K, Edwards EA. 2004. Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Appl Environ Microbiol 70:5538–5545.

    Article  CAS  Google Scholar 

  • Dybas MJ, Tatara GM, Criddle CS. 1995. Localization and characterization of the carbon tetrachloride transformation activity of Pseudomonas sp. Strain KC. Appl Environ Microbiol 61:758–762.

    CAS  Google Scholar 

  • Edwards JS, Ibarra RU, Palsson BO. 2001. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19:125–130.

    Article  CAS  Google Scholar 

  • El Ichi S, Marzouki MN, Korri-Youssoufi H. 2009. Direct monitoring of pollutants based on an electrochemical biosensor with novel peroxidase (POX1B). Biosens Bioelectron 24:3084–3090.

    Article  CAS  Google Scholar 

  • Essen SA, Johnsson A, Bylund D, Pedersen K, Lundstrom US. 2007. Siderophore production by Pseudomonas stutzeri under aerobic and anaerobic conditions. Appl Environ Microbiol 73:5857–5864.

    Article  CAS  Google Scholar 

  • Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO. 2009. Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143.

    Article  CAS  Google Scholar 

  • Fennell DE, Gossett JM, Zinder S. 1997. Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene. Environ Sci Technol 31:918–926.

    Article  CAS  Google Scholar 

  • Freedman DL, Gossett JM. 1989. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol 55:2144–2151.

    CAS  Google Scholar 

  • Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison 3rd CA, Smith HO, Venter JC. 2010. Creation of a bacterial cell controlled by a chemically synthesized genome. Sci 329:52–56.

    Article  CAS  Google Scholar 

  • Grostern A, Chan WW, Edwards EA. 2009a. 1,1,1-trichloroethane and 1,1-dichloroethane reductive dechlorination kinetics and co-contaminant effects in a Dehalobacter-containing mixed culture. Environ Sci Technol 437:6799–6807.

    Article  Google Scholar 

  • Grostern A, Edwards EA. 2006. Growth of Dehalobacter and Dehalococcoides spp. during degradation of chlorinated ethanes. Appl Environ Microbiol 72:428–436.

    Article  CAS  Google Scholar 

  • Grostern A, Edwards EA. 2009b. Characterization of a Dehalobacter coculture that dechlorinates 1,2-dichloroethane to ethene and identification of the putative reductive dehalogenase gene. Appl Environ Microbiol 75:2684–2693.

    Article  CAS  Google Scholar 

  • Hafenbradl D, Keller M, Dirmeier R, Rachel R, Rossnagel P, Burggraf S, Huber H, Stetter KO. 1996. Ferroglobus placidus gen nov, sp nov, a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch Microbiol 166:308–314.

    Article  CAS  Google Scholar 

  • Hazen TC, Dubinsky EA, Desantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad ME, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D’haeseleer P, Holman HYN, Osman S, Lu ZM, Van Nostrand JD, Deng Y, Zhou JZ, Mason OU. 2010. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Sci 330:204–208.

    Article  CAS  Google Scholar 

  • Heimann AC, Batstone DJ, Jakobsen R. 2006. Methanosarcina spp. drive vinyl chloride dechlorination via interspecies hydrogen transfer. Appl Environ Microbiol 72:2942–2949.

    Article  CAS  Google Scholar 

  • Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, Vazquez F, Weiss N, Zehnder AJ. 1998. Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch Microbiol 169:313–321.

    Article  CAS  Google Scholar 

  • Ibarra RU, Edwards JS, Palsson BO. 2002. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nat 420:186–189.

    Article  CAS  Google Scholar 

  • Johnson DR, Brodie EL, Hubbard AE, Andersen GL, Zinder SH, Alvarez-Cohen L. 2008. Temporal transcriptomic microarray analysis of Dehalococcoides ethenogenes strain 195 during the transition into stationary phase. Appl Environ Microbiol 74:2864–2872.

    Article  CAS  Google Scholar 

  • Johnson DR, Nemir A, Andersen GL, Zinder SH, Alvarez-Cohen L. 2009. Transcriptomic microarray analysis of corrinoid responsive genes in Dehalococcoides ethenogenes strain 195. FEMS Microbiol Lett 294:198–206.

    Article  CAS  Google Scholar 

  • Jones EJP, Voytek MA, Lorah MM, Kirshtein JD. 2006. Characterization of a microbial consortium capable of rapid and simultaneous dechlorination of 1,1,2,2-tetrachloroethane and chlorinated ethane and ethene intermediates. Bioremediation J 10:153–168.

    Article  CAS  Google Scholar 

  • Krajmalnik-Brown R, Holscher T, Thomson IN, Saunders FM, Ritalahti KM, Löffler FE. 2004. Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. Appl Environ Microbiol 70:6347–6351.

    Article  CAS  Google Scholar 

  • Krasotkina J, Walters T, Maruya KA, Ragsdale SW. 2001. Characterization of the B12- and iron-sulfur-containing reductive dehalogenase from Desulfitobacterium chlororespirans. J Biol Chem 276:40991–40997.

    Article  CAS  Google Scholar 

  • Kristensen AH, Henriksen K, Mortensen L, Scow KM, Moldrup P. 2010. Soil physical constraints on intrinsic biodegradation of petroleum vapors in a layered subsurface. Vadose Zone J 9:137–147.

    Article  CAS  Google Scholar 

  • Kube M, Beck A, Zinder SH, Kuhl H, Reinhardt R, Adrian L. 2005. Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1. Nat Biotechnol 23:1269–1273.

    Article  CAS  Google Scholar 

  • Langer JJ, Langer K, Barczynski P, Warchol J, Bartkowiak KH. 2009. New “ON-OFF”-type nanobiodetector. Biosens Bioelectron 24:2947–2949.

    Article  CAS  Google Scholar 

  • Lee JM, Gianchandani EP, Papin JA. 2006. Flux balance analysis in the era of metabolomics. Brief Bioinform 7:140–150.

    Article  Google Scholar 

  • Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJ, Gorby YA, Goodwin S. 1993. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344.

    Article  CAS  Google Scholar 

  • Macdonell M, Colwell R. 1985. Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 6:171–182.

    Article  CAS  Google Scholar 

  • Magnuson JK, Stern RV, Gossett JM, Zinder SH, Burris DR. 1998. Reductive dechlorination of tetrachloroethene to ethene by a two-component enzyme pathway. Appl Environ Microbiol 64:1270–1275.

    CAS  Google Scholar 

  • Mahadevan R, Bond DR, Butler JE, Esteve-Nunez A, Coppi MV, Palsson BO, Schilling CH, Lovley DR. 2006. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl Environ Microbiol 72:1558–1568.

    Article  CAS  Google Scholar 

  • Maillard J, Regeard C, Holliger C. 2005. Isolation and characterization of Tn-Dha1, a transposon containing the tetrachloroethene reductive dehalogenase of Desulfitobacterium hafniense strain TCE1. Environ Microbiol 7:107–117.

    Article  CAS  Google Scholar 

  • Maillard J, Schumacher W, Vazquez F, Regeard C, Hagen WR, Holliger C. 2003. Characterization of the corrinoid iron-sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus. Appl Environ Microbiol 69:4628–4638.

    Article  CAS  Google Scholar 

  • Manchester MJ, Hug LA, Zarek M, Zila A, Edwards EA. 2012. Discovery of a trans-dichloroethene respiring Dehalogenimonas in the 1,1,2,2-Tetrachloroethane-dechlorinating WBC-2 consortium. Appl Environ Microbiol doi:10.1128/AEM.00384-12.

    Google Scholar 

  • Marzorati M, De Ferra F, Van Raemdonck H, Borin S, Allifranchini E, Carpani G, Serbolisca L, Verstraete W, Boon N, Daffonchio D. 2007. A novel reductive dehalogenase, identified in a contaminated groundwater enrichment culture and in Desulfitobacterium dichloroeliminans strain DCA1 is linked to dehalogenation of 1,2-dichloroethane. Appl Environ Microbiol 73:2990–2999.

    Article  CAS  Google Scholar 

  • Maymó-Gatell X, Chien Y, Gossett JM, Zinder SH. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Sci 276:1568–1571.

    Article  CAS  Google Scholar 

  • McGuire TM, McDade JM, Newell CJ. 2006. Performance of DNAPL source depletion technologies at 59 chlorinated solvent-impacted sites. Ground Water Monit Remediat 26:73–84.

    Article  CAS  Google Scholar 

  • McMurdie PJ, Behrens SF, Holmes S, Spormann AM. 2007. Unusual codon bias in vinyl chloride reductase genes of Dehalococcoides species. Appl Environ Microbiol 73:2744–2747.

    Article  CAS  Google Scholar 

  • McMurdie PJ, Behrens SF, Muller JA, Goke J, Ritalahti KM, Wagner R, Goltsman E, Lapidus A, Holmes S, Löffler FE, Spormann A M. 2009. Localized plasticity in the streamlined genomes of vinyl chloride respiring Dehalococcoides. PLoS Genet 5:e1000714.

    Article  Google Scholar 

  • McMurdie PJ, Hug LA, Edwards EA, Holmes S, Spormann AM. 2011. Site-specific mobilization of vinyl chloride respiration islands by a mechanism common in Dehalococcoides. BMC Genomics 12:287.

    Article  CAS  Google Scholar 

  • Miller E, Wohlfarth G, Diekert G. 1998. Purification and characterization of the tetrachloroethene reductive dehalogenase of strain PCE-S. Arch Microbiol 169:497–502.

    Article  CAS  Google Scholar 

  • Moe WM, Yan J, Nobre MF, Da Costa MS, Rainey FA. 2009. Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater. Int J Syst Evol Microbiol 59(Pt 11):2692–2697.

    Article  CAS  Google Scholar 

  • Morris RM, Fung JM, Rahm BG, Zhang S, Freedman DL, Zinder SH, Richardson RE. 2007. Comparative proteomics of Dehalococcoides spp. reveals strain-specific peptides associated with activity. Appl Environ Microbiol 73:320–326.

    Article  CAS  Google Scholar 

  • Muller JA, Rosner BM, Von Abendroth G, Meshulam-Simon G, Mccarty PL, Spormann AM. 2004. Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl Environ Microbiol 70:4880–4888.

    Article  Google Scholar 

  • N’guessan AL, Elifantz H, Nevin KP, Mouser PJ, Methe B, Woodard TL, Manley K, Williams KH, Wilkins MJ, Larsen JT, Long PE, Lovley DR. 2010. Molecular analysis of phosphate limitation in Geobacteraceae during the bioremediation of a uranium-contaminated aquifer. ISME J 4:253–266.

    Article  Google Scholar 

  • Nakamura K, Mizumoto M, Ueno T, Hiroaki I. 2006. Cloning and analysis of trichloroethene reductive dehalogenase gene and its detection by quantitative real-time PCR. Environ Eng Res 43:119–125.

    Google Scholar 

  • Nalinakumari B, Cha W, Fox P. 2010. Effects of primary substrate concentration on NDMA transport during simulated aquifer recharge. J Environ Eng 136:363–370.

    Article  CAS  Google Scholar 

  • Nebe J, Baldwin BR, Kassab RL, Nies L, Nakatsu CH. 2009. Quantification of aromatic oxygenase genes to evaluate enhanced bioremediation by oxygen releasing materials at a gasoline-contaminated site. Environ Sci Technol 43:2029–2034.

    Article  CAS  Google Scholar 

  • Nicolau E, Kuhn L, Marchal R, Jouanneau Y. 2009. Proteomic investigation of enzymes involved in 2-ethylhexyl nitrate biodegradation in Mycobacterium austroafricanum IFP 2173. Res Microbiol 160:838–847.

    Article  CAS  Google Scholar 

  • Oh YK, Palsson BO, Park SM, Schilling CH, Mahadevan R. 2007. Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J Biol Chem 282:28791–28799.

    Article  CAS  Google Scholar 

  • Rahm BG, Richardson RE. 2008. Correlation of respiratory gene expression levels and pseudo-steady-state PCE respiration rates in Dehalococcoides ethenogenes. Environ Sci Technol 42:416–421.

    Article  CAS  Google Scholar 

  • Reeves T, Miller JT, Johnson PC, Balshaw-Biddle K, Oubre CL, Ward CH. 1999. Modular remediation testing system. AATDF monographs. Lewis Publishers, Boca Raton, FL.

    Google Scholar 

  • Rittmann BE, Krajmalnik-Brown R, Halden RU. 2008. Pre-genomic, genomic and postgenomic study of microbial communities involved in bioenergy. Nat Rev Microbiol 6:604–612.

    Article  CAS  Google Scholar 

  • Saleem M, Brim H, Hussain S, Arshad M, Leigh MB, Zia Ul H. 2008. Perspectives on microbial cell surface display in bioremediation. Biotechnol Adv 26:151–161.

    Article  CAS  Google Scholar 

  • Schaefer CE, Lippincott DR, Steffan RJ. 2010. Field-scale evaluation of bioaugmentation dosage for treating chlorinated ethenes. Ground Water Monit Remediat 30:113–124.

    Article  CAS  Google Scholar 

  • Scheibe TD, Mahadevan R, Fang YL, Garg S, Long PE, Lovley DR. 2009. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microb Biotechnol 2:274–286.

    Article  CAS  Google Scholar 

  • Schneiker S, Martins Dos Santos VA, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C, Goesmann A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B, Mchardy AC, Meyer F, Nechitaylo T, Puhler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W, Yakimov MM, Timmis KN, Vorholter FJ, Weidner S, Kaiser O, Golyshin PN. 2006. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004.

    Article  CAS  Google Scholar 

  • Schuetz R, Kuepfer L, Sauer U. 2007. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119.

    Article  Google Scholar 

  • Selesi D, Jehmlich N, Von Bergen M, Schmidt F, Rattei T, Tischler P, Lueders T, Meckenstock RU. 2010. Combined genomic and proteomic approaches identify gene clusters involved in anaerobic 2-methylnaphthalene degradation in the sulfate-reducing enrichment culture N47. J Bacteriol 192:295–306.

    Article  CAS  Google Scholar 

  • Seshadri R, Adrian L, Fouts DE, Eisen JA, Phillippy AM, Methe BA, Ward NL, Nelson WC, Deboy RT, Khouri HM, Kolonay JF, Dodson RJ, Daugherty SC, Brinkac LM, Sullivan SA, Madupu R, Nelson KE, Kang KH, Impraim M, Tran K, Robinson JM, Forberger HA, Fraser CM, Zinder SH, Heidelberg JF. 2005. Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Sci 307:105–108.

    Article  CAS  Google Scholar 

  • Sharp JO, Wood TK, Alvarez-Cohen L. 2005. Aerobic biodegradation of N-nitrosodimethylamine (NDMA) by axenic bacterial strains. Biotechnol Bioeng 89:608–618.

    Article  CAS  Google Scholar 

  • Sobecky PA, Coombs JM. 2009. Horizontal gene transfer in metal and radionuclide contaminated soils. Methods Mol Biol 532:455–472.

    Article  CAS  Google Scholar 

  • Suenaga H, Mizuta S, Miyazaki K. 2009. The molecular basis for adaptive evolution in novel extradiol dioxygenases retrieved from the metagenome. FEMS Microbiol Ecol 69:472–480.

    Article  CAS  Google Scholar 

  • Tsukagoshi N, Ezaki S, Uenaka T, Suzuki N, Kurane R. 2006. Isolation and transcriptional analysis of novel tetrachloroethene reductive dehalogenase gene from Desulfitobacterium sp. strain KBC1. Appl Microbiol Biotechnol 69:543–553.

    Article  CAS  Google Scholar 

  • Van De Pas BA, Smidt H, Hagen WR, Van Der Oost J, Schraa G, Stams AJ, De Vos WM. 1999. Purification and molecular characterization of ortho-chlorophenol reductive dehalogenase, a key enzyme of halorespiration in Desulfitobacterium dehalogenans. J Biol Chem 274:20287–20292.

    Article  Google Scholar 

  • Varma A, Boesch BW, Palsson BO. 1993. Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl Environ Microbiol 59:2465–2473.

    CAS  Google Scholar 

  • Wei D, Bailey MJ, Andrew P, Ryhanen T. 2009. Electrochemical biosensors at the nanoscale. Lab Chip 9:2123–2131.

    Article  CAS  Google Scholar 

  • West KA, Johnson DR, Hu P, Desantis TZ, Brodie EL, Lee PK, Feil H, Andersen GL, Zinder SH, Alvarez-Cohen L. 2008. Comparative genomics of Dehalococcoides ethenogenes 195 and an enrichment culture containing unsequenced Dehalococcoides strains. Appl Environ Microbiol 74:3533–3540.

    Article  CAS  Google Scholar 

  • Yan J, Rash BA, Rainey FA, Moe WM. 2009. Isolation of novel bacteria within the Chloroflexi capable of reductive dechlorination of 1,2,3-trichloropropane. Environ Microbiol 11:833–843.

    Article  CAS  Google Scholar 

  • Yu G, Zheng Z, Wang Q, Fu Y, Zhuang J, Sun X, Wang Y. 2010. Spatiotemporal pattern of soil respiration of terrestrial ecosystems in China: The development of a geostatistical model and its simulation. Environ Sci Technol 44:6074–6080.

    Article  CAS  Google Scholar 

  • Zawadzka AM, Vandecasteele FP, Crawford RL, Paszczynski AJ. 2006. Identification of siderophores of Pseudomonas stutzeri. Can J Microbiol 52:1164–1176.

    Article  CAS  Google Scholar 

  • Zhao J, Fang Y, Scheibe TD, Lovley DR, Mahadevan R. 2010. Modeling and sensitivity analysis of electron capacitance for Geobacter in sedimentary environments. J Contam Hydrol 112:30–44.

    Article  CAS  Google Scholar 

  • Zhou J. 2003. Microarrays for bacterial detection and microbial community analysis. Curr Opin Microbiol 6:288–294.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hug, L.A., Edwards, E.A., Vrionis, H., Major, D.W. (2013). Research Needs for Bioaugmentation. In: Stroo, H., Leeson, A., Ward, C. (eds) Bioaugmentation for Groundwater Remediation. SERDP ESTCP Environmental Remediation Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4115-1_12

Download citation

Publish with us

Policies and ethics