Skip to main content

Degradation of Bioceramics

  • Chapter
  • First Online:
Degradation of Implant Materials

Abstract

After roughly 100 years of controlled clinical use, the in vivo and in vitro degradation mechanisms of ceramic materials are still largely unknown. In bioinert ceramics such as alumina and zirconia used in orthopedics, crack propagation mechanisms are well known, but their interactions with other degradation mechanisms (low-temperature degradation, shocks, wear, dissolution, etc.) and the in vivo environment remain to be firmly established. In bioactive ceramics like calcium phosphates and bioactive glasses, dissolution–precipitation processes play a major role on both degradation of the implant and biological efficiency. Even without the ambition to be exhaustive, it is the purpose of this chapter to present the degradation mechanisms of ceramic implants, both inert and bioactive, and the interactions between them and with their environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bobbio A (1970) The first endosseous alloplastic implant in the history of man. Bull Hist Dent 20(1):1–6

    Google Scholar 

  2. Dreesman H (1892) Uber Knochenplombierung. Beitr Klin Chir 9:804–810

    Google Scholar 

  3. Rieger W (2001) Ceramics in orthopedics—30 years of evolution and experience. In: Rieker C, Oberholzer S, Wyss U (eds) World tribology forum in arthroplasty. Hans Huber, Bern

    Google Scholar 

  4. Rock M (1933) German Patent, DRP n°583589

    Google Scholar 

  5. Green DJ, Hanninck RHJ, Swain MV (1989) Transformation toughening of ceramics. CRC, Boca Raton, FL

    Google Scholar 

  6. Li P, Chen IW, Penner-Hahn JE (1994) Effect of dopants on zirconia stabilization—an X-ray absorption study: I, trivalent dopants. J Am Ceram Soc 77(1):118–128

    Article  CAS  Google Scholar 

  7. Li P, Chen IW, Penner-Hahn JE (1994) Effect of dopants on zirconia stabilization—an X-ray absorption study: II, Tetravalent dopants. J Am Ceram Soc 77(5):1281–1288

    Article  CAS  Google Scholar 

  8. Chevalier J, Gremillard L, Virkar AV, Clarke DR (2009) The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc 92:1901–1920

    Article  CAS  Google Scholar 

  9. Grenet L (1889) Recherches sur la résistance mécanique des verres. Bull Soc Encour Ind Nat 4:838–848

    Google Scholar 

  10. Orowan E (1944) The fatigue of glass under stress. Nature 154:341–349

    Article  Google Scholar 

  11. Charles RJ, Hillig WB (1962) The kinetics of glass failure by stress corrosion, in symposium sur la résistance mécanique du verre et les moyens de l’améliorer. Union Sciences Continentales du Verre, Charleroi, pp 502–511

    Google Scholar 

  12. Wiederhorn SM (1969) Fracture of ceramics. In: Mechanical and thermal properties of ceramics (NBS special publication), vol 303. NBS, Washington, DC, pp 217–241

    Google Scholar 

  13. Lawn B (1993) Fracture of brittle solids, 2nd edn. Cambridge University Press, Cambridge, 378 p

    Google Scholar 

  14. Griffith RW (1920) Phenomena of rupture and flow in solids. Philos Trans R Soc Lond A 221:163–198

    Article  Google Scholar 

  15. Chevalier J (1996) Etude de la propagation des fissures dans une zircone 3Y-TZP pour applications biomédicales, thèse, INSA de Lyon, 161 p

    Google Scholar 

  16. Zhu T, Li J, Lin X, Yip S (2005) Stress-dependent molecular pathways of silica-water reaction. J Mech Phys Solids 53:1597–1623

    Article  CAS  Google Scholar 

  17. Chevalier J (2001) Caractérisation mécanique et optimization des biocéramiques, Habilitation à Diriger des Recherches (HDR), INSA-Lyon and Université Lyon 1

    Google Scholar 

  18. Chevalier J, Olagnon C, Fantozzi G, Cales B (1997) Subcritical crack growth and thresholds in a 3Y-TZP ceramic under static and cyclic loading conditions. Ceram Int 23(3):263–266

    Article  CAS  Google Scholar 

  19. McMeeking RM, Evans AG (1982) Mechanics of transformation-toughening in brittle materials. J Am Ceram Soc 65(5):242–246

    Article  Google Scholar 

  20. Chevalier J, Olagnon C, Fantozzi G (1999) Subcritical crack propagation in 3Y-TZP ceramics: static and cyclic fatigue. J Am Ceram Soc 82(11):3129–3138

    Article  CAS  Google Scholar 

  21. Knehans R, Steinbrech RW (1984) Effect of grain size on the crack resistance curves of Al2O3 bend specimens. In: Vincenzini P (ed) Science of ceramics, vol 12. Research Institute for Ceramics Technology, Faenza, pp 613–619

    Google Scholar 

  22. Chantikul P, Bennison S, Lawn BR (1990) Role of the grain size in the strength and R-curve properties of Alumina. J Am Ceram Soc 73(8):2419–2427

    Article  CAS  Google Scholar 

  23. Vekinis G, Ashby MF, Beaumont PWR (1990) R-curve behaviour of Al2O3 ceramics. Acta Metall Mater 38(6):1151–1162

    Article  CAS  Google Scholar 

  24. Swanson P, Fairbanks C, Lawn BR, Mai Y, Hockey B (1987) Crack – interface bridging as a fracture resistance mechanism in ceramics: experimental study on alumina. J Am Ceram Soc 70(4):279–289

    Article  CAS  Google Scholar 

  25. Pezzotti G, Sbaizero O, Sergo V, Muraki N, Maruyama K, Nishida T (1998) In situ measurements of frictional bridging stresses in alumina using fluorescence spectroscopy. J Am Ceram Soc 81(1):187–192

    Article  CAS  Google Scholar 

  26. Osaka A, Hirosaki A, Yoshimura M (1990) Subcritical crack growth in sintered silicon nitride exhibiting a rising R-curve. J Am Ceram Soc 73(7):2095–2096

    Article  Google Scholar 

  27. Deuhlerc F, Knehans K, Steinbrech R (1985) Fortschrittsberichte der Deutschen Keramischen Gesellschaft 1:51

    Google Scholar 

  28. Fett T, Munz D (1992) Subcritical crack growth of macro-cracks in alumina with R-curve behaviour. J Am Ceram Soc 75(4):958–963

    Article  CAS  Google Scholar 

  29. Ebrahimi ME, Chevalier J, Fantozzi G (2000) Slow crack growth behavior of alumina ceramics. J Mater Res 15(1):142–147

    Article  CAS  Google Scholar 

  30. Deville S, Guenin G, Chevalier J (2004) Martensitic transformation in zirconia. Part I. Nanometer scale prediction and measurement of transformation induced relief. Acta Mater 52:5697–5707

    CAS  Google Scholar 

  31. Duong T, Limarga AM, Clarke DR (2009) Diffusion of water species in yttria-stabilized zirconia. J Am Ceram Soc 92(11):2731–2737

    Article  CAS  Google Scholar 

  32. Deville S, Guenin G, Chevalier J (2004) Martensitic transformation in zirconia. Part II. Martensite growth. Acta Mater 52:5709–5721

    CAS  Google Scholar 

  33. El Attaoui H (2003) Influence du renforcement sur le comportement en fatigue statique et cyclique des céramiques monolithiques de type alumine et zircone, PhD Thesis, INSA-Lyon, France. http://docinsa.insa-lyon.fr/these/pont.php?id=el_attaoui

  34. Shen Y, Clarke DR (2010) Resistance to low-temperature degradation of equimolar YO 1.5-TaO2.5 stabilized tetragonal ZrO2 ceramics in air. J Am Ceram Soc 93(7):2024–2027

    CAS  Google Scholar 

  35. Kobayashi K, Kuwajima H, Masaki T (1980) Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after ageing. Solid State Ionics 3(4):489–493

    Google Scholar 

  36. Chevalier J, Cales B, Drouin JM (1999) Low-temperature aging of Y-TZP ceramics. J Am Ceram Soc 82:2150–2154

    Article  CAS  Google Scholar 

  37. Chevalier J (2006) What future for zirconia as a biomaterial? Biomaterials 27:535–543

    Article  CAS  Google Scholar 

  38. US Food and Drug Administration (1997) Steam re-sterilization causes deterioration of zirconia ceramic heads of total hip prostheses. http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/PublicHealthNotifications/ucm062472.htm

  39. Hernigou P, Bahrami T (2003) Zirconia and alumina ceramics in comparison with stainless-steel heads. J Bone Joint Surg Ser B 85(4):504–509

    Google Scholar 

  40. Chevalier J, Gremillard L, Deville S (2007) Low temperature degradation of zirconia and its implication on biomedical implants. Annu Rev Mater Res 37:1–32

    Article  CAS  Google Scholar 

  41. Maro FG, Mestra A, Lamghari M, Anglada M (2010) Weibull statistical study of the flexural strength of hydrothermally degraded 3Y-TZP. In: Proceedings of the twelfth inter-regional conference on ceramics, Mons, 7–9 Sept 2010

    Google Scholar 

  42. Agence Française de Sécurité Sanitaire et des produits de Santé (2001) Décision portant sur la suspension d’utilisation de certaines têtes de prothèse de hanche en céramique de zircone. http://agmed.sante.gouv.fr/htm/alertes/filalert/dm010811.htm

  43. Maccauro G, Piconi C, Burger W, Pilloni L, De Santis E, Muratori F, Learmonth ID (2004) Fracture of a Y-TZP ceramic femoral head: analysis of a fault. J Bone Joint Surg Ser B 86:1192–1196

    Article  CAS  Google Scholar 

  44. Masonis JL, Bourne RB, Ries MD, McGalden RW, Salehi A, Kelman DC (2004) Zirconia femoral head fractures: a clinical and retrieval analysis. J Arthroplasty 19:898–905

    Article  Google Scholar 

  45. Chevalier J, Loh J, Gremillard L, Meille S, Adolfson E (2011) Low temperature degradation in zirconia with a porous surface. Acta Biomater 7(7):2986–2993. doi:10.1016/j.actbio.2011.03.006

    Article  CAS  Google Scholar 

  46. Garvie RC, Nicholson PS (1972) Phase analysis in zirconia systems. J Am Ceram Soc 55:303–305

    Article  CAS  Google Scholar 

  47. Toraya H, Yoshimura M, Somiya S (1984) Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction. J Am Ceram Soc 67(6):C119–C121

    Google Scholar 

  48. Clarke DR, Adar F (1982) Measurement of the crystallographically transformed zone produced by fracture in ceramics containing tetragonal zirconia. J Am Ceram Soc 65:284–288

    Article  CAS  Google Scholar 

  49. Li J, Zheng Q, Hashida T (2001) Degradation of yttria-stabilized zirconia at 370K under a low applied stress. Mater Sci Eng A 297:26–30

    Article  Google Scholar 

  50. De Aza AH, Chevalier J, Fantozzi G, Schehl M, Torrecillas R (2002) Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials 23:937–945

    Article  Google Scholar 

  51. Pecharroman C, Bartolome JF, Requena J, Moya JS, Deville S, Chevalier J, Fantozzi G, Torrecillas R (2003) Percolative mechanism of aging in zirconia-containing ceramics for medical applications. Adv Mater 15:507–511

    Article  CAS  Google Scholar 

  52. Schehl M, Diaz LA, Torrecillas R (2002) Alumina nanocomposites from powder-alkoxide mixtures. Acta Mater 50:1125–1139

    Article  CAS  Google Scholar 

  53. Deville S, Chevalier J, Fantozzi G, Bartolome JF, Requena J, Moya JS, Torrecillas R, Diaz LA (2003) Low-temperature ageing of zirconia-toughened alumina ceramics and its implication in biomedical implants. J Eur Ceram Soc 23:2975–2982

    Article  CAS  Google Scholar 

  54. Pezzotti G, Saito T, Padeletti G, Cossari P, Yamamoto K (2010) Nano-scale topography of bearing surface in advanced alumina/zirconia hip joint before and after severe exposure in water vapor environment. J Orthop Res 28(6):762–766

    CAS  Google Scholar 

  55. Chevalier J, Grandjean S, Kuntz M, Pezzotti G (2009) On the kinetics and impact of tetragonal to monoclinic transformation in an alumina/zirconia composite for arthroplasty applications. Biomaterials 30(29):5279–5282

    Article  CAS  Google Scholar 

  56. Nakanishi T, Sasaki M, Ikeda J, Miyaji F, Kondo M (2007) Mechanical and phase stability of zirconia toughened alumina. Key Eng Mater 330–332(II):1267–1270

    Google Scholar 

  57. Gutknecht D, Chevalier J, Garnier V, Fantozzi G (2007) Key role of processing to avoid low temperature ageing in alumina zirconia composites for orthopaedic application. J Eur Ceram Soc 27(2–3):1547–1552

    Article  CAS  Google Scholar 

  58. Ban S, Sato H, Suehiro Y, Nakanishi H, Nawa M (2008) Biaxial flexure strength and low temperature degradation of Ce-TZP/Al 2O3 nanocomposite and Y-TZP as dental restoratives. J Biomed Mater Res B Appl Biomater 87(2):492–498

    Google Scholar 

  59. Benzaid R, Chevalier J, Saâdaoui M, Fantozzi G, Nawa M, Diaz LA, Torrecillas R (2008) Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia-alumina nanocomposite for medical applications. Biomaterials 29(27):3636–3641

    Article  CAS  Google Scholar 

  60. Wimmer MA, Artelt D, Schneider E, et al (2001) Friction and wear properties of metal/metal hip joints: application of a novel testing and analysis method. Mat. wiss. U. Werkstofftech 32:891–896

    Google Scholar 

  61. Marshall A, Ries MD, Paprosky W (2008) How prevalent are implant wear and osteolysis and how has the scope of osteolysis changed since 2000? J Am Acad Orthop Surg 16(suppl 1):S1–S6

    Google Scholar 

  62. Hall RM, Unsworth A (1997) Friction in hip prostheses. Biomaterials 18(15):1017–1026

    Article  CAS  Google Scholar 

  63. Schmalzried TP, Callaghan JJ (1999) Wear in total hip and knee replacements. J Bone Joints Surg Am 81(1):115–136

    CAS  Google Scholar 

  64. Manley MT, Sutton K (2008) Bearings of the future for total hip arthroplasty. J Arthroplasty 23(7 Suppl):47–50

    Article  Google Scholar 

  65. Blunt L, Bills P, Jiang X, Hardaker C, Chakrabarty G (2009) The role of tribology and metrology in the latest development of bio-materials. Wear 266:424–431

    Article  CAS  Google Scholar 

  66. Santavirta S, Konttinen YT, Lappalainen R, Anttila A, Goodman SB, Lind M (1998) Materials in total joint replacement. Curr Orthop 12:51–57

    Article  Google Scholar 

  67. Piconi C, Maccauro G (1999) Zirconia as a ceramic biomaterial. Biomaterials 20:1–25

    Article  CAS  Google Scholar 

  68. Dumbleton JH, Manley MT (2005) Metal-on-metal total hip replacement: what does the literature say? J Arthroplasty 20:174–188

    Article  Google Scholar 

  69. Clarke IC, Good V, Williams P et al (2000) Ultra-low wear rates for rigid-on-rigid bearings in total hip replacements. Proc Inst Mech Eng 214:331

    Article  CAS  Google Scholar 

  70. Goldsmith AAJ, Dowson D, Isaac GH et al (2000) A comparative joint simulator study of the wear of metal-on-metal and alternative material combinations in hip replacements. Proc Inst Mech Eng 214:39

    Article  CAS  Google Scholar 

  71. Masse A, Bosetti M, Buratti C et al (2003) Ion release and chromosomal damage from total hip prostheses with metal-on-metal articulation. J Biomed Mater Res 67:750

    Article  CAS  Google Scholar 

  72. Tharani R, Dorey FJ, Schmalzreid TP (2001) The risk of cancer following total hip or knee arthroplasty. J Bone Joint Surg Am 83A:774

    Google Scholar 

  73. Malchau H, Herberts P, Eisler T, Garellick G, Soderman P (2002) The Swedish Total Hip Replacement Register. Friction of total hip replacements with different bearings and loading conditions. J Bone Joint Surg Am 84:2–20

    Google Scholar 

  74. Lewis G (1997) Polyethylene wear in total hip and knee arthroplasties. J Biomed Mater Res 38(1):55–75

    Article  CAS  Google Scholar 

  75. Ingham E, Fisher J (2005) The role of macrophages in osteolysis of total joint replacement. Biomaterials 26(11):1271–1286

    Article  CAS  Google Scholar 

  76. Schmalzried TP, Jasty M, Harris WH (1992) Periprosthetic bone loss in total hip arthroplasty: polyethylene wear debris and the concept of the effective joint space. J Bone Joint Surg Am 74A:849–863

    Google Scholar 

  77. Revell PA (1997) Biological reaction to debris in relation to joint prostheses. Proc Inst Mech Eng J Eng Med 211:187–197

    Article  CAS  Google Scholar 

  78. Boutin P, Christel P, Dorlot JM et al (1988) The use of dense alumina-alumina ceramic combination in total hip replacement. J Biomed Mater Res 22:1203

    Article  CAS  Google Scholar 

  79. Hamadouche M, Boutin JD, Bolander ME, Sedel L (2002) Alumina-on-alumina total hip arthroplasty. J Bone Joint Surg 84:69–77

    Google Scholar 

  80. Taylor SK, Serekian P, Manley M (1998) Wear performance of a contemporary alumina–alumina bearing couple under hip joint simulation. In: Proceedings of the 44th orthopaedic research society, vol 51, New Orleans, LA

    Google Scholar 

  81. Oonishi H, Nishida M, Kawanabe K, Yamamoto K, Downs B, Sorensen K, Good V, Braham A, Clarke IC (1999) In vitro wear of Al2O3/Al2O3 implant combination with over 10 million cycles duration. In: Proceedings of the 45th orthopaedic research society, Anaheim, CA, p 50

    Google Scholar 

  82. Nevelos JE, Ingham E, Doyle C, Fisher J, Nevelos AB (1999) Analysis of retrieved alumina ceramic components from Mittelmeier total hip prostheses. Biomaterials 20:1833–1840

    Article  CAS  Google Scholar 

  83. Teoh SH (2000) Fatigue of biomaterials: a review. Int J Fatigue 22:825–837

    Article  CAS  Google Scholar 

  84. Elsner JJ, Mezape Y, Hakshur K, Shemesh M, Linder-Ganz E, Shterling A, Eliaz N (2010) Wear rate evaluation of a novel polycarbonate-urethane cushion form bearing for artificial hip joints. Acta Biomater 6:4698–4707

    Article  CAS  Google Scholar 

  85. Ries MD (2003) Complications in primary total hip arthroplasty: avoidance and management: wear. Instr Course Lect 52:257

    Google Scholar 

  86. Skinner HB (1999) Ceramic bearing surfaces. Clin Orthop 369:83

    Article  Google Scholar 

  87. Johnston RC, Smidt GL (1969) Measurement of hip-joint motion during walking—evaluation of an electrogoniometric method. J Bone Joint Surg 51-A:1083–1094

    Google Scholar 

  88. Ortega-Saenz JA, Hernandez-Rodriguez MAL, Perez-Unzueta A, Mercado-Solis R (2007) Development of a hip wear simulation rig including micro-separation. Wear 263:1527–1532

    Article  CAS  Google Scholar 

  89. Wimmer MA, Sprecher C, Hauert R, Tager G, Fischer A (2003) Tribochemical reaction on metal-on-metal hip joint bearings. A comparison between in-vitro and in-vivo results. Wear 255:1007–1014

    Article  CAS  Google Scholar 

  90. Jay GD, Harris DA, Cha C-J (2001) Boundary lubrication by lubricin is mediated by O-linked b(1–3)Gal-GalNAc oligosaccharides. Glycoconj J 18:807–815

    Article  CAS  Google Scholar 

  91. Schwarz IM, Hills BA (1998) Surface-active phospholipid as the lubricating component of lubricin. Br J Rheumatol 37:21–26

    Article  CAS  Google Scholar 

  92. Mishina H, Kojima M (2008) Changes in human serum albumin on arthroplasty frictional surfaces. Wear 265:655–663

    Article  CAS  Google Scholar 

  93. ASTM (1996) Standard practice for reciprocating pin-on-flat evaluation of friction and wear properties of polymeric materials for use in total joint prostheses. ASTM F732, sect 13, p 171

    Google Scholar 

  94. Liu F, Leslie I, Williams S, Fisher J, Jin Z (2008) Development of computational wear simulation of metal-on-metal hip resurfacing replacements. J Biomech 41:686–694

    Article  CAS  Google Scholar 

  95. Boutin P (1972) Arthroplastie totale de hanche par prothèse en alumine frittée. Revue de Chirurgie Orthopédique et Réparatrice de l'Appareil moteur 58:229–246

    CAS  Google Scholar 

  96. Boutin P, Blanquaert D (1981) Le frottement alumine-alumine en chirurgie de la hanche. 1205 arthroplasties totales: Avril 1970 - juin 1980. Revue de Chirurgie Orthopédique et Réparatrice de l'Appareil moteur 67:279–287

    Google Scholar 

  97. Boutin P, Christel P, Dorlot JM, Meunier A, de Roquancourt A, Blanquaert D, Herman S, Sedel L, Witvoet J (1988) The use of dense alumina-alumina ceramic combination in total hip replacement. J Biomed Mater Res 22:1203–1232

    Article  CAS  Google Scholar 

  98. Bizot P, Nizard R, Sedel L (2010) Le couple alumine-alumine dans les prothèses totales de hanche. de la théorie à la pratique, Online edition. http://www.maitrise-orthop.com/viewPage.do?id=619

  99. Tipper JL, Firkins PJ, Besong AA, Barbour PSM, Nevelos J, Stone MH, Ingham E, Fisher J (2001) Characterisation of wear debris from UHMWPE on zirconia ceramic, metal-on-metal and alumina ceramic-on-ceramic hip prostheses generated in a physiological anatomical hip joint simulator. Wear 250:120–128

    Article  Google Scholar 

  100. Schmalzried TP (2004) How I choose a bearing surface for my patients. J Arthroplasty 19:50–53

    Article  Google Scholar 

  101. Brown TD, Callaghan JJ (2008) (ii) Impingement in total hip replacement: mechanisms and consequences. Curr Orthop 22:376–391

    Article  Google Scholar 

  102. Nevelos J, Ingham E, Doyle C, Streicher R, Nevelos A, Walter W, Fisher J (2000) Microseparation of the centers of alumina-alumina artificial hip joints during simulator testing produces clinically relevant wear rates and patterns. J Arthroplasty 15:793–795

    Article  CAS  Google Scholar 

  103. Callaghan JJ, Rosenberg AG, Rubash HE (2007) The adult hip. Lippincott Williams & Wilkins, Philadelphia, PA, p 53

    Google Scholar 

  104. Kapandji AL (2009) Anatomie fonctionnelle-membre inférieur. Ed. Maloine, Paris

    Google Scholar 

  105. Thompson JC, Netter FH (2008) Netter-précis d’anatomie clinique d’orthopédie-French edition coordinated by Duparc J. Ed. Masson, Issy-les-Moulineaux

    Google Scholar 

  106. Magnissalis EA, Xenakis TA, Zacharis C (2001) Wear of retrieved ceramic THA components–four matched pairs retrieved after 5–13 years in service. J Biomed Mater Res 58:593–598

    Article  CAS  Google Scholar 

  107. Shishido T, Yamamoto K, Tanaka S, Masaoka T, Clarke IC, Williams P (2006) A study for a retrieved implant of ceramic on ceramic total hip arthroplasty. J Arthroplasty 21:294–298

    Article  Google Scholar 

  108. Essner A, Sutton K, Wang A (2005) Hip simulator wear comparison of metal-on-metal, ceramic-on-ceramic and crosslinked UHMWPE bearings. Wear 259:992–995

    Article  CAS  Google Scholar 

  109. Gruen T, Mc Neice GM, Amstutz HC (1979) Modes of failures of cemented stem type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res 141:17–27

    Google Scholar 

  110. Paul JP (1979) Advances in hip and knee joint technology. In: Schaldach M, Hohmann D (eds) Loading on normal hip and knee joints and joint replacements. Springer, Berlin, pp 53–70

    Google Scholar 

  111. Jobard B (2003) Contribution à l’étude des impacts transmis à l’articulation de la hanche humaine, PhD thesis. Lyon University I

    Google Scholar 

  112. Manaka M, Clarke IC, Yamamoto K, Shishido T, Gustafson A, Imakiire A (2004) Stripe wear rates in alumina THR—comparison of microseparation simulator study with retrieved implants. J Biomed Mater Res B Appl Biomater 69B:149–157

    Article  CAS  Google Scholar 

  113. Dennis DA, Komistek RD, Northcut EJ, Ochoa JA, Ritchie A (2001) In vivo determination of hip joint separation and the forces generated due to impact loading conditions. J Biomech 34:623–629

    Article  CAS  Google Scholar 

  114. Stewart TD, Tipper JL, Insley G, Streicher RM, Ingham E, Fisher J (2003) Severe wear and fracture of zirconia heads against alumina inserts in hip simulator studies with microseparation. J Arthroplasty 18:726–734

    Article  Google Scholar 

  115. Walter WL, Insley GM, Walter WK, Tuke MA (2004) Edge loading in third generation alumina ceramic-on-ceramic bearings: stripe wear. J Arthroplasty 19:402–413

    Article  Google Scholar 

  116. Roualdes O, Duclos M-E, Gutknecht D, Frappart L, Chevalier J, Hartmann DJ (2010) In vitro and in vivo evaluation of an alumina–zirconia composite for arthroplasty applications. Biomaterials 31:2043–2054

    Article  CAS  Google Scholar 

  117. Bongio M, Van Den Beucken JJP, Leeuwenburgh SCG, Janson JA (2010) From ‘biocompatible’ to ‘instructive’. J Mater Chem 20:8747–8759

    Article  CAS  Google Scholar 

  118. Chevalier J, Gremillard L (2009) Ceramics for medical applications: a picture for the next 20 years. J Am Ceram Soc 29:1245–1255

    Article  CAS  Google Scholar 

  119. Hench LL (1998) Bioceramics. J Am Ceram Soc 81:1705–1728

    Article  CAS  Google Scholar 

  120. Plannell JA (ed) (2009) Bone repair biomaterials. CRC, Boca Raton, FL

    Google Scholar 

  121. Kokubo T (ed) (2008) Bioceramics and their clinical applications. CRC, Boca Raton, FL

    Google Scholar 

  122. Jones JR, Hench LL (2001) Biomedical materials for the next millennium: perspective on the future. Mater Sci Technol 17:891–900

    Article  CAS  Google Scholar 

  123. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  Google Scholar 

  124. Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AC (1996) Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 17:175–185

    Article  CAS  Google Scholar 

  125. Hench LL (2006) The story of Bioglass®. J Mater Sci 17:967–978

    Article  CAS  Google Scholar 

  126. Ducheyne P, Qiu Q (1999) Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20:2287–2303

    Article  CAS  Google Scholar 

  127. Habibovic P, de Groot K (2007) Osteoinductive biomaterials – properties and relevance in bone repair. J Tissue Eng Regen Med 1:25–32

    Article  CAS  Google Scholar 

  128. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915

    Article  CAS  Google Scholar 

  129. Oonishi H, Hench LL, Wilson J, Sugihara F, Tsuji E, Matsuura M (2000) Quantitative comparison of bone growth behaviour in granules of Bioglass®, A-W glass ceramic and hydroxyapatite. J Biomed Mater Res 51:37–46

    Article  CAS  Google Scholar 

  130. Xin R, Leng Y, Chen J, Zhang Q (2005) A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Biomaterials 26:6477–6486

    Article  CAS  Google Scholar 

  131. Bohner M, Lemaître J (2009) Can bioactivity be tested in vitro with SBF solution? Biomaterials 30:2175–2179

    Article  CAS  Google Scholar 

  132. Orly I, Gregoire M, Menanteau J, Heughebaert M, Kerebel B (1989) Chemical changes in hydroxyapatite biomaterial under in vivo and in vitro biological conditions. Calcif Tissue Int 45:20–26

    Article  CAS  Google Scholar 

  133. Eliaz N, Eliyahu M (2007) Electrochemical processes of nucleation and growth of hydroxyapatite on titanium supported by real-time electrochemical atomic force microscopy. J Biomed Mater Res A 80:621–634

    Google Scholar 

  134. Knabe C, Ducheyne P (2008) Cellular response to bioactive ceramics, chap 6, Bioceramics and their clinical applications. CRC, Kokubo

    Google Scholar 

  135. Bohner M (2008) Bioresorbable ceramics, chap 5. In: Fraser Buchanan (ed) Degradation rate of bioresorbable materials. CRC, Boca Raton

    Google Scholar 

  136. Driessens FCM, Verbeeck RM (eds) (1988) Relation between physico-chemical solubility and biodegradability of calcium phosphates. Elsevier, Amsterdam

    Google Scholar 

  137. Hench LL (2005) Challenges for bioceramics in the 21st century. Am Ceram Soc Bull 84:18–22

    CAS  Google Scholar 

  138. Thomas MV, Puleo DA (2008) Review calcium sulfate: properties and clinical applications. J Biomed Mater Res B 88(2):597–610

    Google Scholar 

  139. Chan H, Mijares D, Ricci JL (2004) In vitro dissolution of calcium sulfate: evidence of 1662 bioactivity. In: Transactions – 7th World Biomaterials Congress (Sidney, Australia, may 17–21, 2004): 627; ISBN: 1877040193;978-187704019-1

    Google Scholar 

  140. Stubbs D, Deakin M, Chapman-Sheath P, Bruce W, Debes J, Gillies RM, Walsh WR (2004) In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model. Biomaterials 25:5037–5044

    Article  CAS  Google Scholar 

  141. Glazer PA, Specner UM, Alkalay RN, Schwardt JS (2001) In vivo evaluation of calcium sulfate as a bone graft substitute for lumbar spinal fusion. Spine J 1:395–401

    Article  CAS  Google Scholar 

  142. Dorozhkin SV (2010) Bioceramics of calcium orthophosphate. Biomaterials 31:1465–1485

    Article  CAS  Google Scholar 

  143. Bohner M (2000) Calcium orthophosphate in medicine: from ceramics to calcium phosphate cements. Injury 31(4):D37–D47

    Google Scholar 

  144. LeGeros RZ, LeGeros JP (2008) Hydroxyapatite, chap 16. In: Kokubo T (ed) Bioceramics and their clinical applications. CRC, Boca Raton

    Google Scholar 

  145. Kim HM, Himeno T, Kokubo T, Nakamura T (2005) Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials 12:155–163

    Google Scholar 

  146. Beekmans HCS, Meijer GJ, Barkhuysen R, Blijdorp PA, Merkx MA, Jansen J (2008) The hydroxylapatite-bone-interface: 10 years after implant installation. Int J Oral Maxillofac Surg 37:768–772

    Article  CAS  Google Scholar 

  147. Eliaz N (2008) Electrocrystallization of calcium phosphates. Isr J Chem 48:159–168

    Article  CAS  Google Scholar 

  148. Rey C, Combes C, Drouet C, Somrani S (2008) Tricalcium phosphate ceramics, chap 15. In: Kokubo T (ed) Bioceramics and their clinical applications. CRC, Boca Raton

    Google Scholar 

  149. Klein CPAT, Driessen AA, de Groot K, van den Hoff A (1983) Biodegradation behaviour of various calcium phosphate materials in bone tissue. J Biomed Mater Res 17:769–784

    Article  CAS  Google Scholar 

  150. Knabe C, Koch C, Rack A, Stiller M (2008) Effect of β-tricalcium phosphate particle with varying porosity on osteogeneis after sinus floor augmentation in humans. Biomaterials 29:2249–2258

    Article  CAS  Google Scholar 

  151. Artzi Z, Weinreb M, Givol N, Rohrer MD, Nemcovsky CE, Prasad HS, Tal H (2004) Biomaterial resorption rate and healing site morphology of IBB and β-TCP in the canine: a 24-months longitudinal histologic study and morphometric analysis. Int J Oral Maxillofac Implants 19:357–368

    Google Scholar 

  152. Daculsi G, Laboux O, Malard O, Weiss P (2003) Current state of the art of biphasic calcium phosphate ceramics. J Mater Sci Mater Med 14:195–200

    Article  CAS  Google Scholar 

  153. Hench LL (2009) Genetic design of bioactive glass. J Eur Ceram Soc 29:1257–1265

    Article  CAS  Google Scholar 

  154. Tadjoedin ES, de Lange GL, Lyaruu DM, Kuiper L, Burger EH (2002) High concentration of bioactive glass material vs. autogenous bone for sinus floor elevation. Clin Oral Implants Res 13:428–436

    Article  Google Scholar 

  155. Boccaccini AR, Chen Q, Lefebvre L, Gremillard L, Chevalier J (2007) Sintering, crystallisation and biodegradation behaviour of Bioglass (R)-derived glass-ceramics. Faraday Discuss 136:27–44

    Article  CAS  Google Scholar 

  156. Magallanes-Perdomo M, Meille S, Chenal J.-M, Pacard E, Chevalier J, Bioactivity modulation of Bioglass® powder by thermal treatment, J Euro Ceram Soc, http://dx.doi.org/10.1016/j.jeurceramsoc.2012.03.018

  157. Yamamuro T (2008) Clinical application of bioactive glass-ceramics, chap 26. In: Kokubo T (ed) Bioceramics and their clinical applications. CRC, Boca Raton

    Article  CAS  Google Scholar 

  158. Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Agence Nationale de la Recherche, ANR, for financial support through the “Opt-Hip” project (grant # ANR-MAPR07-0014). The authors are grateful to N. Curt for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chevalier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gremillard, L. et al. (2012). Degradation of Bioceramics. In: Eliaz, N. (eds) Degradation of Implant Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3942-4_9

Download citation

Publish with us

Policies and ethics