Skip to main content

Translational Control in the Caenorhabditis elegans Germ Line

  • Chapter
  • First Online:
Germ Cell Development in C. elegans

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 757))

Abstract

Translational control is a prevalent form of gene expression regulation in the Caenorhabditis elegans germ line. Linking the amount of protein synthesis to mRNA quantity and translational accessibility in the cell cytoplasm provides unique advantages over DNA-based controls for developing germ cells. This mode of gene expression is especially exploited in germ cell fate decisions and during oogenesis, when the developing oocytes stockpile hundreds of different mRNAs required for early embryogenesis. Consequently, a dense web of RNA regulators, consisting of diverse RNA-binding proteins and RNA-modifying enzymes, control the translatability of entire mRNA expression programs. These RNA regulatory networks are tightly coupled to germ cell developmental progression and are themselves under translational control. The underlying molecular mechanisms and RNA codes embedded in the mRNA molecules are beginning to be understood. Hence, the C. elegans germ line offers fertile grounds for discovering post-transcriptional mRNA regulatory mechanisms and emerges as great model for a systems level understanding of translational control during development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahringer J, Kimble J (1991) Control of the sperm-oocyte switch in Caenorhabditis elegans hermaphrodites by the fem-3 3′ untranslated region. Nature 349(6307):346–348. doi:10.1038/349346a0

    PubMed  CAS  Google Scholar 

  • Amiri A, Keiper BD, Kawasaki I, Fan Y, Kohara Y, Rhoads RE, Strome S (2001) An isoform of eIF4E is a component of germ granules and is required for spermatogenesis in C. elegans. Development 128(20):3899–3912

    PubMed  CAS  Google Scholar 

  • Ariz M, Mainpal R, Subramaniam K (2009) C. elegans RNA-binding proteins PUF-8 and MEX-3 function redundantly to promote germline stem cell mitosis. Dev Biol 326(2):295–304. doi:10.1016/j.ydbio.2008.11.024

    PubMed  CAS  Google Scholar 

  • Arur S, Ohmachi M, Nayak S, Hayes M, Miranda A, Hay A, Golden A, Schedl T (2009) Multiple ERK substrates execute single biological processes in Caenorhabditis elegans germ-line development. Proc Natl Acad Sci USA 106(12):4776–4781. doi:10.1073/pnas.0812285106

    PubMed  CAS  Google Scholar 

  • Arur S, Ohmachi M, Berkseth M, Nayak S, Hansen D, Zarkower D, Schedl T (2011) MPK-1 ERK controls membrane organization in C. elegans oogenesis via a sex-determination module. Dev Cell 20(5):677–688. doi:10.1016/j.devcel.2011.04.009

    PubMed  CAS  Google Scholar 

  • Audhya A, Hyndman F, McLeod IX, Maddox AS, Yates JR 3rd, Desai A, Oegema K (2005) A complex containing the Sm protein CAR-1 and the RNA helicase CGH-1 is required for embryonic cytokinesis in Caenorhabditis elegans. J Cell Biol 171(2):267–279. doi:10.1083/jcb.200506124

    PubMed  CAS  Google Scholar 

  • Austin J, Kimble J (1987) glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 51(4):589–599

    PubMed  CAS  Google Scholar 

  • Bachorik JL, Kimble J (2005) Redundant control of the Caenorhabditis elegans sperm/oocyte switch by PUF-8 and FBF-1, two distinct PUF RNA-binding proteins. Proc Natl Acad Sci USA 102(31):10893–10897. doi:10.1073/pnas.0504593102

    PubMed  CAS  Google Scholar 

  • Baer BW, Kornberg RD (1980) Repeating structure of cytoplasmic poly(A)-ribonucleoprotein. Proc Natl Acad Sci USA 77(4):1890–1892

    PubMed  CAS  Google Scholar 

  • Baer BW, Kornberg RD (1983) The protein responsible for the repeating structure of cytoplasmic poly(A)-ribonucleoprotein. J Cell Biol 96(3):717–721

    PubMed  CAS  Google Scholar 

  • Barnard DC, Cao Q, Richter JD (2005) Differential phosphorylation controls Maskin association with eukaryotic translation initiation factor 4E and localization on the mitotic apparatus. Mol Cell Biol 25(17):7605–7615. doi:10.1128/MCB.25.17.7605-7615.2005

    PubMed  CAS  Google Scholar 

  • Barton MK, Kimble J (1990) fog-1, a regulatory gene required for specification of spermatogenesis in the germ line of Caenorhabditis elegans. Genetics 125(1):29–39

    PubMed  CAS  Google Scholar 

  • Barton MK, Schedl TB, Kimble J (1987) Gain-of-function mutations of fem-3, a sex-determination gene in Caenorhabditis elegans. Genetics 115(1):107–119

    PubMed  CAS  Google Scholar 

  • Bernstein D, Hook B, Hajarnavis A, Opperman L, Wickens M (2005) Binding specificity and mRNA targets of a C. elegans PUF protein, FBF-1. RNA 11(4):447–458. doi:10.1261/rna.7255805

  • Biedermann B, Wright J, Senften M, Kalchhauser I, Sarathy G, Lee MH, Ciosk R (2009) Translational repression of cyclin E prevents precocious mitosis and embryonic gene activation during C. elegans meiosis. Dev Cell 17(3):355–364. doi:10.1016/j.devcel.2009.08.003

    PubMed  CAS  Google Scholar 

  • Boag PR, Nakamura A, Blackwell TK (2005) A conserved RNA-protein complex component involved in physiological germline apoptosis regulation in C. elegans. Development 132(22):4975–4986. doi:10.1242/dev.02060

    PubMed  CAS  Google Scholar 

  • Boag PR, Atalay A, Robida S, Reinke V, Blackwell TK (2008) Protection of specific maternal messenger RNAs by the P body protein CGH-1 (Dhh1/RCK) during Caenorhabditis elegans oogenesis. J Cell Biol 182(3):543–557. doi:10.1083/jcb.200801183

    PubMed  CAS  Google Scholar 

  • Bourc’his D, Voinnet O (2010) A small-RNA perspective on gametogenesis, fertilization, and early zygotic development. Science 330(6004):617–622. doi:10.1126/science.1194776

    PubMed  Google Scholar 

  • Bowerman B, Kurz T (2006) Degrade to create: developmental requirements for ubiquitin-mediated proteolysis during early C. elegans embryogenesis. Development 133(5):773–784. doi:10.1242/dev.02276

    PubMed  CAS  Google Scholar 

  • Buchan JR, Yoon JH, Parker R (2011) Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae. J Cell Sci 124(Pt 2):228–239. doi:10.1242/jcs.078444

    PubMed  CAS  Google Scholar 

  • Buchet-Poyau K, Courchet J, Le Hir H, Seraphin B, Scoazec JY, Duret L, Domon-Dell C, Freund JN, Billaud M (2007) Identification and characterization of human Mex-3 proteins, a novel family of evolutionarily conserved RNA-binding proteins differentially localized to processing bodies. Nucleic Acids Res 35(4):1289–1300. doi:10.1093/nar/gkm016

    PubMed  CAS  Google Scholar 

  • Ceron J, Rual JF, Chandra A, Dupuy D, Vidal M, van den Heuvel S (2007) Large-scale RNAi screens identify novel genes that interact with the C. elegans retinoblastoma pathway as well as splicing-related components with synMuv B activity. BMC Dev Biol 7:30. doi:10.1186/1471-213X-7-30

    PubMed  Google Scholar 

  • Chen T, Damaj BB, Herrera C, Lasko P, Richard S (1997) Self-association of the single-KH-domain family members Sam68, GRP33, GLD-1, and Qk1: role of the KH domain. Mol Cell Biol 17(10):5707–5718

    PubMed  CAS  Google Scholar 

  • Chu DS, Shakes DC (2012) Spermatogenesis. Advances in Experimental Medicine and Biology 757:171–203. (Chap. 7, this volume) Springer, New York

    Google Scholar 

  • Ciosk R, DePalma M, Priess JR (2004) ATX-2, the C. elegans ortholog of ataxin 2, functions in translational regulation in the germline. Development 131(19):4831–4841. doi:10.1242/dev.01352

    PubMed  CAS  Google Scholar 

  • Ciosk R, DePalma M, Priess JR (2006) Translational regulators maintain totipotency in the Caenorhabditis elegans germline. Science 311(5762):851–853. doi:10.1126/science.1122491

    PubMed  CAS  Google Scholar 

  • Clark-Maguire S, Mains PE (1994a) Localization of the mei-1 gene product of Caenorhaditis elegans, a meiotic-specific spindle component. J Cell Biol 126(1):199–209

    PubMed  CAS  Google Scholar 

  • Clark-Maguire S, Mains PE (1994b) mei-1, a gene required for meiotic spindle formation in Caenorhabditis elegans, is a member of a family of ATPases. Genetics 136(2):533–546

    PubMed  CAS  Google Scholar 

  • Clifford R, Lee MH, Nayak S, Ohmachi M, Giorgini F, Schedl T (2000) FOG-2, a novel F-box containing protein, associates with the GLD-1 RNA binding protein and directs male sex determination in the C. elegans hermaphrodite germline. Development 127(24):5265–5276

    PubMed  CAS  Google Scholar 

  • Conine CC, Batista PJ, Gu W, Claycomb JM, Chaves DA, Shirayama M, Mello CC (2010) Argonautes ALG-3 and ALG-4 are required for spermatogenesis-specific 26 G-RNAs and thermotolerant sperm in Caenorhabditis elegans. Proc Natl Acad Sci USA 107(8):3588–3593. doi:10.1073/pnas.0911685107

    PubMed  CAS  Google Scholar 

  • Contreras V, Richardson MA, Hao E, Keiper BD (2008) Depletion of the cap-associated isoform of translation factor eIF4G induces germline apoptosis in C. elegans. Cell Death Differ 15(8):1232–1242. doi:10.1038/cdd.2008.46

    PubMed  CAS  Google Scholar 

  • Crittenden SL, Bernstein DS, Bachorik JL, Thompson BE, Gallegos M, Petcherski AG, Moulder G, Barstead R, Wickens M, Kimble J (2002) A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature 417(6889):660–663. doi:10.1038/nature754

    PubMed  CAS  Google Scholar 

  • Curtis D, Treiber DK, Tao F, Zamore PD, Williamson JR, Lehmann R (1997) A CCHC metal-binding domain in Nanos is essential for translational regulation. EMBO J 16(4):834–843. doi:10.1093/emboj/16.4.834

    PubMed  CAS  Google Scholar 

  • de Moor CH, Richter JD (1997) The Mos pathway regulates cytoplasmic polyadenylation in Xenopus oocytes. Mol Cell Biol 17(11):6419–6426

    PubMed  Google Scholar 

  • DeBella LR, Hayashi A, Rose LS (2006) LET-711, the Caenorhabditis elegans NOT1 ortholog, is required for spindle positioning and regulation of microtubule length in embryos. Mol Biol Cell 17(11):4911–4924. doi:10.1091/mbc.E06-02-0107

    PubMed  CAS  Google Scholar 

  • Decker CJ, Parker R (1993) A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev 7(8):1632–1643

    PubMed  CAS  Google Scholar 

  • Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432(7014):231–235. doi:10.1038/nature03049

    PubMed  CAS  Google Scholar 

  • Detwiler MR, Reuben M, Li X, Rogers E, Lin R (2001) Two zinc finger proteins, OMA-1 and OMA-2, are redundantly required for oocyte maturation in C. elegans. Dev Cell 1(2):187–199

    PubMed  CAS  Google Scholar 

  • Dinkova TD, Keiper BD, Korneeva NL, Aamodt EJ, Rhoads RE (2005) Translation of a small subset of Caenorhabditis elegans mRNAs is dependent on a specific eukaryotic translation initiation factor 4E isoform. Mol Cell Biol 25(1):100–113. doi:10.1128/MCB.25.1.100-113.2005

    PubMed  CAS  Google Scholar 

  • Draper BW, Mello CC, Bowerman B, Hardin J, Priess JR (1996) MEX-3 is a KH domain protein that regulates blastomere identity in early C. elegans embryos. Cell 87(2):205–216

    PubMed  CAS  Google Scholar 

  • Eckmann CR, Kraemer B, Wickens M, Kimble J (2002) GLD-3, a bicaudal-C homolog that inhibits FBF to control germline sex determination in C. elegans. Dev Cell 3(5):697–710

    PubMed  CAS  Google Scholar 

  • Eckmann CR, Crittenden SL, Suh N, Kimble J (2004) GLD-3 and control of the mitosis/meiosis decision in the germline of Caenorhabditis elegans. Genetics 168(1):147–160. doi:10.1534/genetics.104.029264

    PubMed  CAS  Google Scholar 

  • Eckmann CR, Rammelt C, Wahle E (2011) Control of poly(A) tail length. Wiley Interdiscip Rev RNA 2(3):348–361. doi:10.1002/wrna.56

    PubMed  CAS  Google Scholar 

  • Edwards TA, Pyle SE, Wharton RP, Aggarwal AK (2001) Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell 105(2):281–289

    PubMed  CAS  Google Scholar 

  • Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379. doi:10.1146/annurev-biochem-060308-103103

    PubMed  CAS  Google Scholar 

  • Francis R, Barton MK, Kimble J, Schedl T (1995a) gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans. Genetics 139(2):579–606

    PubMed  CAS  Google Scholar 

  • Francis R, Maine E, Schedl T (1995b) Analysis of the multiple roles of gld-1 in germline development: interactions with the sex determination cascade and the glp-1 signaling pathway. Genetics 139(2):607–630

    PubMed  CAS  Google Scholar 

  • Furuichi Y, LaFiandra A, Shatkin AJ (1977) 5′-Terminal structure and mRNA stability. Nature 266(5599):235–239

    PubMed  CAS  Google Scholar 

  • Garneau NL, Wilusz J, Wilusz CJ (2007) The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8(2):113–126. doi:10.1038/nrm2104

    PubMed  CAS  Google Scholar 

  • Gebauer F, Hentze MW (2004) Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 5(10):827–835. doi:10.1038/nrm1488

    PubMed  CAS  Google Scholar 

  • Goodwin EB, Okkema PG, Evans TC, Kimble J (1993) Translational regulation of tra-2 by its 3′ untranslated region controls sexual identity in C. elegans. Cell 75(2):329–339

    PubMed  CAS  Google Scholar 

  • Goodwin EB, Hofstra K, Hurney CA, Mango S, Kimble J (1997) A genetic pathway for regulation of tra-2 translation. Development 124(3):749–758

    PubMed  CAS  Google Scholar 

  • Graves LE, Segal S, Goodwin EB (1999) TRA-1 regulates the cellular distribution of the tra-2 mRNA in C. elegans. Nature 399(6738):802–805. doi:10.1038/21682

    PubMed  CAS  Google Scholar 

  • Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106(1):23–34

    PubMed  CAS  Google Scholar 

  • Guven-Ozkan T, Robertson SM, Nishi Y, Lin R (2010) zif-1 translational repression defines a second, mutually exclusive OMA function in germline transcriptional repression. Development 137(20):3373–3382. doi:10.1242/dev.055327

    PubMed  CAS  Google Scholar 

  • Hake LE, Mendez R, Richter JD (1998) Specificity of RNA binding by CPEB: requirement for RNA recognition motifs and a novel zinc finger. Mol Cell Biol 18(2):685–693

    PubMed  CAS  Google Scholar 

  • Han T, Manoharan AP, Harkins TT, Bouffard P, Fitzpatrick C, Chu DS, Thierry-Mieg D, Thierry-Mieg J, Kim JK (2009) 26 G endo-siRNAs regulate spermatogenic and zygotic gene expression in Caenorhabditis elegans. Proc Natl Acad Sci USA 106(44):18674–18679. doi:10.1073/pnas.0906378106

    PubMed  CAS  Google Scholar 

  • Hanazawa M, Kawasaki I, Kunitomo H, Gengyo-Ando K, Bennett KL, Mitani S, Iino Y (2004) The Caenorhabditis elegans eukaryotic initiation factor 5A homologue, IFF-1, is required for germ cell proliferation, gametogenesis and localization of the P-granule component PGL-1. Mech Dev 121(3):213–224. doi:10.1016/j.mod.2004.02.001

    PubMed  CAS  Google Scholar 

  • Hansen D, Schedl T (2012) Stem cell proliferation versus meiotic fate decision in C. elegans. Advances in Experimental Medicine and Biology 757:71–99. (Chap. 4, this volume) Springer, New York

    Google Scholar 

  • Hansen D, Wilson-Berry L, Dang T, Schedl T (2004) Control of the proliferation versus meiotic development decision in the C. elegans germline through regulation of GLD-1 protein accumulation. Development 131(1):93–104. doi:10.1242/dev.00916

    PubMed  CAS  Google Scholar 

  • Hasegawa E, Karashima T, Sumiyoshi E, Yamamoto M (2006) C. elegans CPB-3 interacts with DAZ-1 and functions in multiple steps of germline development. Dev Biol 295(2):689–699. doi:10.1016/j.ydbio.2006.04.002

    PubMed  CAS  Google Scholar 

  • Henderson MA, Cronland E, Dunkelbarger S, Contreras V, Strome S, Keiper BD (2009) A germline-specific isoform of eIF4E (IFE-1) is required for efficient translation of stored mRNAs and maturation of both oocytes and sperm. J Cell Sci 122(Pt 10):1529–1539. doi:10.1242/jcs.046771

    PubMed  CAS  Google Scholar 

  • Hunter CP, Kenyon C (1996) Spatial and temporal controls target pal-1 blastomere-specification activity to a single blastomere lineage in C. elegans embryos. Cell 87(2):217–226

    PubMed  CAS  Google Scholar 

  • Jackson RJ (2005) Alternative mechanisms of initiating translation of mammalian mRNAs. Biochem Soc Trans 33(Pt 6):1231–1241. doi:10.1042/BST20051231

    PubMed  CAS  Google Scholar 

  • Jadhav S, Rana M, Subramaniam K (2008) Multiple maternal proteins coordinate to restrict the translation of C. elegans nanos-2 to primordial germ cells. Development 135(10):1803–1812. doi:10.1242/dev.013656

    PubMed  CAS  Google Scholar 

  • Jan E, Yoon JW, Walterhouse D, Iannaccone P, Goodwin EB (1997) Conservation of the C. elegans tra-2 3′UTR translational control. EMBO J 16(20):6301–6313. doi:10.1093/emboj/16.20.6301

    PubMed  CAS  Google Scholar 

  • Jan E, Motzny CK, Graves LE, Goodwin EB (1999) The STAR protein, GLD-1, is a translational regulator of sexual identity in Caenorhabditis elegans. EMBO J 18(1):258–269. doi:10.1093/emboj/18.1.258

    PubMed  CAS  Google Scholar 

  • Jankowska-Anyszka M, Lamphear BJ, Aamodt EJ, Harrington T, Darzynkiewicz E, Stolarski R, Rhoads RE (1998) Multiple isoforms of eukaryotic protein synthesis initiation factor 4E in Caenorhabditis elegans can distinguish between mono- and trimethylated mRNA cap structures. J Biol Chem 273(17):10538–10542

    PubMed  CAS  Google Scholar 

  • Jones AR, Schedl T (1995) Mutations in gld-1, a female germ cell-specific tumor suppressor gene in Caenorhabditis elegans, affect a conserved domain also found in Src-associated protein Sam68. Genes Dev 9(12):1491–1504

    PubMed  CAS  Google Scholar 

  • Jones AR, Francis R, Schedl T (1996) GLD-1, a cytoplasmic protein essential for oocyte differentiation, shows stage- and sex-specific expression during Caenorhabditis elegans germline development. Dev Biol 180(1):165–183. doi:10.1006/dbio.1996.0293

    PubMed  CAS  Google Scholar 

  • Jud MC, Czerwinski MJ, Wood MP, Young RA, Gallo CM, Bickel JS, Petty EL, Mason JM, Little BA, Padilla PA, Schisa JA (2008) Large P body-like RNPs form in C. elegans oocytes in response to arrested ovulation, heat shock, osmotic stress, and anoxia and are regulated by the major sperm protein pathway. Dev Biol 318(1):38–51. doi:10.1016/j.ydbio.2008.02.059

    PubMed  CAS  Google Scholar 

  • Kadyk LC, Kimble J (1998) Genetic regulation of entry into meiosis in Caenorhabditis elegans. Development 125(10):1803–1813

    PubMed  CAS  Google Scholar 

  • Kadyk LC, Lambie EJ, Kimble J (1997) glp-3 is required for mitosis and meiosis in the Caenorhabditis elegans germ line. Genetics 145(1):111–121

    PubMed  CAS  Google Scholar 

  • Kalchhauser I, Farley BM, Pauli S, Ryder SP, Ciosk R (2011) FBF represses the Cip/Kip cell-cycle inhibitor CKI-2 to promote self-renewal of germline stem cells in C. elegans. EMBO J. doi:10.1038/emboj.2011.263

  • Kato M, de Lencastre A, Pincus Z, Slack FJ (2009) Dynamic expression of small non-coding RNAs, including novel microRNAs and piRNAs/21U-RNAs, during Caenorhabditis elegans development. Genome Biol 10(5):R54. doi:10.1186/gb-2009-10-5-r54

    PubMed  Google Scholar 

  • Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169(6):871–884. doi:10.1083/jcb.200502088

    PubMed  CAS  Google Scholar 

  • Keiper BD, Lamphear BJ, Deshpande AM, Jankowska-Anyszka M, Aamodt EJ, Blumenthal T, Rhoads RE (2000) Functional characterization of five eIF4E isoforms in Caenorhabditis elegans. J Biol Chem 275(14):10590–10596

    PubMed  CAS  Google Scholar 

  • Kershner AM, Kimble J (2010) Genome-wide analysis of mRNA targets for Caenorhabditis elegans FBF, a conserved stem cell regulator. Proc Natl Acad Sci USA 107(8):3936–3941. doi:10.1073/pnas.1000495107

    PubMed  CAS  Google Scholar 

  • Kim KW, Nykamp K, Suh N, Bachorik JL, Wang L, Kimble J (2009a) Antagonism between GLD-2 binding partners controls gamete sex. Dev Cell 16(5):723–733. doi:10.1016/j.devcel.2009.04.002

    PubMed  CAS  Google Scholar 

  • Kim VN, Han J, Siomi MC (2009b) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139. doi:10.1038/nrm2632

    PubMed  CAS  Google Scholar 

  • Kim KW, Wilson TL, Kimble J (2010) GLD-2/RNP-8 cytoplasmic poly(A) polymerase is a broad-spectrum regulator of the oogenesis program. Proc Natl Acad Sci USA 107(40):17445–17450. doi:10.1073/pnas.1012611107

    PubMed  CAS  Google Scholar 

  • Kim S, Spike CA, Greenstein D (2012) Control of oocyte growth and meiotic maturation in C. elegans. Advances in Experimental Medicine and Biology 757:277–320. (Chap. 10, this volume) Springer, New York

    Google Scholar 

  • Klass M, Dow B, Herndon M (1982) Cell-specific transcriptional regulation of the major sperm protein in Caenorhabditis elegans. Dev Biol 93(1):152–164

    PubMed  CAS  Google Scholar 

  • Knight SW, Bass BL (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293(5538):2269–2271. doi:10.1126/science.1062039

    PubMed  CAS  Google Scholar 

  • Ko S, Park JH, Lee AR, Kim E, Jiyoung K, Kawasaki I, Shim YH (2010) Two mutations in pab-1 encoding poly(A)-binding protein show similar defects in germline stem cell proliferation but different longevity in C. elegans. Mol Cells 30(2):167–172. doi:10.1007/s10059-010-0103-2

    PubMed  CAS  Google Scholar 

  • Kraemer B, Crittenden S, Gallegos M, Moulder G, Barstead R, Kimble J, Wickens M (1999) NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans. Curr Biol 9(18):1009–1018

    PubMed  CAS  Google Scholar 

  • Kuersten S, Goodwin EB (2003) The power of the 3′ UTR: translational control and development. Nat Rev Genet 4(8):626–637. doi:10.1038/nrg1125

    PubMed  CAS  Google Scholar 

  • Kuersten S, Segal SP, Verheyden J, LaMartina SM, Goodwin EB (2004) NXF-2, REF-1, and REF-2 affect the choice of nuclear export pathway for tra-2 mRNA in C. elegans. Mol Cell 14(5):599–610. doi:10.1016/j.molcel.2004.05.004

    PubMed  CAS  Google Scholar 

  • Lall S, Piano F, Davis RE (2005) Caenorhabditis elegans decapping proteins: localization and functional analysis of Dcp1, Dcp2, and DcpS during embryogenesis. Mol Biol Cell 16(12):5880–5890. doi:10.1091/mbc.E05-07-0622

    PubMed  CAS  Google Scholar 

  • Lamont LB, Crittenden SL, Bernstein D, Wickens M, Kimble J (2004) FBF-1 and FBF-2 regulate the size of the mitotic region in the C. elegans germline. Dev Cell 7(5):697–707. doi:10.1016/j.devcel.2004.09.013

    PubMed  CAS  Google Scholar 

  • Lasda EL, Blumenthal T (2011) Trans-splicing. Wiley Interdiscip Rev RNA 2(3):417–434. doi:10.1002/wrna.71

    PubMed  CAS  Google Scholar 

  • Lee MH, Schedl T (2001) Identification of in vivo mRNA targets of GLD-1, a maxi-KH motif containing protein required for C. elegans germ cell development. Genes Dev 15(18):2408–2420. doi:10.1101/gad.915901

    Google Scholar 

  • Lee MH, Schedl T (2004) Translation repression by GLD-1 protects its mRNA targets from nonsense-mediated mRNA decay in C. elegans. Genes Dev 18(9):1047–1059. doi:10.1101/gad.1188404

    Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    PubMed  CAS  Google Scholar 

  • Lee MH, Hook B, Lamont LB, Wickens M, Kimble J (2006) LIP-1 phosphatase controls the extent of germline proliferation in Caenorhabditis elegans. EMBO J 25(1):88–96. doi:10.1038/sj.emboj.7600901

    PubMed  CAS  Google Scholar 

  • Lee MH, Hook B, Pan G, Kershner AM, Merritt C, Seydoux G, Thomson JA, Wickens M, Kimble J (2007a) Conserved regulation of MAP kinase expression by PUF RNA-binding proteins. PLoS Genet 3(12):e233. doi:10.1371/journal.pgen.0030233

    PubMed  Google Scholar 

  • Lee MH, Ohmachi M, Arur S, Nayak S, Francis R, Church D, Lambie E, Schedl T (2007b) Multiple functions and dynamic activation of MPK-1 extracellular signal-regulated kinase signaling in Caenorhabditis elegans germline development. Genetics 177(4):2039–2062. doi:10.1534/genetics.107.081356

    PubMed  CAS  Google Scholar 

  • Li W, Boswell R, Wood WB (2000) mag-1, a homolog of Drosophila mago nashi, regulates hermaphrodite germ-line sex determination in Caenorhabditis elegans. Dev Biol 218(2):172–182. doi:10.1006/dbio.1999.9593

    PubMed  CAS  Google Scholar 

  • Li W, DeBella LR, Guven-Ozkan T, Lin R, Rose LS (2009) An eIF4E-binding protein regulates katanin protein levels in C. elegans embryos. J Cell Biol 187(1):33–42. doi:10.1083/jcb.200903003

    PubMed  CAS  Google Scholar 

  • Lu R, Yigit E, Li WX, Ding SW (2009) An RIG-I-Like RNA helicase mediates antiviral RNAi downstream of viral siRNA biogenesis in Caenorhabditis elegans. PLoS Pathog 5(2):e1000286. doi:10.1371/journal.ppat.1000286

    PubMed  Google Scholar 

  • Lublin AL, Evans TC (2007) The RNA-binding proteins PUF-5, PUF-6, and PUF-7 reveal multiple systems for maternal mRNA regulation during C. elegans oogenesis. Dev Biol 303(2):635–649. doi:10.1016/j.ydbio.2006.12.004

    PubMed  CAS  Google Scholar 

  • Lui DY, Colaiácovo MP (2012) Meiotic development in C. elegans. Advances in Experimental Medicine and Biology 757:133–170. (Chap. 6, this volume) Springer, New York

    Google Scholar 

  • Luitjens C, Gallegos M, Kraemer B, Kimble J, Wickens M (2000) CPEB proteins control two key steps in spermatogenesis in C. elegans. Genes Dev 14(20):2596–2609

    Google Scholar 

  • Maciejowski J, Ahn JH, Cipriani PG, Killian DJ, Chaudhary AL, Lee JI, Voutev R, Johnsen RC, Baillie DL, Gunsalus KC, Fitch DH, Hubbard EJ (2005) Autosomal genes of autosomal/X-linked duplicated gene pairs and germ-line proliferation in Caenorhabditis elegans. Genetics 169(4):1997–2011. doi:10.1534/genetics.104.040121

    PubMed  CAS  Google Scholar 

  • Mainpal R, Priti A, Subramaniam K (2011) PUF-8 suppresses the somatic transcription factor PAL-1 expression in C. elegans germline stem cells. Dev Biol 360(1):195–207. doi:10.1016/j.ydbio.2011.09.021

    PubMed  CAS  Google Scholar 

  • Marin VA, Evans TC (2003) Translational repression of a C. elegans Notch mRNA by the STAR/KH domain protein GLD-1. Development 130(12):2623–2632

    PubMed  CAS  Google Scholar 

  • Maruyama R, Endo S, Sugimoto A, Yamamoto M (2005) Caenorhabditis elegans DAZ-1 is expressed in proliferating germ cells and directs proper nuclear organization and cytoplasmic core formation during oogenesis. Dev Biol 277(1):142–154. doi:10.1016/j.ydbio.2004.08.053

    PubMed  CAS  Google Scholar 

  • Mathews MB, Sonenberg N, Hershey J (2007) Translational control in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Mendez R, Richter JD (2001) Translational control by CPEB: a means to the end. Nat Rev Mol Cell Biol 2(7):521–529. doi:10.1038/35080081

    PubMed  CAS  Google Scholar 

  • Merritt C, Seydoux G (2010) The Puf RNA-binding proteins FBF-1 and FBF-2 inhibit the expression of synaptonemal complex proteins in germline stem cells. Development 137(11):1787–1798. doi:10.1242/dev.050799

    PubMed  CAS  Google Scholar 

  • Merritt C, Rasoloson D, Ko D, Seydoux G (2008) 3′ UTRs are the primary regulators of gene expression in the C. elegans germline. Curr Biol 18(19):1476–1482. doi:10.1016/j.cub.2008.08.013

    PubMed  CAS  Google Scholar 

  • Miyoshi H, Dwyer DS, Keiper BD, Jankowska-Anyszka M, Darzynkiewicz E, Rhoads RE (2002) Discrimination between mono- and trimethylated cap structures by two isoforms of Caenorhabditis elegans eIF4E. EMBO J 21(17):4680–4690

    PubMed  CAS  Google Scholar 

  • Molin L, Puisieux A (2005) C. elegans homologue of the Caf1 gene, which encodes a subunit of the CCR4-NOT complex, is essential for embryonic and larval development and for meiotic progression. Gene 358:73–81. doi:10.1016/j.gene.2005.05.023

    Google Scholar 

  • Mootz D, Ho DM, Hunter CP (2004) The STAR/Maxi-KH domain protein GLD-1 mediates a developmental switch in the translational control of C. elegans PAL-1. Development 131(14):3263–3272. doi:10.1242/dev.01196

    PubMed  CAS  Google Scholar 

  • Munroe D, Jacobson A (1990) mRNA poly(A) tail, a 3′ enhancer of translational initiation. Mol Cell Biol 10(7):3441–3455

    PubMed  CAS  Google Scholar 

  • Nakamura M, Ando R, Nakazawa T, Yudazono T, Tsutsumi N, Hatanaka N, Ohgake T, Hanaoka F, Eki T (2007) Dicer-related drh-3 gene functions in germ-line development by maintenance of chromosomal integrity in Caenorhabditis elegans. Genes Cells 12(9):997–1010. doi:10.1111/j.1365-2443.2007.01111.x

    PubMed  CAS  Google Scholar 

  • Nakel K, Hartung SA, Bonneau F, Eckmann CR, Conti E (2010) Four KH domains of the C. elegans Bicaudal-C ortholog GLD-3 form a globular structural platform. RNA 16(11):2058–2067. doi:10.1261/rna.2315010

    Google Scholar 

  • Nelson MR, Leidal AM, Smibert CA (2004) Drosophila Cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression. EMBO J 23(1):150–159. doi:10.1038/sj.emboj.7600026

    PubMed  CAS  Google Scholar 

  • Nolde MJ, Saka N, Reinert KL, Slack FJ (2007) The Caenorhabditis elegans pumilio homolog, puf-9, is required for the 3′UTR-mediated repression of the let-7 microRNA target gene, hbl-1. Dev Biol 305(2):551–563. doi:10.1016/j.ydbio.2007.02.040

    PubMed  CAS  Google Scholar 

  • Nykamp K, Lee MH, Kimble J (2008) C. elegans La-related protein, LARP-1, localizes to ­germline P bodies and attenuates Ras-MAPK signaling during oogenesis. RNA 14(7):1378–1389. doi:10.1261/rna.1066008

    Google Scholar 

  • Ogura K, Kishimoto N, Mitani S, Gengyo-Ando K, Kohara Y (2003) Translational control of maternal glp-1 mRNA by POS-1 and its interacting protein SPN-4 in Caenorhabditis elegans. Development 130(11):2495–2503

    PubMed  CAS  Google Scholar 

  • Opperman L, Hook B, DeFino M, Bernstein DS, Wickens M (2005) A single spacer nucleotide determines the specificities of two mRNA regulatory proteins. Nat Struct Mol Biol 12(11):945–951. doi:10.1038/nsmb1010

    PubMed  CAS  Google Scholar 

  • Otero LJ, Ashe MP, Sachs AB (1999) The yeast poly(A)-binding protein Pab1p stimulates in vitro poly(A)-dependent and cap-dependent translation by distinct mechanisms. EMBO J 18(11):3153–3163. doi:10.1093/emboj/18.11.3153

    PubMed  CAS  Google Scholar 

  • Pagano JM, Farley BM, Essien KI, Ryder SP (2009) RNA recognition by the embryonic cell fate determinant and germline totipotency factor MEX-3. Proc Natl Acad Sci USA 106(48):20252–20257. doi:10.1073/pnas.0907916106

    PubMed  CAS  Google Scholar 

  • Priess JR, Schnabel H, Schnabel R (1987) The glp-1 locus and cellular interactions in early C. elegans embryos. Cell 51(4):601–611

    PubMed  CAS  Google Scholar 

  • Reddy R, Singh R, Shimba S (1992) Methylated cap structures in eukaryotic RNAs: structure, synthesis and functions. Pharmacol Ther 54(3):249–267

    PubMed  CAS  Google Scholar 

  • Rhoads RE (2009) eIF4E: new family members, new binding partners, new roles. J Biol Chem 284(25):16711–16715. doi:10.1074/jbc.R900002200

    PubMed  CAS  Google Scholar 

  • Richter JD (2007) CPEB: a life in translation. Trends Biochem Sci 32(6):279–285. doi:10.1016/j.tibs.2007.04.004

    PubMed  CAS  Google Scholar 

  • Robertson S, Lin R (2012) The oocyte-to-embryo transition. Advances in Experimental Medicine and Biology, 757:351–372. (Chap. 12, this volume) Springer, New York

    Google Scholar 

  • Rybarska A, Harterink M, Jedamzik B, Kupinski AP, Schmid M, Eckmann CR (2009) GLS-1, a novel P granule component, modulates a network of conserved RNA regulators to influence germ cell fate decisions. PLoS Genet 5(5):e1000494. doi:10.1371/journal.pgen.1000494

    PubMed  Google Scholar 

  • Ryder SP, Frater LA, Abramovitz DL, Goodwin EB, Williamson JR (2004) RNA target specificity of the STAR/GSG domain post-transcriptional regulatory protein GLD-1. Nat Struct Mol Biol 11(1):20–28. doi:10.1038/nsmb706

    PubMed  CAS  Google Scholar 

  • Sachs A, Wahle E (1993) Poly(A) tail metabolism and function in eucaryotes. J Biol Chem 268(31):22955–22958

    PubMed  CAS  Google Scholar 

  • Sachs AB, Bond MW, Kornberg RD (1986) A single gene from yeast for both nuclear and cytoplasmic polyadenylate-binding proteins: domain structure and expression. Cell 45(6):827–835

    PubMed  CAS  Google Scholar 

  • Sachs AB, Davis RW, Kornberg RD (1987) A single domain of yeast poly(A)-binding protein is necessary and sufficient for RNA binding and cell viability. Mol Cell Biol 7(9):3268–3276

    PubMed  CAS  Google Scholar 

  • Schisa JA, Pitt JN, Priess JR (2001) Analysis of RNA associated with P granules in germ cells of C. elegans adults. Development 128(8):1287–1298

    PubMed  CAS  Google Scholar 

  • Schmid M, Kuchler B, Eckmann CR (2009) Two conserved regulatory cytoplasmic poly(A) polymerases, GLD-4 and GLD-2, regulate meiotic progression in C. elegans. Genes Dev 23(7):824–836. doi:10.1101/gad.494009

    Google Scholar 

  • Schumacher B, Hanazawa M, Lee MH, Nayak S, Volkmann K, Hofmann ER, Hengartner M, Schedl T, Gartner A (2005) Translational repression of C. elegans p53 by GLD-1 regulates DNA damage-induced apoptosis. Cell 120(3):357–368. doi:10.1016/j.cell.2004.12.009

    Google Scholar 

  • Segal SP, Graves LE, Verheyden J, Goodwin EB (2001) RNA-regulated TRA-1 nuclear export controls sexual fate. Dev Cell 1(4):539–551

    PubMed  CAS  Google Scholar 

  • Seydoux G, Fire A (1994) Soma-germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans. Development 120(10):2823–2834

    PubMed  CAS  Google Scholar 

  • She X, Xu X, Fedotov A, Kelly WG, Maine EM (2009) Regulation of heterochromatin assembly on unpaired chromosomes during Caenorhabditis elegans meiosis by components of a small RNA-mediated pathway. PLoS Genet 5(8):e1000624. doi:10.1371/journal.pgen.1000624

    PubMed  Google Scholar 

  • Sheth U, Pitt J, Dennis S, Priess JR (2010) Perinuclear P granules are the principal sites of mRNA export in adult C. elegans germ cells. Development 137(8):1305–1314. doi:10.1242/dev.044255

    PubMed  CAS  Google Scholar 

  • Shimotohno K, Kodama Y, Hashimoto J, Miura KI (1977) Importance of 5′-terminal blocking structure to stabilize mRNA in eukaryotic protein synthesis. Proc Natl Acad Sci USA 74(7):2734–2738

    PubMed  CAS  Google Scholar 

  • Simmer F, Moorman C, van der Linden AM, Kuijk E, van den Berghe PV, Kamath RS, Fraser AG, Ahringer J, Plasterk RH (2003) Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol 1(1):E12. doi:10.1371/journal.pbio.0000012

    PubMed  Google Scholar 

  • Song A, Labella S, Korneeva NL, Keiper BD, Aamodt EJ, Zetka M, Rhoads RE (2010) A C. elegans eIF4E-family member upregulates translation at elevated temperatures of mRNAs encoding MSH-5 and other meiotic crossover proteins. J Cell Sci 123(Pt 13):2228–2237. doi:10.1242/jcs.063107

    Google Scholar 

  • Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, Alleaume AM, Artelt J, Bettencourt P, Cassin E, Hewitson M, Holz C, Khan M, Lazik S, Martin C, Nitzsche B, Ruer M, Stamford J, Winzi M, Heinkel R, Roder M, Finell J, Hantsch H, Jones SJ, Jones M, Piano F, Gunsalus KC, Oegema K, Gonczy P, Coulson A, Hyman AA, Echeverri CJ (2005) Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434(7032):462–469. doi:10.1038/nature03353

    PubMed  CAS  Google Scholar 

  • Squirrell JM, Eggers ZT, Luedke N, Saari B, Grimson A, Lyons GE, Anderson P, White JG (2006) CAR-1, a protein that localizes with the mRNA decapping component DCAP-1, is required for cytokinesis and ER organization in Caenorhabditis elegans embryos. Mol Biol Cell 17(1):336–344. doi:10.1091/mbc.E05-09-0874

    PubMed  CAS  Google Scholar 

  • Srayko M, Buster DW, Bazirgan OA, McNally FJ, Mains PE (2000) MEI-1/MEI-2 katanin-like microtubule severing activity is required for Caenorhabditis elegans meiosis. Genes Dev 14(9):1072–1084

    PubMed  CAS  Google Scholar 

  • Starck J (1977) Autoradiographic study of RNA-synthesis in Caenorhabditis-elegans (Bergerac Variety) oogenesis. Biol Cellulaire 30(2):181

    Google Scholar 

  • Starck J, Gibert MA, Brun J, Bosch C (1983) Ribosomal-RNA synthesis and processing during oogenesis of the free living nematode Caenorhabditis-elegans. Comp Biochem Phys B 75(4):575–580

    Google Scholar 

  • Stebbins-Boaz B, Hake LE, Richter JD (1996) CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. EMBO J 15(10):2582–2592

    PubMed  CAS  Google Scholar 

  • Stebbins-Boaz B, Cao Q, de Moor CH, Mendez R, Richter JD (1999) Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol Cell 4(6):1017–1027

    PubMed  CAS  Google Scholar 

  • Strome S (2005) Specification of the germ line. WormBook:1–10. doi:10.1895/wormbook.1.9.1

  • Stumpf CR, Kimble J, Wickens M (2008) A Caenorhabditis elegans PUF protein family with distinct RNA binding specificity. RNA 14(8):1550–1557. doi:10.1261/rna.1095908

    PubMed  CAS  Google Scholar 

  • Subramaniam K, Seydoux G (2003) Dedifferentiation of primary spermatocytes into germ cell tumors in C. elegans lacking the pumilio-like protein PUF-8. Curr Biol 13(2):134–139

    PubMed  CAS  Google Scholar 

  • Suh N, Jedamzik B, Eckmann CR, Wickens M, Kimble J (2006) The GLD-2 poly(A) polymerase activates gld-1 mRNA in the Caenorhabditis elegans germ line. Proc Natl Acad Sci USA 103(41):15108–15112. doi:10.1073/pnas.0607050103

    PubMed  CAS  Google Scholar 

  • Suh N, Crittenden SL, Goldstrohm A, Hook B, Thompson B, Wickens M, Kimble J (2009) FBF and its dual control of gld-1 expression in the Caenorhabditis elegans germline. Genetics 181(4):1249–1260. doi:10.1534/genetics.108.099440

    PubMed  CAS  Google Scholar 

  • Tabara H, Yigit E, Siomi H, Mello CC (2002) The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 109(7):861–871

    PubMed  CAS  Google Scholar 

  • Tarun SZ Jr, Sachs AB (1995) A common function for mRNA 5′ and 3′ ends in translation initiation in yeast. Genes Dev 9(23):2997–3007

    PubMed  CAS  Google Scholar 

  • Thompson SR, Goodwin EB, Wickens M (2000) Rapid deadenylation and Poly(A)-dependent translational repression mediated by the Caenorhabditis elegans tra-2 3′ untranslated region in Xenopus embryos. Mol Cell Biol 20(6):2129–2137

    PubMed  CAS  Google Scholar 

  • Thompson BE, Bernstein DS, Bachorik JL, Petcherski AG, Wickens M, Kimble J (2005) Dose-dependent control of proliferation and sperm specification by FOG-1/CPEB. Development 132(15):3471–3481. doi:10.1242/dev.01921

    PubMed  CAS  Google Scholar 

  • Tursun B, Patel T, Kratsios P, Hobert O (2011) Direct conversion of C. elegans germ cells into specific neuron types. Science 331(6015):304–308. doi:10.1126/science.1199082

    Google Scholar 

  • Valverde R, Edwards L, Regan L (2008) Structure and function of KH domains. FEBS J 275(11):2712–2726. doi:10.1111/j.1742-4658.2008.06411.x

    PubMed  CAS  Google Scholar 

  • Vernet C, Artzt K (1997) STAR, a gene family involved in signal transduction and activation of RNA. Trends Genet 13(12):479–484

    PubMed  CAS  Google Scholar 

  • Wang JT, Seydoux S (2012) Germ cell specification. Advances in Experimental Medicine and Biology 757:17– 39. (Chap. 2, this volume) Springer, New York

    Google Scholar 

  • Wang L, Eckmann CR, Kadyk LC, Wickens M, Kimble J (2002) A regulatory cytoplasmic poly(A) polymerase in Caenorhabditis elegans. Nature 419(6904):312–316. doi:10.1038/nature01039

    PubMed  CAS  Google Scholar 

  • Wang X, Zhao Y, Wong K, Ehlers P, Kohara Y, Jones SJ, Marra MA, Holt RA, Moerman DG, Hansen D (2009a) Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE. BMC Genomics 10:213. doi:10.1186/1471-2164-10-213

    PubMed  Google Scholar 

  • Wang Y, Opperman L, Wickens M, Hall TM (2009b) Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein. Proc Natl Acad Sci USA 106(48):20186–20191. doi:10.1073/pnas.0812076106

    PubMed  CAS  Google Scholar 

  • Wells SE, Hillner PE, Vale RD, Sachs AB (1998) Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell 2(1):135–140

    PubMed  CAS  Google Scholar 

  • Wickens M, Bernstein DS, Kimble J, Parker R (2002) A PUF family portrait: 3′UTR regulation as a way of life. Trends Genet 18(3):150–157

    PubMed  CAS  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862

    PubMed  CAS  Google Scholar 

  • Wilkie GS, Dickson KS, Gray NK (2003) Regulation of mRNA translation by 5′- and 3′-UTR-binding factors. Trends Biochem Sci 28(4):182–188

    PubMed  CAS  Google Scholar 

  • Wright JE, Gaidatzis D, Senften M, Farley BM, Westhof E, Ryder SP, Ciosk R (2011) A quantitative RNA code for mRNA target selection by the germline fate determinant GLD-1. EMBO J 30(3):533–545. doi:10.1038/emboj.2010.334

    PubMed  CAS  Google Scholar 

  • Yu X, Vought VE, Conradt B, Maine EM (2006) Eukaryotic translation initiation factor 5B activity regulates larval growth rate and germline development in Caenorhabditis elegans. Genesis 44(9):412–418. doi:10.1002/dvg.20232

    PubMed  CAS  Google Scholar 

  • Zanetti S, Puoti A (2012) Sex determination in the C. elegans germline. Advances in Experimental Medicine and Biology 757:41–69. (Chap. 3, this volume) Springer, New York

    Google Scholar 

  • Zanin E, Pacquelet A, Scheckel C, Ciosk R, Gotta M (2010) LARP-1 promotes oogenesis by repressing fem-3 in the C. elegans germline. J Cell Sci 123(Pt 16):2717–2724. doi:10.1242/jcs.066761

    Google Scholar 

  • Zhang B, Gallegos M, Puoti A, Durkin E, Fields S, Kimble J, Wickens MP (1997) A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature 390(6659):477–484. doi:10.1038/37297

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian R. Eckmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nousch, M., Eckmann, C.R. (2013). Translational Control in the Caenorhabditis elegans Germ Line. In: Schedl, T. (eds) Germ Cell Development in C. elegans. Advances in Experimental Medicine and Biology, vol 757. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4015-4_8

Download citation

Publish with us

Policies and ethics