Skip to main content

Mahonian Partition Identities via Polyhedral Geometry

  • Chapter
  • First Online:
From Fourier Analysis and Number Theory to Radon Transforms and Geometry

Part of the book series: Developments in Mathematics ((DEVM,volume 28))

Abstract

In a series of papers, George Andrews and various coauthors successfully revitalized seemingly forgotten, powerful machinery based on MacMahon’s Ω operator to systematically compute generating functions \({\sum \nolimits }_{\lambda \in P}{z}_{1}^{{\lambda }_{1}}\ldots {z}_{n}^{{\lambda }_{n}}\) for some set P of integer partitions λ = (λ1, , λ n ). Our goal is to geometrically prove and extend many of Andrews et al.’s theorems, by realizing a given family of partitions as the set of integer lattice points in a certain polyhedron.

Mathematics Subject Classification (2000): Primary 11P84; Secondary 05A15, 05A17, 11P21

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    After a preprint of the current article was made public, Matjaz Konvalinka and Igor Pak communicated to us that they resolved Conjecture 1 by a direct combinatorial argument.

References

  1. George E. Andrews, MacMahon’s partition analysis. I. The lecture hall partition theorem, Mathematical essays in honor of Gian-Carlo Rota (Cambridge, MA, 1996), Progr. Math., vol. 161, Birkhäuser Boston, Boston, MA, 1998, pp. 1–22.

    Google Scholar 

  2. ________, MacMahon’s partition analysis. II. Fundamental theorems, Ann. Comb. 4 (2000), no. 3-4, 327–338.

    MATH  MathSciNet  Google Scholar 

  3. George E. Andrews, Peter Paule, and Axel Riese, MacMahon’s partition analysis. IX. k-gon partitions, Bull. Austral. Math. Soc. 64 (2001), no. 2, 321–329.

    Article  MATH  MathSciNet  Google Scholar 

  4. ________, MacMahon’s partition analysis: the Omega package, European J. Combin. 22 (2001), no. 7, 887–904.

    Article  MATH  MathSciNet  Google Scholar 

  5. ________, MacMahon’s partition analysis VII. Constrained compositions, q-series with applications to combinatorics, number theory, and physics (Urbana, IL, 2000), Contemp. Math., vol. 291, Amer. Math. Soc., Providence, RI, 2001, pp. 11–27.

    Google Scholar 

  6. George E. Andrews, Peter Paule, Axel Riese, and Volker Strehl, MacMahon’s partition analysis. V. Bijections, recursions, and magic squares, Algebraic combinatorics and applications (Gößweinstein, 1999), Springer, Berlin, 2001, pp. 1–39.

    Google Scholar 

  7. Matthias Beck, Ira M. Gessel, Sunyoung Lee, and Carla D. Savage, Symmetrically constrained compositions, Ramanujan J. 23 (2010), no. 1-3, 355–369, arXiv:0906.5573.

    Google Scholar 

  8. Matthias Beck and Sinai Robins, Computing the continuous discretely: Integer-point enumeration in polyhedra, Undergraduate Texts in Mathematics, Springer, New York, 2007, Electronically available at http://math.sfsu.edu/beck/ccd.html.

  9. Michel Brion, Points entiers dans les polyèdres convexes, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 4, 653–663.

    Google Scholar 

  10. Rod Canfield, Sylvie Corteel, and Pawel Hitczenko, Random partitions with non negative rth differences, LATIN 2002: Theoretical informatics (Cancun), Lecture Notes in Comput. Sci., vol. 2286, Springer, Berlin, 2002, pp. 131–140.

    Google Scholar 

  11. Sylvie Corteel, Sunyoung Lee, and Carla D. Savage, Five guidelines for partition analysis with applications to lecture hall-type theorems, Combinatorial number theory, de Gruyter, Berlin, 2007, pp. 131–155.

    Google Scholar 

  12. Sylvie Corteel and Carla D. Savage, Partitions and compositions defined by inequalities, Ramanujan J. 8 (2004), no. 3, 357–381.

    Article  MATH  MathSciNet  Google Scholar 

  13. Sylvie Corteel, Carla D. Savage, and Herbert S. Wilf, A note on partitions and compositions defined by inequalities, Integers 5 (2005), no. 1, A24, 11 pp. (electronic).

    Google Scholar 

  14. Matthias Köppe, A primal Barvinok algorithm based on irrational decompositions, SIAM J. Discrete Math. 21 (2007), no. 1, 220–236 (electronic), arXiv:math.CO/0603308. Software LattE macchiato available at http://www.math.ucdavis.edu/~mkoeppe/latte/.

  15. Percy A. MacMahon, Combinatory Analysis, Chelsea Publishing Co., New York, 1960.

    Google Scholar 

  16. Igor Pak, Partition identities and geometric bijections, Proc. Amer. Math. Soc. 132 (2004), no. 12, 3457–3462 (electronic).

    Google Scholar 

  17. ________, Partition bijections, a survey, Ramanujan J. 12 (2006), no. 1, 5–75.

    Google Scholar 

  18. Georg Pólya and Gábor Szegő, Aufgaben und Lehrsätze aus der Analysis. Band I: Reihen, Integralrechnung, Funktionentheorie, Vierte Auflage. Heidelberger Taschenbücher, Band 73, Springer-Verlag, Berlin, 1970.

    Google Scholar 

  19. Neil J. A. Sloane, On-line encyclopedia of integer sequences, http://www.research.att.com/~njas/sequences/index.html.

  20. Bernd Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996.

    Google Scholar 

  21. Guoce Xin, A fast algorithm for MacMahon’s partition analysis, Electron. J. Combin. 11 (2004), no. 1, Research Paper 58, 20.

    Google Scholar 

  22. Günter M. Ziegler, Lectures on polytopes, Springer-Verlag, New York, 1995.

    Google Scholar 

Download references

Acknowledgements

We thank Carla Savage for pointing out several results in the literature that were relevant to our project. This research was partially supported by the NSF through grants DMS-0810105 (Beck), DMS-0758321 (Braun), and DGE-0841164 (Le).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Beck .

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of Leon Ehrenpreis

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beck, M., Braun, B., Le, N. (2013). Mahonian Partition Identities via Polyhedral Geometry. In: Farkas, H., Gunning, R., Knopp, M., Taylor, B. (eds) From Fourier Analysis and Number Theory to Radon Transforms and Geometry. Developments in Mathematics, vol 28. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4075-8_3

Download citation

Publish with us

Policies and ethics