Skip to main content

Radioimmunotherapy of Prostate Carcinoma

  • Chapter
  • First Online:
Nuclear Medicine Therapy

Abstract

Prostate cancer accounts for 25 % of the newly diagnosed cancers among men in developed countries. With the availability of serum Prostate Specific Antigen (PSA) determinations, many patients present early with limited disease but a significant percent will experience recurrences and will eventually die from disseminated disease. Initial evaluation of the extent of disease is rendered difficult by the biology of the disease involving micrometastases in bone marrow and lymph nodes that are often too small to detect in the early stages of the disease with currently available methods. Even when a rising PSA suggests that there is residual disease, the multifocal nature of metastatic prostate carcinoma renders surgical and external beam radiation therapy of little value after treatment of the primary tumor. Whereas androgen deprivation is transiently effective as therapy for as long as 12–18 months in some patients, it is not curative. Subsequent use of chemotherapy is transiently beneficial in a subset of patients but progression of disease is inevitable. Hence, prostate carcinoma represents a distinct challenge and opportunity for radioimmunotherapy based upon selective targeting of tumor sites by an immunoglobulin to which a radioactive atom has been attached, thus serving as a vehicle for targeted radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Horoszewicz JS, Kawinski E, Murphy GP. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res. 1987;7:927–35.

    PubMed  CAS  Google Scholar 

  2. Israeli RS, Powell CT, Fair WR, Heston WD. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res. 1993;53:227–30.

    PubMed  CAS  Google Scholar 

  3. Israeli RS, Powell CT, Corr JG, Fair WR, Heston WD. Expression of the prostate-specific membrane antigen. Cancer Res. 1994;54:1807–11.

    PubMed  CAS  Google Scholar 

  4. Wright GL, Haley C, Beckett ML, Schellhammer PF. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol Oncol. 1995;1:18–28.

    Article  PubMed  Google Scholar 

  5. Troyer JK, Beckett ML, Wright Jr GL. Detection and characterization of the prostate-specific membrane antigen (PSMA) in tissue extracts and body fluids. Int J Cancer. 1995;62:552–8.

    Article  PubMed  CAS  Google Scholar 

  6. Sokoloff RL, Norton KC, Gasior CL, Marker KM, Grauer LS. A dual-monoclonal sandwich assay for prostate-specific membrane antigen: levels in tissues, seminal fluid and urine. Prostate. 2000;43:150–7.

    Article  PubMed  CAS  Google Scholar 

  7. Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer. 1998;82:2256–61.

    Article  PubMed  CAS  Google Scholar 

  8. Wright Jr GL, Grob BM, Haley C, et al. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology. 1996;48:326–34.

    Article  PubMed  Google Scholar 

  9. Sweat SD, Pacelli A, Murphy GP, Bostwick DG. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology. 1998;52:637–40.

    Article  PubMed  CAS  Google Scholar 

  10. Bartley S, Alazraki NP, Goldsmith SJ. SPECT/CT imaging for prostate cancer. In: Israel O, Goldsmith SJ, editors. Hybrid SPECT/CT imaging in clinical practice. New York: Taylor & Francis; 2006. p. 141–56.

    Google Scholar 

  11. Kahn D, Williams RD, Manyak MJ, et al. 111Indium-capromab pendetide in the evaluation of patients with residual or recurrent prostate cancer after radical prostatectomy. The ProstaScint study group. J Urol. 1998;159:2041–6.

    Article  PubMed  CAS  Google Scholar 

  12. Kahn D, Williams RD, Haseman MK, Reed NL, Miller SJ, Gerstbrein J. Radioimmunoscintigraphy with In-111-labeled capromab pendetide predicts prostate cancer response to salvage radiotherapy after failed radical prostatectomy. J Clin Oncol. 1998;16:284–9.

    PubMed  CAS  Google Scholar 

  13. Jani AB, Spelbray D, Hamilton R, et al. Impact of radioimmunoscintigraphy on definition of clinical ­target volume after prostatectomy. J Nucl Med. 2004;45:238–46.

    PubMed  Google Scholar 

  14. Jani AB, Blend MJ, Hamilton R, et al. Influence of radioimmunoscintigraphy on post prostatectomy radiotherapy treatment decision making. J Nucl Med. 2004;45:571–8.

    PubMed  Google Scholar 

  15. Kahn D, Austin JC, Maguire RT, Miller SJ, Gerstbrein J, Williams RD. A phase II study of [90Y] yttrium-capromab pendetide in the treatment of men with prostate cancer recurrence following radical prostatectomy. Cancer Biother Radiopharm. 1999;14:99–111.

    Article  PubMed  CAS  Google Scholar 

  16. Deb N, Goris M, Trisler K, et al. Treatment of hormone-refractory prostate cancer with 90Y-CYT-356 monoclonal antibody. Clin Cancer Res. 1996;2:1289–97.

    PubMed  CAS  Google Scholar 

  17. Smith-Jones PM, Vallabhajosula S, Goldsmith SJ, et al. In vitro characterization of radiolabeled monoclonal antibodies specific for the extracellular domain of prostate-specific membrane antigen. Cancer Res. 2000;60:5237–43.

    PubMed  CAS  Google Scholar 

  18. Liu H, Moy P, Kim S, et al. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res. 1997;57:3629–34.

    PubMed  CAS  Google Scholar 

  19. Smith-Jones PM, Vallabhajosula S, Navarro V, Bastidas D, Goldsmith SJ, Bander NH. Radiolabeled monoclonal antibodies specific to the extracellular domain of prostate-specific membrane antigen: ­preclinical studies in nude mice bearing LNCaP human prostate tumor. J Nucl Med. 2003;44:610–7.

    PubMed  CAS  Google Scholar 

  20. Bander NH, Nanus D, Bremer S, et al. Phase I clinical trial targeting a monoclonal antibody (mAb) to the extracellular domain of prostate specific membrane antigen (PSMAext) in patients with hormone-independent prostate cancer. Proc Am Soc Clin Oncol. 2000;19:Abstr 1872.

    Google Scholar 

  21. Bander NH, Nanus D, Goldstein S, et al. Phase I trial of humanized monoclonal antibody (mAb) to prostate specific membrane antigen/extracellular domain (PSMAext). Proc Am Soc Clin Oncol. 2001;20: Abstr 722.

    Google Scholar 

  22. Vallabhajosula S, Goldsmith SJ, Hamacher KA, et al. Prediction of myelotoxicity based on bone marrow radiation-absorbed dose: radioimmunotherapy studies using 90Y- and 177Lu-labeled J591 antibodies specific for prostate-specific membrane antigen. J Nucl Med. 2005;46:850–8.

    PubMed  CAS  Google Scholar 

  23. O’Donohue JA, Bardies M, Wheldon TE. Relationship between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med. 1995;36:1902–9.

    Google Scholar 

  24. Vallabhajosula S, Goldsmith SJ, Kostakoglu L, Milowsky MI, Nanus DM, Bander NH. Radio­immunotherapy of prostate cancer using 90Y- and 177Lu-labeled J591 monoclonal antibodies: effect of multiple treatments on myelotoxicity. Clin Cancer Res. 2005;11:7195s–200.

    Article  PubMed  CAS  Google Scholar 

  25. Vallabhajosula S, Kuji I, Hamacher KA, et al. Pharmacokinetics and biodistribution of 111In- and 177Lu-labeled J591 antibody specific for prostate-specific membrane antigen: prediction of 90Y-J591 radiation dosimetry based on 111In or 177Lu. J Nucl Med. 2005;46:634–41.

    PubMed  CAS  Google Scholar 

  26. Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ, Bander NH. Phase I trial of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J Clin Oncol. 2004;22:2522–31.

    Article  PubMed  CAS  Google Scholar 

  27. Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ. Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol. 2005;23:4591–601.

    Article  PubMed  CAS  Google Scholar 

  28. Tagawa ST, Milowsky MI, Morris M, et al. Phase II trial of 177Lutetium radiolabeled anti-prostate-specific membrane antigen (PSMA) monoclonal antibody J591 (177Lu-J591) in patients with metastatic castrate-resistant prostate cancer (metCRPC). J Clin Oncol. 2008;26:284s; Abstr 5140.

    Google Scholar 

  29. Hynecek R, Goldsmith SJ, Vallabahajosula S, Nanus D, Tagawa ST, Bander NH. 177Lu-J591 monoclonal antibody (lu-J591) therapy in metastatic castrate resistant prostate cancer (metCRPC): correlation of antibody-tumor targeting and treatment response. J Nucl Med. 2008;49:144P.

    Google Scholar 

  30. DeNardo GL, Schlom J, Buchsbaum DJ, et al. Rationales, evidence, and design considerations for fractionated radioimmunotherapy. Cancer. 2002;94:1332–48.

    Article  PubMed  CAS  Google Scholar 

  31. O’Donoghue JA, Sgouros G, Divgi CR, Humm JL. Single-dose versus fractionated radioimmunotherapy: model comparisons for uniform tumor dosimetry. J Nucl Med. 2000;41:538–47.

    PubMed  Google Scholar 

  32. DeNardo GL, DeNardo SJ, Lamborn KR, et al. Low-dose, fractionated radioimmunotherapy for B-cell malignancies using 131I-lym-1 antibody. Cancer Biother Radiopharm. 1998;13:239–54.

    Article  PubMed  CAS  Google Scholar 

  33. Choy H, Rodriguez FF, Koester S, Hilsenbeck S, Von Hoff DD. Investigation of taxol as a potential radiation sensitizer. Cancer. 1993;71:3774–8.

    Article  PubMed  CAS  Google Scholar 

  34. Tishler RB, Schiff PB, Geard CR, Hall EJ. Taxol: a novel radiation sensitizer. Int J Radiat Oncol Biol Phys. 1992;22:613–7.

    Article  PubMed  CAS  Google Scholar 

  35. Hennequin C, Giocanti N, Favaudon V. Interaction of ionizing radiation with paclitaxel (taxol) and docetaxel (taxotere) in HeLa and SQ20B cells. Cancer Res. 1996;56:1842–50.

    PubMed  CAS  Google Scholar 

  36. O’Donnell RT, DeNardo SJ, Miers LA, et al. Combined modality radioimmunotherapy for human prostate cancer xenografts with taxanes and 90yttrium-DOTA-peptide-ChL6. Prostate. 2002;50:27–37.

    Article  PubMed  Google Scholar 

  37. Richman CM, Denardo SJ, O’Donnell RT, et al. High-dose radioimmunotherapy combined with fixed, low-dose paclitaxel in metastatic prostate and breast cancer by using a MUC-1 monoclonal antibody, m170, linked to indium-111/yttrium-90 via a cathepsin cleavable linker with cyclosporine to prevent human anti-mouse antibody. Clin Cancer Res. 2005;11:5920–7.

    Article  PubMed  CAS  Google Scholar 

  38. Kelly MP, Lee FT, Smyth FE, Brechbiel MW, Scott AM. Enhanced efficacy of 90Y-radiolabeled anti-Lewis Y humanized monoclonal antibody hu3S193 and paclitaxel combined-modality radioimmunotherapy in a breast cancer model. J Nucl Med. 2006;47:716–25.

    PubMed  CAS  Google Scholar 

  39. Moul JW. Prostate specific antigen only progression of prostate cancer. J Urol. 2000;163:1632–42.

    Article  PubMed  CAS  Google Scholar 

  40. Scher HI, Eisenberger M, D’Amico AV, et al. Eligibility and outcomes reporting guidelines for ­clinical trials for patients in the state of a rising prostate-specific antigen: recommendations from the prostate-specific antigen working group. J Clin Oncol. 2004;22:537–56.

    Article  PubMed  Google Scholar 

  41. Sharkey RM, Rossi EA, McBride WJ, et al. Recombinant bispecific monoclonal antibodies prepared by the Dock-and-Lock strategy for pretargeted radioimmunotherapy. Semin Nucl Med. 2010;40:190–203.

    Article  PubMed  Google Scholar 

  42. Tagawa ST, Vallabhajosula S, Akhtar NH, Osborne J, et al. Phase I trial of fractionated-dose 177Lutetium radiolabeled anti-prostate-specific membrane antigen monoclonal antibody J591 (177Lu-J591) in patients with metastatic castration-resistant prostate cancer (metCRPC). AACR Annual Meeting; 2012; Abstract # 748.

    Google Scholar 

Download references

Acknowledgement

Research Support: Prostate Cancer Foundation, Department of Defense, National Institutes of Health, David H. Koch Foundation, Yablans Family Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley J. Goldsmith M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goldsmith, S.J. et al. (2013). Radioimmunotherapy of Prostate Carcinoma. In: Aktolun, C., Goldsmith, S. (eds) Nuclear Medicine Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4021-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4021-5_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4020-8

  • Online ISBN: 978-1-4614-4021-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics