Skip to main content

Systems Biology of Death Receptor-Induced Apoptosis

  • Chapter
  • First Online:
Systems Biology of Apoptosis

Abstract

Programmed cell death, termed apoptosis, plays a fundamental role in the development and homeostasis of multicellular organisms. Dysregulation of apoptosis can lead to numerous diseases, including autoimmune diseases, neurodegenerative diseases, and cancer. In mammalian cells apoptosis can be induced by intra- or extracellular stimuli. Extracellular stimuli comprise death ligands which lead to death receptor-induced apoptosis, referred to as extrinsic pathway. Intracellular signals, such as DNA damage, trigger the intrinsic pathway which results in the activation of Bcl-2 proteins and release of proapoptotic factors from the mitochondria into the cytosol. Apoptosis is executed by a family of cysteine proteases, the caspases, which eventually lead to the apoptotic phenotype, such as chromatin condensation, nuclear fragmentation, membrane blebbing, cell shrinkage, and formation of apoptotic bodies. The focus of this chapter is on understanding the signaling complexity of the extrinsic apoptotic pathway using systems biology. We summarize the main signaling paradigms and the major models of the extrinsic pathway. The development of these models has elucidated new insights into the regulation of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JM (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    PubMed  CAS  Google Scholar 

  • Albeck JG, Burke JM, Aldridge BB, Zhang M, Lauffenburger DA, Sorger PK (2008) Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. Mol Cell 30:11–25

    PubMed  CAS  Google Scholar 

  • Alderson MR, Armitage RJ, Maraskovsky E, Tough TW, Roux E, Schooley K, Ramsdell F, Lynch DH (1993) Fas transduces activation signals in normal human T lymphocytes. J Exp Med 178:2231–2235

    PubMed  CAS  Google Scholar 

  • Ashkenazi A (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    PubMed  CAS  Google Scholar 

  • Barnhart BC, Alappat EC, Peter ME (2003) The CD95 Type I/Type II model. Semin Immunol 15:185–193

    PubMed  CAS  Google Scholar 

  • Bentele M, Lavrik I, Ulrich M, Stösser S, Heermann DW, Kalthoff H, Krammer PH, Eils R (2004) Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J Cell Biol 166:839–851

    PubMed  CAS  Google Scholar 

  • Bertrand MJM, Vandenabeele P (2010) RIP1’s function in NF-κB activation: from master actor to onlooker. Cell Death Differ 17:379–380

    PubMed  CAS  Google Scholar 

  • Boatright KM, Renatus M, Scott FL, Sperandio S, Shin H, Pedersen IM, Ricci JE, Edris WA, Sutherlin DP, Green DR, Salvesen GS (2003) A unified model for apical caspase activation. Mol Cell 11:529–541

    PubMed  CAS  Google Scholar 

  • Bonabeau E (2002) Agent-based modeling: methods and techniques for simulating human systems. Proc Natl Acad Sci USA 99(Suppl 3):7280–7287

    PubMed  CAS  Google Scholar 

  • Brown BN, Price IM, Toapanta FR, Dealmeida DR, Wiley CA, Ross TM, Oury TD, Vodovotz Y (2011) An agent-based model of inflammation and fibrosis following particulate exposure in the lung. Math Biosci 231(2):186–96

    PubMed  CAS  Google Scholar 

  • Calzone L, Tournier L, Fourquet S, Thieffry D, Zhivotovsky B, Barillot E, Zinovyev A (2010) Mathematical modeling of cell-fate decision in response to death receptor engagement. PLoS Comput Biol 6:e1000702

    PubMed  Google Scholar 

  • Chang DW, Xing Z, Pan Y, Algeciras-Schimnich A, Barnhart BC, Yaish-Ohad S, Peter ME, Yang X (2002) c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 21:3704–3714

    PubMed  CAS  Google Scholar 

  • Chen L, Park S-M, Tumanov AV, Hau A, Sawada K, Feig C, Turner JR, Fu Y-X, Romero IL, Lengyel E, Peter ME (2010) CD95 promotes tumour growth. Nature 465:492–496

    PubMed  CAS  Google Scholar 

  • Choi K, Ni L, Jonakait GM (2010) Fas ligation and tumor necrosis factor alpha activation of murine astrocytes promote heat shock factor-1 activation and heat shock protein expression leading to chemokine induction and cell survival. J Neurochem 116(3):438–448

    PubMed  Google Scholar 

  • Clem RJ, Miller LK (1994) Control of programmed cell death by the baculovirus genes p35 and iap. Mol Cell Biol 14:5212–5222

    PubMed  CAS  Google Scholar 

  • Cui J, Chen C, Lu H, Sun T, Shen P (2008) Two independent positive feedbacks and bistability in the Bcl-2 apoptotic switch. PLoS One 3:e1469

    PubMed  Google Scholar 

  • Deveraux QL, Reed JC (1999) IAP family proteins–suppressors of apoptosis. Genes Dev 13:239–252

    PubMed  CAS  Google Scholar 

  • Düssmann H, Rehm M, Concannon CG, Anguissola S, Würstle M, Kacmar S, Völler P, Huber HJ, Prehn JHM (2010) Single-cell quantification of Bax activation and mathematical modeling suggest pore formation on minimal mitochondrial Bax accumulation. Cell Death Differ 17:278–290

    PubMed  Google Scholar 

  • Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M, Cain K, Macfarlane M, Häcker G, Leverkus M (2011) cIAPs block ripoptosome formation, a RIP1/Caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 43(3–6):449–463

    PubMed  CAS  Google Scholar 

  • Fesik SW (2000) Insights into programmed cell death through structural biology. Cell 103:273–282

    PubMed  CAS  Google Scholar 

  • Fischer U, Stroh C, Schulze-Osthoff K (2006) Unique and overlapping substrate specificities of caspase-8 and caspase-10. Oncogene 25:152–159

    PubMed  CAS  Google Scholar 

  • Fricker N, Beaudouin J, Richter P, Eils R, Krammer PH, Lavrik IN (2010) Model-based dissection of CD95 signaling dynamics reveals both a pro- and antiapoptotic role of c-FLIPL. J Cell Biol 190:377–389

    PubMed  CAS  Google Scholar 

  • Fuentes-Prior P, Salvesen GS (2004) The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384:201–232

    PubMed  CAS  Google Scholar 

  • Fussenegger M, Bailey JE, Varner J (2000) A mathematical model of caspase function in apoptosis. Nat Biotechnol 18:768–774

    PubMed  CAS  Google Scholar 

  • Geserick P, Hupe M, Moulin M, Wong WW-L, Feoktistova M, Kellert B, Gollnick H, Silke J, Leverkus M (2009) Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment. J Cell Biol 187:1037–1054

    PubMed  CAS  Google Scholar 

  • Geserick P, Hupe M, Moulin M, Leverkus M (2010) RIP-in CD95-induced cell death: the control of alternative death receptors pathways by cIAPs. Cell Cycle 9:2689–2691

    PubMed  CAS  Google Scholar 

  • Ghosh S, Hayden MS (2008) New regulators of NF-κB in inflammation. Nat Rev Immunol 8:837–848

    PubMed  CAS  Google Scholar 

  • Ghosh S, May MJ, Kopp EB (1998) NF-κ B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260

    PubMed  CAS  Google Scholar 

  • Golks A, Brenner D, Fritsch C, Krammer PH, Lavrik IN (2005) c-FLIPR, a new regulator of death receptor-induced apoptosis. J Biol Chem 280:14507–14513

    PubMed  CAS  Google Scholar 

  • Golks A, Brenner D, Krammer PH, Lavrik IN (2006a) The c-FLIP-NH2 terminus (p22-FLIP) induces NF-κB activation. J Exp Med 203:1295–1305

    PubMed  CAS  Google Scholar 

  • Golks A, Brenner D, Schmitz I, Watzl C, Krueger A, Krammer PH, Lavrik IN (2006b) The role of CAP3 in CD95 signaling: new insights into the mechanism of procaspase-8 activation. Cell Death Differ 13:489–498

    PubMed  CAS  Google Scholar 

  • Gonzalvez F, Schug ZT, Houtkooper RH, MacKenzie ED, Brooks DG, Wanders RJA, Petit PX, Vaz FM, Gottlieb E (2008) Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. J Cell Biol 183:681–696

    PubMed  CAS  Google Scholar 

  • Hao Z, Hampel B, Yagita H, Rajewsky K (2004) T cell-specific ablation of Fas leads to Fas ligand-mediated lymphocyte depletion and inflammatory pulmonary fibrosis. J Exp Med 199:1355–1365

    PubMed  CAS  Google Scholar 

  • Harvey AJ, Soliman H, Kaiser WJ, Miller LK (1997) Anti- and pro-apoptotic activities of baculovirus and Drosophila IAPs in an insect cell line. Cell Death Differ 4:733–744

    PubMed  CAS  Google Scholar 

  • Hay BA, Wassarman DA, Rubin GM (1995) Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83:1253–1262

    PubMed  CAS  Google Scholar 

  • Hayden MS, Ghosh S (2004) Signaling to NF-κB. Genes Dev 18:2195–2224

    PubMed  CAS  Google Scholar 

  • Hayden MS, West AP, Ghosh S (2006) NF-κB and the immune response. Oncogene 25:6758–6780

    PubMed  CAS  Google Scholar 

  • Heiner M, Koch I, Will J (2004) Model validation of biological pathways using Petri nets–demonstrated for apoptosis. Biosystems 75:15–28

    PubMed  Google Scholar 

  • Hoffmann JC, Pappa A, Krammer PH, Lavrik IN (2009) A new C-terminal cleavage product of procaspase-8, p30, defines an alternative pathway of procaspase-8 activation. Mol Cell Biol 29:4431–4440

    PubMed  CAS  Google Scholar 

  • Hughes MA, Harper N, Butterworth M, Cain K, Cohen GM, MacFarlane M (2009) Reconstitution of the death-inducing signaling complex reveals a substrate switch that determines CD95-mediated death or survival. Mol Cell 35:265–279

    PubMed  CAS  Google Scholar 

  • Jin Z, Li Y, Pitti R, Lawrence D, Pham VC, Lill JR, Ashkenazi A (2009) Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137:721–735

    PubMed  CAS  Google Scholar 

  • Kamarajan P, Bunek J, Lin Y, Nunez G, Kapila YL (2010) Receptor-interacting protein shuttles between cell death and survival signaling pathways. Mol Biol Cell 21:481–488

    PubMed  CAS  Google Scholar 

  • Kataoka T, Budd RC, Holler N, Thome M, Martinon F, Irmler M, Burns K, Hahne M, Kennedy N, Kovacsovics M, Tschopp J (2000) The caspase-8 inhibitor FLIP promotes activation of NF-κB and Erk signaling pathways. Curr Biol 10:640–648

    PubMed  CAS  Google Scholar 

  • Keller N, Mares J, Zerbe O, Grütter MG (2009) Structural and biochemical studies on procaspase-8: new insights on initiator caspase activation. Structure 17:438–448

    PubMed  CAS  Google Scholar 

  • Kober AMM, Legewie S, Pforr C, Fricker N, Eils R, Krammer PH, Lavrik IN (2011) Caspase-8 activity has an essential role in CD95/Fas-mediated MAPK activation. Cell Death Dis 2:e212

    PubMed  CAS  Google Scholar 

  • Krammer PH (2000) CD95’s deadly mission in the immune system. Nature 407:789–795

    PubMed  CAS  Google Scholar 

  • Krammer PH, Arnold R, Lavrik IN (2007) Life and death in peripheral T cells. Nat Rev Immunol 7:532–542

    PubMed  CAS  Google Scholar 

  • Kreuz S, Siegmund D, Rumpf J-J, Samel D, Leverkus M, Janssen O, Häcker G, Dittrich-Breiholz O, Kracht M, Scheurich P, Wajant H (2004) NFkappaB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP. J Cell Biol 166:369–380

    PubMed  CAS  Google Scholar 

  • Krueger A, Schmitz I, Baumann S, Krammer PH, Kirchhoff S (2001) Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem 276:20633–20640

    PubMed  CAS  Google Scholar 

  • Lavrik I, Golks A, Krammer PH (2005a) Death receptor signaling. J Cell Sci 118:265–267

    PubMed  CAS  Google Scholar 

  • Lavrik IN, Golks A, Krammer PH (2005b) Caspases: pharmacological manipulation of cell death. J Clin Invest 115:2665–2672

    PubMed  CAS  Google Scholar 

  • Lavrik IN, Golks A, Riess D, Bentele M, Eils R, Krammer PH (2007) Analysis of CD95 threshold signaling: triggering of CD95 (FAS/APO-1) at low concentrations primarily results in survival signaling. J Biol Chem 282:13664–13671

    PubMed  CAS  Google Scholar 

  • Lee S-M, Kim E-J, Suk K, Lee W-H (2011) Stimulation of Fas (CD95) induces production of pro-inflammatory mediators through ERK/JNK-dependent activation of NF-κB in THP-1 cells. Cell Immunol 271(1):157–62

    PubMed  CAS  Google Scholar 

  • Legembre P, Barnhart BC, Peter ME (2004) The relevance of NF-κB for CD95 signaling in tumor cells. Cell Cycle 3:1235–1239

    PubMed  CAS  Google Scholar 

  • Legewie S, Blüthgen N, Herzel H (2006) Mathematical modeling identifies inhibitors of apoptosis as mediators of positive feedback and bistability. PLoS Comput Biol 2:e120

    PubMed  Google Scholar 

  • Li H (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    PubMed  CAS  Google Scholar 

  • Li Q, Verma IM (2002) NF-κB regulation in the immune system. Nat Rev Immunol 2:725–734

    PubMed  CAS  Google Scholar 

  • Macal CM, North MJ (2005) Tutorial on agent-based modeling and simulation. J Simul 4:151–162

    Google Scholar 

  • Macal, C.M.; North, M.J.; , “Agent-based modeling and simulation”, Proceedings of the 2009 Winter Simulation Conference (WSC), pp.86–98, 13–16Dec. 2009 doi:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5429318&isnumber=5429163

    Google Scholar 

  • Mai Z, Liu H (2009) Boolean network-based analysis of the apoptosis network: irreversible apoptosis and stable surviving. J Theor Biol 259:760–769

    PubMed  Google Scholar 

  • Medema JP, Toes RE, Scaffidi C, Zheng TS, Flavell RA, Melief CJ, Peter ME, Offringa R, Krammer PH (1997) Cleavage of FLICE (caspase-8) by granzyme B during cytotoxic T lymphocyte-induced apoptosis. Eur J Immunol 27:3492–3498

    PubMed  CAS  Google Scholar 

  • Micheau O, Thome M, Schneider P, Holler N, Tschopp J, Nicholson DW, Briand C, Grütter MG (2002) The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem 277:45162–45171

    PubMed  CAS  Google Scholar 

  • Moquin D, Chan FK-M (2010) The molecular regulation of programmed necrotic cell injury. Trends Biochem Sci 35:434–441

    PubMed  CAS  Google Scholar 

  • Mühlethaler-Mottet A, Flahaut M, Bourloud KB, Nardou K, Coulon A, Liberman J, Thome M, Gross N (2011) Individual caspase-10 isoforms play distinct and opposing roles in the initiation of death receptor-mediated tumour cell apoptosis. Cell Death Dis 2:e125

    PubMed  Google Scholar 

  • Muzio M, Chinnaiyan AM, Kischkel FC, O’Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R et al (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death–inducing signaling complex. Cell 85:817–827

    PubMed  CAS  Google Scholar 

  • Nakajima A, Kojima Y, Nakayama M, Yagita H, Okumura K, Nakano H (2008) Downregulation of c-FLIP promotes caspase-dependent JNK activation and reactive oxygen species accumulation in tumor cells. Oncogene 27:76–84

    PubMed  CAS  Google Scholar 

  • Neumann L, Pforr C, Beaudouin J, Pappa A, Fricker N, Krammer PH, Lavrik IN, Eils R (2010) Dynamics within the CD95 death-inducing signaling complex decide life and death of cells. Mol Syst Biol 6:352

    PubMed  Google Scholar 

  • Oberst A, Pop C, Tremblay AG, Blais V, Denault J-B, Salvesen GS, Green DR (2010) Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation. J Biol Chem 285:16632–16642

    PubMed  CAS  Google Scholar 

  • O’Reilly LA, Divisekera U, Newton K, Scalzo K, Kataoka T, Puthalakath H, Ito M, Huang DCS, Strasser A (2004) Modifications and intracellular trafficking of FADD/MORT1 and caspase-8 after stimulation of T lymphocytes. Cell Death Differ 11:724–736

    PubMed  Google Scholar 

  • Paulsen M, Janssen O (2011) Pro- and anti-apoptotic CD95 signaling in T cells. Cell Commun Signal 9:7

    PubMed  CAS  Google Scholar 

  • Paulsen M, Valentin S, Mathew B, Adam-Klages S, Bertsch U, Lavrik I, Krammer PH, Kabelitz D, Janssen O (2011) Modulation of CD4+ T-cell activation by CD95 co-stimulation. Cell Death Differ 18:619–631

    PubMed  CAS  Google Scholar 

  • Peter ME, Budd RC, Desbarats J, Hedrick SM, Hueber A-O, Newell MK, Owen LB, Pope RM, Tschopp J, Wajant H et al (2007) The CD95 receptor: apoptosis revisited. Cell 129:447–450

    PubMed  CAS  Google Scholar 

  • Rasper DM, Vaillancourt JP, Hadano S, Houtzager VM, Seiden I, Keen SL, Tawa P, Xanthoudakis S, Nasir J, Martindale D et al (1998) Cell death attenuation by ‘Usurpin’, a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex. Cell Death Differ 5:271–288

    PubMed  CAS  Google Scholar 

  • Rathmell JC, Cooke MP, Ho WY, Grein J, Townsend SE, Davis MM, Goodnow CC (1995) CD95 (Fas)-dependent elimination of self-reactive B cells upon interaction with CD4+ T cells. Nature 376:181–184

    PubMed  CAS  Google Scholar 

  • Rehm M, Huber HJ, Dussmann H, Prehn JHM (2006) Systems analysis of effector caspase activation and its control by X-linked inhibitor of apoptosis protein. EMBO J 25:4338–4349

    PubMed  CAS  Google Scholar 

  • Rehm M, Huber HJ, Hellwig CT, Anguissola S, Dussmann H, Prehn JHM (2009) Dynamics of outer mitochondrial membrane permeabilization during apoptosis. Cell Death Differ 16:613–623

    PubMed  CAS  Google Scholar 

  • Roche B, Drake JM, Rohani P (2011) An agent-based model to study the epidemiological and evolutionary dynamics of Influenza viruses. BMC Bioinformatics 12:87

    PubMed  Google Scholar 

  • Saez-Rodriguez J, Alexopoulos LG, Epperlein J, Samaga R, Lauffenburger DA, Klamt S, Sorger PK (2009) Discrete logic modeling as a means to link protein signaling networks with functional analysis of mammalian signal transduction. Mol Syst Biol 5:331

    PubMed  Google Scholar 

  • Scaffidi C, Medema JP, Krammer PH, Peter ME (1997) FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. J Biol Chem 272:26953–26958

    PubMed  CAS  Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    PubMed  CAS  Google Scholar 

  • Scaffidi C, Schmitz I, Krammer PH, Peter ME (1999) The role of c-FLIP in modulation of CD95-induced apoptosis. J Biol Chem 274:1541–1548

    PubMed  CAS  Google Scholar 

  • Schlatter R, Schmich K, Avalos Vizcarra I, Scheurich P, Sauter T, Borner C, Ederer M, Merfort I, Sawodny O (2009) ON/OFF and beyond–a boolean model of apoptosis. PLoS Comput Biol 5:e1000595

    PubMed  Google Scholar 

  • Schneider P (1998) Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med 187:1205–1213

    PubMed  CAS  Google Scholar 

  • Schug ZT, Gonzalvez F, Houtkooper RH, Vaz FM, Gottlieb E (2011) BID is cleaved by caspase-8 within a native complex on the mitochondrial membrane. Cell Death Differ 18:538–548

    PubMed  CAS  Google Scholar 

  • Schrodinger, LLC (2010). The PyMOL Molecular Graphics System, Version 1.3r1

    Google Scholar 

  • Scott FL, Stec B, Pop C, Dobaczewska MK, Lee JJ, Monosov E, Robinson H, Salvesen GS, Schwarzenbacher R, Riedl SJ (2009) The Fas-FADD death domain complex structure unravels signaling by receptor clustering. Nature 457:1019–1022

    PubMed  CAS  Google Scholar 

  • Sen R, Baltimore D (1986) Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell 47:921–928

    PubMed  CAS  Google Scholar 

  • Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9:459–470

    PubMed  CAS  Google Scholar 

  • Shikama Y, Yamada M, Miyashita T (2003) Caspase-8 and caspase-10 activate NF-κB through RIP, NIK and IKKalpha kinases. Eur J Immunol 33:1998–2006

    PubMed  CAS  Google Scholar 

  • Spencer SL, Sorger PK (2011) Measuring and modeling apoptosis in single cells. Cell 144:926–939

    PubMed  CAS  Google Scholar 

  • Sprick MR, Rieser E, Stahl H, Grosse-Wilde A, Weigand MA, Walczak H (2002) Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signaling complexes in a FADD-dependent manner but cannot functionally substitute caspase-8. EMBO J 21:4520–4530

    PubMed  CAS  Google Scholar 

  • Steller EJ, Ritsma L, Raats DA, Hoogwater FJ, Emmink BL, Govaert KM, Laoukili J, Rinkes IH, van Rheenen J, Kranenburg O (2011) The death receptor CD95 activates the cofilin pathway to stimulate tumour cell invasion. EMBO Rep 12(9):931–937

    PubMed  CAS  Google Scholar 

  • Strasser A, Jost PJ, Nagata S (2009) The many roles of FAS receptor signaling in the immune system. Immunity 30:180–192

    PubMed  CAS  Google Scholar 

  • Tang D, Lotze MT, Kang R, Zeh HJ (2010) Apoptosis promotes early tumorigenesis. Oncogene 30(16):1851–4

    PubMed  Google Scholar 

  • Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F, Zachariou A, Lopez J, Macfarlane M, Cain K, Meier P (2011) The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol cell 43(3):432–48

    PubMed  CAS  Google Scholar 

  • Trauth BC, Klas C, Peters AM, Matzku S, Möller P, Falk W, Debatin KM, Krammer PH (1989) Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245:301–305

    PubMed  CAS  Google Scholar 

  • Ueffing N, Schuster M, Keil E, Schulze-Osthoff K, Schmitz I (2008) Up-regulation of c-FLIP short by NFAT contributes to apoptosis resistance of short-term activated T cells. Blood 112:690–698

    PubMed  CAS  Google Scholar 

  • van Raam BJ, Salvesen GS (2011) Proliferative versus apoptotic functions of caspase-8 hetero or homo: the caspase-8 dimer controls cell fate. Biochim Biophys Acta 1824(1):113–22

    PubMed  Google Scholar 

  • Vandenabeele P, Declercq W, Van Herreweghe F, Vanden Berghe T (2010a) The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci Signal 3(115):re4

    PubMed  Google Scholar 

  • Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010b) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–715

    PubMed  CAS  Google Scholar 

  • Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S (1995) Rel/NF-κ B/I kappa B family: intimate tales of association and dissociation. Genes Dev 9:2723–2735

    PubMed  CAS  Google Scholar 

  • Wang L, Yang JK, Kabaleeswaran V, Rice AJ, Cruz AC, Park AY, Yin Q, Damko E, Jang SB, Raunser S et al (2010) The Fas-FADD death domain complex structure reveals the basis of DISC assembly and disease mutations. Nat Struct Mol Biol 17:1324–1329

    PubMed  CAS  Google Scholar 

  • Wong WW-L, Gentle IE, Nachbur U, Anderton H, Vaux DL, Silke J (2010) RIPK1 is not essential for TNFR1-induced activation of NF-κB. Cell Death Differ 17:482–487

    PubMed  CAS  Google Scholar 

  • Yan N, Shi Y (2005) Mechanisms of apoptosis through structural biology. Annu Rev Cell Dev Biol 21:35–56

    PubMed  CAS  Google Scholar 

  • Yang ZR (2005) Prediction of caspase cleavage sites using Bayesian bio-basis function neural networks. Bioinformatics 21:1831–1837

    PubMed  CAS  Google Scholar 

  • Yu J, Zhang L (2005) The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 331:851–858

    PubMed  CAS  Google Scholar 

  • Yu JW, Jeffrey PD, Shi Y (2009) Mechanism of procaspase-8 activation by c-FLIPL. Proc Natl Acad Sci USA 106:8169–8174

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Helmholtz Alliance on Systems Biology (NW1SBCancer) and Helmholtz-Russia Joint Research Groups-2008-2 for supporting our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inna N. Lavrik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schleich, K., Lavrik, I.N. (2012). Systems Biology of Death Receptor-Induced Apoptosis. In: Lavrik, I. (eds) Systems Biology of Apoptosis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4009-3_2

Download citation

Publish with us

Policies and ethics