Skip to main content

Chemical Mechanical Polishing

  • Chapter
  • First Online:
Advanced Analysis of Nontraditional Machining
  • 2747 Accesses

Abstract

Chemical mechanical planarization (CMP) has emerged as an indispensable processing technique for planarization in submicron multilevel VLSI. An analytic model of the material removal rate is proposed for CMP. The effects of applied pressure and polishing velocity are derived by considering the chemical reaction as well as the mechanical bear-and-shear processes. The material removal rate is less linearly correlated to the pressure and relative velocity than that predicted by the frequently cited empirical Preston equation [1]. The effects of CMP kinematic variables on wafer nonuniformity are also investigated. The significance of velocity uniformity is demonstrated by both analysis and experiment. For the endpoint detection, an accurate in situ monitoring method can significantly improve both yield and throughput. A model for CMP polishing pad temperature that is capable of predicting the CMP endpoint in situ is established, based on the total consumed kinematic energy. The process endpoint is detectable by application of the proposed regression method to the measured temperature rise. In addition, the chapter develops an endpoint monitoring method that uses acoustic emissions that occur during CMP. The method considers differences in friction characteristics between the polishing pad and the copper metal overlay. For the flow of slurry between wafer and pad, this study provides a visualized characterization of the amount and distribution of the fluid film between wafer and pad. Digital photographs taken through the transparent carrier and dyed fluid are used to analyze the fluid film.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Preston FW (1927) J Soc Glass Tech 11:214

    Google Scholar 

  2. Hocheng H, Huang YL (2007) Trans Semiconductor Manufact 20(3):306

    Article  Google Scholar 

  3. Warnock J (1991) J Electrochem Soc 138(8):2398

    Article  MathSciNet  Google Scholar 

  4. Yu TK, Yu CC, Orlowski M(1993) A statistical polishing pad model for chemical mechanical polish, IEDM Technical Digest, p. 865

    Google Scholar 

  5. Cook LM (1990) J Non-Cryst Solids 120:152

    Article  Google Scholar 

  6. Liu CW, Dai BT, Yeh CF (1996) J Electrochem Soc 143(2):716

    Article  Google Scholar 

  7. Runnels SR, Eyman LM (1994) J Electrochem Soc 141(6):1698

    Article  Google Scholar 

  8. Runnels SR (1994) J Electrochem Soc 141(7):1900

    Article  Google Scholar 

  9. Runnels SR, Olavson T (1995) J Electrochem Soc 142(6):2032

    Article  Google Scholar 

  10. Tseng WT, Wang YL (1997) J Electrochem Soc 144(2):L15

    Article  Google Scholar 

  11. Patrick WJ, Guthrie WL, Standley CL, Schiable PM (1991) J Electrochem Soc 138(6):1778

    Article  Google Scholar 

  12. Cooke F, Brown N, Prochnow E (1976) Opt Eng 15(5):407

    Article  Google Scholar 

  13. Hocheng H, Tsai H.Y.,Chen L.J. (1997) A kinematic analysis of CMP based on velocity model, in: Proc. 2nd Int. CMP-. MIC, p.277

    Google Scholar 

  14. Chang CY, Sze SM (1996) ULSI technology. McGraw-Hill, New York

    Google Scholar 

  15. Chen L-J, Huang Y-L, Lin Z-H and Chiou H-W (1998) Pad thermal image end-pointing for CMP process, Proc. 3rd Int’l CMP-MIC, p 28

    Google Scholar 

  16. Lin Z-H, Chiou H-W, Shih S.-Y., Kuo L-H, Chen L-J and Hsia C(1999) Study of tungsten CMP endpoint window, Proc. 4th Int’l CMP-MIC, p65

    Google Scholar 

  17. Sicurani E, Fayolle M, Gobil Y, Morand Y and Tardif F (1996) W-CMP consumables evaluation-electrical results and end-point detection, Proc. the Advanced metallization and interconnect systems for ULSI applications, 561

    Google Scholar 

  18. Fayolle M, Sicurani E, Morand Y (1997) Microelectronic Eng 37(38):347

    Article  Google Scholar 

  19. Wang YL, Liu C, Feng MS, Tseng WT (1998) Mat Chem Phys 52(1):17

    Article  Google Scholar 

  20. Springer G (1999) Dependence of wafer carrier motor current and polish pad surface temperature signal on CMP consumable conditions and Ti/TiN liner deposition parameters for tungsten CMP endpoint detection, Proc. 4th Int'l Chemical-Mechanical Planarization for ULSI Multilevel Interconnection Conference (CMP-MIC), The Institute for Microelectronics InterConnection, p. 45

    Google Scholar 

  21. Stein DJ, Hetherington DL (1999) SPIE 3743:112

    Article  Google Scholar 

  22. Sue L, Lutzen J, Gonzales S, Wertsching F, Golzarian R (1999) MRS Proc 566:109

    Article  Google Scholar 

  23. Beckage PJ, Lukner R, Cho W, Edwards K, Jester M, Shaw S (1999) SPIE 3882:118

    Article  Google Scholar 

  24. Sugimoto F, Arimoto Y, Ito T (1995) Jap J Appl Phys, Part 1-Regular Papers 34(12A):6314

    Article  Google Scholar 

  25. Litvak HE, Tzeng HM (1996) Semicon Int’l 19(8):259

    Google Scholar 

  26. Nanz G, Camilletti LE (1995) IEEE Trans Semiconductor Manufact 8:4

    Google Scholar 

  27. Steigerwald JM, Murarka SP, Gutmann RJ (1997) Chemical mechanical planarization of microelectronic materials. Wiley, New York

    Book  Google Scholar 

  28. Coppeta J, Rogers C, Philipossian A, Kaufman F (1997) Mat Res Soc Symp Proc 447:95

    Article  Google Scholar 

  29. D.P.Y. Bramono, L.M. Racz, in: CMP-MIC Conference, Numerical flow visualization of slurry in a chemical mechanical planarization process, 1998, p. 185

    Google Scholar 

  30. Levert J, Shan L, Danyluk S(1998) Pressure Distribution at Silicon-Polishing Pad interface, Proc. Silicon Machining, 1998 Spring Topical Meeting, 96–100

    Google Scholar 

  31. Levine IN (1983) Physical chemistry. McGraw-Hill, New York, p 522

    Google Scholar 

  32. Nogami M, Tomozawa M (1984) J Am Ceram Soc 67(2):151

    Article  Google Scholar 

  33. Bhushan M, Rouse R, Lukens JE (1995) J Electrochem Soc 142(11):3845

    Article  Google Scholar 

  34. Hocheng H, Tsai HY, Su YT (2001) J Electrochem Soc 148(10):G581

    Article  Google Scholar 

  35. Hamrock BJ (1994) Fundamentals of fluid film lubrication. McGraw-Hill, New York, p 170

    Google Scholar 

  36. White FM (1991) Viscous fluid flow. McGraw-Hill, New York, p 113

    Google Scholar 

  37. Su YT, Hung TC, Cheng YY (1995) Wear 188:77

    Article  Google Scholar 

  38. Hocheng H, Tsai HY (1998) ASME Int’l Mech Eng Cong and Expo 8:33

    Google Scholar 

  39. Sun SC, Yeh FL, Tien HZ (1994) Mat Res Soc Symp Proc 337:139

    Article  Google Scholar 

  40. Steigerwald JM, Murarka SP, Gutmann RJ (1997) Chemical mechanical planarization of microelectronic materials. John Wiley & Sons, New York, p 154

    Book  Google Scholar 

  41. Chen D-Z, Lee B-S (1999) J Electrochem Soc 146(2):744

    Article  Google Scholar 

  42. Evans DR, Ulrich BD, Oliver MR (1998) Chemical–mechanical planarization for ULSI multilevel interconnection. In: Wade TE (ed) VMIC Proceedings Series, Santa Clara, USA 347, 1998

    Google Scholar 

  43. Huang CW (1998) Master Thesis, Nat’l Chiao Tung Univ., Taiwan

    Google Scholar 

  44. Hocheng H, Tsai HY, Tsai MS (2000) Int J Mach Tool Manufact 40(11):1651

    Article  Google Scholar 

  45. Hocheng H, Huang YL (2004) Trans Semiconductor Manufact 17(2):180

    Article  Google Scholar 

  46. Liang H, Xu GH (2002) Scripta Materialia 46:343

    Article  Google Scholar 

  47. Sikder AK, Giglio F, Wood J, Kumar A, Anthony M (2001) J Electron Mater 30(12):1520

    Article  Google Scholar 

  48. White D, Melvin J, Boning D (2003) J Electrochem Soc 150(4):G271

    Article  Google Scholar 

  49. Hocheng H, Tsai HY, Huang YL (2001) Key Engineering Materials. Trans Tech, Switzerland, p 1

    Google Scholar 

  50. Iwata K, Moriwaki T (1977) Annals of the CIRP 26:21

    Google Scholar 

  51. Dornfield DA (1984) Acoustic emission monitoring and analysis in manufacturing. The American Society of Mechanical Engineers, New York

    Google Scholar 

  52. Dornfeld DA, Cai HG (1984) ASME Trans, J Eng for Ind 106:28

    Article  Google Scholar 

  53. Inasaki I (1991) Annals of the CIRP 40:359

    Article  Google Scholar 

  54. Dornfeld DA, Kannatey-Asibu E (1980) Int’l J Mech Sci 22(285)

    Google Scholar 

  55. Kannatey-Asibu E, Dornfeld DA (1981) ASME Trans, J of Eng for Ind 103:330

    Article  Google Scholar 

  56. Chang YP, Hashimura M, Dornfeld DA (1996) Annals of the CIRP 45:331

    Article  Google Scholar 

  57. Fukuroda A, Nakamura K, Arimoto Y, (1995) In situ CMP monitoring technique for multi-layer interconnection, Technical Digest Int'l Electron Devices Meeting, Proc. the 1995 Int'l Electron Devices Meeting, p. 469

    Google Scholar 

  58. Tang JS, Unger C, Moon Y, Dornfeld D (1997) Proc Mater Res Soc Symp 476:115

    Article  Google Scholar 

  59. Tang JS, Dornfeld D, Pangrle SK, Dangca A (1998) J Electron Mater 27(10):1099

    Article  Google Scholar 

  60. Hetherington DL, Stein DJ (1999) The Int’l Soc Opt Eng 3884:24

    Google Scholar 

  61. Kojima T, Miyajima M, Akaboshi F, Yogo T, Ishimoto S, Okuda A (2000) IEEE Trans Semiconductor Manufact 13(3):293

    Article  Google Scholar 

  62. Colgan M, Morath C, Tas G, Grief M (2001) Solid State Tech 44(2):67

    Google Scholar 

  63. Sampson RK (2002) Use of Acoustic Spectral Analysis for Monitoring/Control of CMP Process, US Patent 6424137

    Google Scholar 

  64. Hocheng H. and Huang Y-L(2001) Preliminary Study of Endpoint Detection for Chemical Mechanical Planarization Process Using Acoustic Emission, Proc. 18th Int'l VLSI Multilevel Interconnection Conf., p. 107

    Google Scholar 

  65. Huang YL (2002) Ph.D. Dissertation, National Tsing Hua University, Taiwan

    Google Scholar 

  66. Miller RK, Mclentire P (1987) Nondestructive testing handbook, volume 5, acoustic emission testing. American Society for Nondestructive Testing, USA

    Google Scholar 

  67. Hocheng H, Cheng CY (2002) Trans Semiconductor Manufact 15(1):45

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Y. Tsai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tsai, H.Y., Hocheng, H., Huang, Y.L. (2013). Chemical Mechanical Polishing. In: Hocheng, H., Tsai, HY. (eds) Advanced Analysis of Nontraditional Machining. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4054-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4054-3_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4053-6

  • Online ISBN: 978-1-4614-4054-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics