Skip to main content

Esophageal Motor Physiology

  • Chapter
  • First Online:
Principles of Deglutition

Abstract

The esophagus is a muscular tube that serves to propel the ingested food to the stomach by sequential, aborally progressive contraction of the esophageal circular muscle in concert with shortening of the esophagus effected by longitudinal muscle contraction. Whereas esophageal muscle contraction in the proximal striated muscle segment is activated directly via vagal efferent neurons, control of peristalsis in the distal smooth muscle segment is more complex. Although vagal efferent pathways are necessary for initiating swallow-induced peristalsis, peripheral neuromuscular mechanisms play a key role in generating the sequential contraction of circular muscle in the smooth muscle esophagus, via a complex interplay between cholinergic and nitrergic nerves, as well as the myogenic properties of the muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clouse RE, Staiano A. Topography of normal and high-amplitude esophageal peristalsis. Am J Physiol. 1993;265(6 Pt 1):G1098–107.

    PubMed  CAS  Google Scholar 

  2. Clouse RE, Staiano A, Bickston SJ, et al. Characteristics of the propagating pressure wave in the esophagus. Dig Dis Sci. 1996;41(12):2369–76.

    Article  PubMed  CAS  Google Scholar 

  3. Clouse RE, Alrakawi A, Staiano A. Intersubject and interswallow variability in topography of esophageal motility. Dig Dis Sci. 1998;43(9):1978–85.

    Article  PubMed  CAS  Google Scholar 

  4. Richter JE, Wu WC, Johns DN, et al. Esophageal manometry in 95 healthy adult volunteers. Variability of pressures with age and frequency of “abnormal” contractions. Dig Dis Sci. 1987;32(6):583–92.

    Article  PubMed  CAS  Google Scholar 

  5. Edmundowicz SA, Clouse RE. Shortening of the esophagus in response to swallowing. Am J Physiol. 1991;260(3 Pt 1):G512–6.

    PubMed  CAS  Google Scholar 

  6. Jung HY, Puckett JL, Bhalla V, et al. Asynchrony between the circular and the longitudinal muscle contraction in patients with nutcracker esophagus. Gastroenterology. 2005;128(5):1179–86.

    Article  PubMed  Google Scholar 

  7. Mittal RK, Padda B, Bhalla V, et al. Synchrony between circular and longitudinal muscle contractions during peristalsis in normal subjects. Am J Physiol Gastrointest Liver Physiol. 2006;290(3):G431–8.

    Article  PubMed  CAS  Google Scholar 

  8. Nicosia MA, Brasseur JG, Liu JB, et al. Local longitudinal muscle shortening of the human esophagus from high-frequency ultrasonography. Am J Physiol Gastrointest Liver Physiol. 2001;281(4):G1022–33.

    PubMed  CAS  Google Scholar 

  9. Roman C, Orengo M, Tieffenbach L. Electro-myographic study of esophageal smooth muscle in cats. J Physiol. 1969;61(2):390.

    Google Scholar 

  10. Wood JD. Physiology of the enteric nervous system. In: Johnson LR, editor. Physiology of the Gastrointestinal Tract. 2nd ed. New York: Raven; 1987. p. 67–109.

    Google Scholar 

  11. Goyal RK, Paterson WG. Esophageal motility. In: Wood JD, editor. Handbook of physiology: the gastrointestinal system. Washington, DC: American Physiology Society; 1989. p. 865–908.

    Google Scholar 

  12. Pal A, Brasseur JG. The mechanical advantage of local longitudinal shortening on peristaltic transport. J Biomech Eng. 2002;124(1):94–100.

    Article  PubMed  Google Scholar 

  13. Clouse RE, Staiano A. Topography of the esophageal peristaltic pressure wave. Am J Physiol. 1991;261(4 Pt 1):G677–84.

    PubMed  CAS  Google Scholar 

  14. Kahrilas PJ, Dodds WJ, Hogan WJ. Effect of peristaltic dysfunction on esophageal volume clearance. Gastroenterology. 1988;94(1):73–80.

    PubMed  CAS  Google Scholar 

  15. Tutuian R, Castell DO. Clarification of the esophageal function defect in patients with manometric ineffective esophageal motility: studies using combined impedance-manometry. Clin Gastroenterol Hepatol. 2004;2(3):230–6.

    Article  PubMed  Google Scholar 

  16. Dodds WJ, Hogan WJ, Reid DP, et al. A comparison between primary esophageal peristalsis following wet and dry swallows. J Appl Physiol. 1973;35(6):851–7.

    PubMed  CAS  Google Scholar 

  17. Dooley CP, Schlossmacher B, Valenzuela JE. Effects of alterations in bolus viscosity on esophageal peristalsis in humans. Am J Physiol. 1988;254(1 Pt 1): G8–11.

    PubMed  CAS  Google Scholar 

  18. Hollis JB, Castell DO. Effect of dry swallows and wet swallows of different volumes on esophageal peristalsis. J Appl Physiol. 1975;38(6):1161–4.

    PubMed  CAS  Google Scholar 

  19. Tutuian R, Elton JP, Castell DO, et al. Effects of position on oesophageal function: studies using combined manometry and multichannel intraluminal impedance. Neurogastroenterol Motil. 2003;15(1):63–7.

    Article  PubMed  CAS  Google Scholar 

  20. Seigel Cl, Hendrix TR. Evidence for central mediated secondary peristalsis in the esophagus. Bull Johns Hopkins. 1961;108:297–307.

    Google Scholar 

  21. Bieger D, Hopkins DA. Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J Comp Neurol. 1987;262(4):546–62.

    Article  PubMed  CAS  Google Scholar 

  22. Collman PI, Tremblay L, Diamant NE. The central vagal efferent supply to the esophagus and lower esophageal sphincter of the cat. Gastroenterology. 1993;104(5):1430–8.

    PubMed  CAS  Google Scholar 

  23. Ueda M, Schlegel JF, Code CF. Electric and motor activity of innervated and vagally denervated feline esophagus. Am J Dig Dis. 1972;17(12):1075–88.

    Article  PubMed  CAS  Google Scholar 

  24. Vantrappen G, Hellemans J. Diseases of the esophagus. New York: Springer; 1974.

    Book  Google Scholar 

  25. Roman C. Nervous control of esophageal peristalsis. J Physiol Paris. 1966;58(1):79–108.

    PubMed  CAS  Google Scholar 

  26. Kuramoto H, Kawano H, Sakamoto H, et al. Motor innervation by enteric nerve fibers containing both nitric oxide synthase and galanin immunoreactivities in the striated muscle of the rat esophagus. Cell Tissue Res. 1999;295(2):241–5.

    Article  PubMed  CAS  Google Scholar 

  27. Neuhuber WL, Worl J, Berthoud HR, et al. NADPH-diaphorase-positive nerve fibers associated with motor endplates in the rat esophagus: new evidence for ­co-innervation of striated muscle by enteric neurons. Cell Tissue Res. 1994;276(1):23–30.

    Article  PubMed  CAS  Google Scholar 

  28. Singaram C, SenGupta A, Sweet MA, et al. Nitrinergic and peptidergic innervation of the human oesophagus. Gut. 1994;35(12):1690–6.

    Article  PubMed  CAS  Google Scholar 

  29. Worl J, Neuhuber WL. Enteric co-innervation of motor endplates in the esophagus: state of the art ten years after. Histochem Cell Biol. 2005;123(2):117–30.

    Article  PubMed  CAS  Google Scholar 

  30. Bieger D, Neuhuber W. Neural circuits and mediators regulating swallowing in the brainstem. Part 1 Oral cavity, pharynx and esophagus. GI Motility online 2006; http://www.nature.com/gimo/contents/pt1/full/gimo74.html. Accessed 21 Dec 2010.

  31. Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev. 2001;81(2):929–69.

    PubMed  CAS  Google Scholar 

  32. Jean A, Dallaporta A. Electrophysiologic characterization of the swallowing pattern generator in the brainstem PART 1 Oral cavity, pharynx and esophagus. GI Motility online 2006; http://www.nature.com/gimo/contents/pt1/full/gimo9.html. Accessed 21 Dec 2010.

  33. Lang IM. Brain stem control of the phases of swallowing. Dysphagia. 2009;24(3):333–48.

    Article  PubMed  Google Scholar 

  34. Gidda JS, Goyal RK. Swallow-evoked action potentials in vagal preganglionic efferents. J Neurophysiol. 1984;52(6):1169–80.

    PubMed  CAS  Google Scholar 

  35. Roman C, Tieffenbach L. Recording the unit activity of vagal motor fibers innervating the baboon esophagus. J Physiol Paris. 1972;64(5):479–506.

    PubMed  CAS  Google Scholar 

  36. Tieffenbach L, Roman C. The role of extrinsic vagal innervation in the motility of the smooth-musculed portion of the esophagus: electromyographic study in the cat and the baboon. J Physiol Paris. 1972;64(3):193–226.

    PubMed  CAS  Google Scholar 

  37. Crist J, Gidda JS, Goyal RK. Intramural mechanism of esophageal peristalsis: roles of cholinergic and noncholinergic nerves. Proc Natl Acad Sci USA. 1984;81(11):3595–9.

    Article  PubMed  CAS  Google Scholar 

  38. Dodds WJ, Stef JJ, Stewart ET, et al. Responses of feline esophagus to cervical vagal stimulation. Am J Physiol. 1978;235(1):E63–73.

    PubMed  CAS  Google Scholar 

  39. Dodds WJ, Christensen J, Dent J, et al. Esophageal contractions induced by vagal stimulation in the opossum. Am J Physiol. 1978;235(4):E392–401.

    PubMed  CAS  Google Scholar 

  40. Gilbert RJ, Dodds WJ. Effect of selective muscarinic antagonists on peristaltic contractions in opossum smooth muscle. Am J Physiol. 1986;250(1 Pt 1): G50–9.

    PubMed  CAS  Google Scholar 

  41. Helm JF, Bro SL, Dodds WJ, et al. Myogenic mechanism for peristalsis in opossum smooth muscle esophagus. Am J Physiol. 1992;263:G953–9.

    PubMed  CAS  Google Scholar 

  42. Preiksaitis HG, Diamant NE. Myogenic mechanism for peristalsis in the cat esophagus. Am J Physiol. 1999;277(2 Pt 1):G306–13.

    PubMed  CAS  Google Scholar 

  43. Sarna SK, Daniel EE, Waterfall WE. Myogenic and neural control for systems for esophageal motility. Gastroenterology. 1977;73:1345–52.

    PubMed  CAS  Google Scholar 

  44. Gidda JS, Goyal RK. Influence of successive vagal stimulations on contractions in esophageal smooth muscle of opossum. J Clin Invest. 1983;71(5):1095–103.

    Article  PubMed  CAS  Google Scholar 

  45. Gidda JS, Cobb BW, Goyal RK. Modulation of esophageal peristalsis by vagal efferent stimulation in opossum. J Clin Invest. 1981;68(6):1411–9.

    Article  PubMed  CAS  Google Scholar 

  46. Gidda JS, Goyal RK. Regional gradient of initial inhibition and refractoriness in esophageal smooth muscle. Gastroenterology. 1985;89(4):843–51.

    PubMed  CAS  Google Scholar 

  47. Weisbrodt NW, Christensen J. Gradients of contractions in the opossum esophagus. Gastroenterology. 1972;62(6):1159–66.

    PubMed  CAS  Google Scholar 

  48. Serio R, Daniel EE. Electrophysiological analysis of responses to intrinsic nerves in circular muscle of opossum esophageal muscle. Am J Physiol. 1988;254(1 Pt 1):G107–16.

    PubMed  CAS  Google Scholar 

  49. Rattan S, Gidda JS, Goyal RK. Membrane potential and mechanical responses of the opossum esophagus to vagal stimulation and swallowing. Gastroenterology. 1983;85(4):922–8.

    PubMed  CAS  Google Scholar 

  50. Sifrim D, Janssens J, Vantrappen G. A wave of inhibition precedes primary peristaltic contractions in the human esophagus. Gastroenterology. 1992;103(3): 876–82.

    PubMed  CAS  Google Scholar 

  51. Anand N, Paterson WG. Role of nitric oxide in esophageal peristalsis. Am J Physiol. 1994;266(1 Pt 1):G123–31.

    PubMed  CAS  Google Scholar 

  52. Chakder S, Rosenthal GJ, Rattan S. In vivo and in vitro influence of human recombinant hemoglobin on esophageal function. Am J Physiol. 1995;268(3 Pt 1):G443–50.

    PubMed  CAS  Google Scholar 

  53. Dodds WJ, Dent J, Hogan WJ, et al. Effect of atropine on esophageal motor function in humans. Am J Physiol. 1981;240(4):G290–6.

    PubMed  CAS  Google Scholar 

  54. Dodds WJ, Christensen J, Dent J, et al. Pharmacologic investigation of primary peristalsis in smooth muscle portion of opossum esophagus. Am J Physiol. 1979;237(6):E561–6.

    PubMed  CAS  Google Scholar 

  55. Gidda JS, Buyniski JP. Swallow-evoked peristalsis in opossum esophagus: role of cholinergic mechanisms. Am J Physiol. 1986;251(6 Pt 1):G779–85.

    PubMed  CAS  Google Scholar 

  56. Murray JA, Ledlow A, Launspach J, et al. The effects of recombinant human hemoglobin on esophageal motor functions in humans. Gastroenterology. 1995; 109(4):1241–8.

    Article  PubMed  CAS  Google Scholar 

  57. Paterson WG, Hynna-Liepert TT, Selucky M. Comparison of primary and secondary esophageal peristalsis in humans: effect of atropine. Am J Physiol. 1991;260(1 Pt 1):G52–7.

    PubMed  CAS  Google Scholar 

  58. Paterson WG. Electrical correlates of peristaltic and nonperistaltic contractions in the opossum smooth muscle esophagus. Gastroenterology. 1989;97(3):665–75.

    PubMed  CAS  Google Scholar 

  59. Paterson WG, Rattan S, Goyal RK. Esophageal responses to transient and sustained esophageal distension. Am J Physiol. 1988;255(5 Pt 1):G587–95.

    PubMed  CAS  Google Scholar 

  60. Xue S, Paterson W, Valdez D, et al. Effect of an o-raffinose cross-linked haemoglobin product on oesophageal and lower oesophageal sphincter motor function. Neurogas-troenterol Motil. 1999;11(6): 421–30.

    Article  PubMed  CAS  Google Scholar 

  61. Xue S, Valdez D, Collman PI, et al. Effects of nitric oxide synthase blockade on esophageal peristalsis and the lower esophageal sphincter in the cat. Can J Physiol Pharmacol. 1996;74(11):1249–57.

    PubMed  CAS  Google Scholar 

  62. Yamato S, Spechler SJ, Goyal RK. Role of nitric oxide in esophageal peristalsis in the opossum. Gastroenterology. 1992;103(1):197–204.

    PubMed  CAS  Google Scholar 

  63. Muinuddin A, Paterson WG. Initiation of distension-induced descending peristaltic reflex in opossum esophagus: role of muscle contractility. Am J Physiol Gastrointest Liver Physiol. 2001;280(3):G431–8.

    PubMed  CAS  Google Scholar 

  64. Paterson WG, Indrakrishnan B. Descending peristaltic reflex in the opossum esophagus. Am J Physiol. 1995;269(2 Pt 1):G219–24.

    PubMed  CAS  Google Scholar 

  65. Helm JF, Bro SL, Dodds WJ, et al. Myogenic oscillatory mechanism for opossum esophageal smooth muscle contractions. Am J Physiol. 1991;261(3 Pt 1):G377–83.

    PubMed  CAS  Google Scholar 

  66. Bardakjian BL, Diamant NE. Electronic models of oscillator-to-oscillator communication. In: Sperelakis N, Cole W, editors. Cell interactions and gap junctions. Florida: CRC Press; 1989. p. 211–24.

    Google Scholar 

  67. Daniel EE, Bardakjian BL, Huizinga JD, et al. Relaxation oscillator and core conductor models are needed for understanding of GI electrical activities. Am J Physiol. 1994;266(3 Pt 1):G339–49.

    PubMed  CAS  Google Scholar 

  68. Crist J, Surprenant A, Goyal RK. Intracellular studies of electrical membrane properties of opossum esophageal circular smooth muscle. Gastroenterology. 1987;92(4):987–92.

    PubMed  CAS  Google Scholar 

  69. Kannan MS, Jager LP, Daniel EE. Electrical properties of smooth muscle cell membrane of opossum esophagus. Am J Physiol. 1985;248(3 Pt 1):G342–6.

    PubMed  CAS  Google Scholar 

  70. Nelson DO, Mangel AW. Acetylcholine induced slow-waves in cat esophageal smooth muscle. Gen Pharmacol. 1979;10(1):19–20.

    Article  PubMed  CAS  Google Scholar 

  71. Zhang Y, Paterson WG. Nitric oxide contracts longitudinal smooth muscle of opossum oesophagus via excitation-contraction coupling. J Physiol. 2001; 536(Pt 1):133–40.

    Article  PubMed  CAS  Google Scholar 

  72. Faussone-Pellegrini MS, Cortesini C. Ultrastructural features and localization of the interstitial cells of Cajal in the smooth muscle coat of human esophagus. J Submicrosc Cytol. 1985;17(2):187–97.

    PubMed  CAS  Google Scholar 

  73. Huizinga JD, Reed DE, Berezin I, et al. Survival dependency of intramuscular ICC on vagal afferent nerves in the cat esophagus. Am J Physiol Regul Integr Comp Physiol. 2008;294(2):R302–10.

    Article  PubMed  CAS  Google Scholar 

  74. Decktor DL, Ryan JP. Transmembrane voltage of opossum esophageal smooth muscle and its response to electrical stimulation of intrinsic nerves. Gastroenterology. 1982;82(2):301–8.

    PubMed  CAS  Google Scholar 

  75. Salapatek AM, Ji J, Diamant NE. Ion channel diversity in the feline smooth muscle esophagus. Am J Physiol Gastrointest Liver Physiol. 2002;282(2):G288–99.

    PubMed  CAS  Google Scholar 

  76. Muinuddin A, Ji J, Sheu L, et al. L-type Ca(2+) channel expression along feline smooth muscle oesophagus. Neurogastroenterol Motil. 2004;16(3):325–34.

    Article  PubMed  CAS  Google Scholar 

  77. Schulze K, Conklin JL, Christensen J. A potassium gradient in smooth muscle segment of the opossum esophagus. Am J Physiol. 1977;232(3):E270–3.

    PubMed  CAS  Google Scholar 

  78. Muinuddin A, Xue S, Diamant NE. Regional differences in the response of feline esophageal smooth muscle to stretch and cholinergic stimulation. Am J Physiol Gastrointest Liver Physiol. 2001; 281(6):G1460–7.

    PubMed  CAS  Google Scholar 

  79. Janssens J, Valembois P, Hellemans J, et al. Studies on the necessity of a bolus for the progression of secondary peristalsis in the canine esophagus. Gastroenterology. 1974;67(2):245–51.

    PubMed  CAS  Google Scholar 

  80. Longhi EH, Jordan Jr PH. Necessity of a bolus for propagation of primary peristalsis in the canine esophagus. Am J Physiol. 1971;220(3):609–12.

    PubMed  CAS  Google Scholar 

  81. Lang IM, Medda BK, Shaker R. Mechanisms of reflexes induced by esophageal distension. Am J Physiol Gastrointest Liver Physiol. 2001;281(5):G1246–63.

    PubMed  CAS  Google Scholar 

  82. Janssens J, De WI, Vantrappen G. Peristalsis in smooth muscle esophagus after transection and bolus deviation. Gastroenterology. 1976;71(6):1004–9.

    PubMed  CAS  Google Scholar 

  83. Hamdy S, Xue S, Valdez D, et al. Induction of cortical swallowing activity by transcranial magnetic stimulation in the anaesthetized cat. Neurogastroenterol Motil. 2001;13(1):65–72.

    Article  PubMed  CAS  Google Scholar 

  84. Valdez DT, Salapatek A, Niznik G, et al. Swallowing and upper esophageal sphincter contraction with transcranial magnetic-induced electrical stimulation. Am J Physiol. 1993;264(2 Pt 1):G213–9.

    PubMed  CAS  Google Scholar 

  85. Aziz Q, Rothwell JC, Barlow J, et al. Esophageal myoelectric responses to magnetic stimulation of the human cortex and the extracranial vagus nerve. Am J Physiol. 1994;267(5 Pt 1):G827–35.

    PubMed  CAS  Google Scholar 

  86. Aziz Q, Rothwell JC, Barlow J, et al. Modulation of esophageal responses to magnetic stimulation of the human brain by swallowing and by vagal stimulation. Gastroenterology. 1995;109(5):1437–45.

    Article  PubMed  CAS  Google Scholar 

  87. Aziz Q, Rothwell JC, Hamdy S, et al. The topographic representation of esophageal motor function on the human cerebral cortex. Gastroenterology. 1996;111(4): 855–62.

    Article  PubMed  CAS  Google Scholar 

  88. Jordan Jr PH, Longhi EH. Relationship between size of bolus and the act of swallowing on esophageal peristalsis in dogs. Proc Soc Exp Biol Med. 1971;137(3):868–71.

    PubMed  Google Scholar 

  89. Paterson WG. Neuromuscular mechanisms of esophageal responses at and proximal to a distending balloon. Am J Physiol. 1991;260(1 Pt 1):G148–55.

    PubMed  CAS  Google Scholar 

  90. Hollis JB, Castell DO. Effects of cholinergic stimulation on human esophageal peristalsis. J Appl Physiol. 1976;40(1):40–3.

    PubMed  CAS  Google Scholar 

  91. Goyal RK, Rattan S. Nature of the vagal inhibitory innervation to the lower esophageal sphincter. J Clin Invest. 1975;55(5):1119–26.

    Article  PubMed  CAS  Google Scholar 

  92. Paterson WG, Anderson MA, Anand N. Pharma-cological characterization of lower esophageal sphincter relaxation induced by swallowing, vagal efferent nerve stimulation, and esophageal distention. Can J Physiol Pharmacol. 1992;70(7):1011–5.

    Article  PubMed  CAS  Google Scholar 

  93. Rattan S, Goyal RK. Evidence of 5-HT participation in vagal inhibitory pathway to opossum LES. Am J Physiol. 1978;234(3):E273–6.

    PubMed  CAS  Google Scholar 

  94. Seelig Jr LL, Doody P, Brainard L, et al. Acetyl-cholinesterase and choline acetyltransferase staining of neurons in the opossum esophagus. Anat Rec. 1984;209(1):125–30.

    Article  PubMed  Google Scholar 

  95. Singaram C, SenGupta A, Sugarbaker DJ, et al. Peptidergic innervation of the human esophageal smooth muscle. Gastroenterology. 1991;101(5):1256–63.

    PubMed  CAS  Google Scholar 

  96. Wattchow DA, Furness JB, Costa M. Distribution and coexistence of peptides in nerve fibers of the external muscle of the human gastrointestinal tract. Gastroenterology. 1988;95(1):32–41.

    PubMed  CAS  Google Scholar 

  97. Preiksaitis HG, Laurier LG. Pharmacological and molecular characterization of muscarinic receptors in cat esophageal smooth muscle. J Pharmacol Exp Ther. 1998;285(2):853–61.

    PubMed  CAS  Google Scholar 

  98. Preiksaitis HG, Krysiak PS, Chrones T, et al. Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle. J Pharmacol Exp Ther. 2000;295(3): 879–88.

    PubMed  CAS  Google Scholar 

  99. Sohn UD, Harnett KM, De PG, et al. Distinct muscarinic receptors, G proteins and phospholipases in esophageal and lower esophageal sphincter circular muscle. J Pharmacol Exp Ther. 1993;267(3):1205–14.

    PubMed  CAS  Google Scholar 

  100. Christensen J, Arthur C, Conklin JL. Some determinants of latency of off-response to electrical field stimulation in circular layer of smooth muscle of opossum esophagus. Gastroenterology. 1979;77(4 Pt 1):677–81.

    PubMed  CAS  Google Scholar 

  101. Conklin JL, Du C, Murray JA, et al. Characterization and mediation of inhibitory junction potentials from opossum lower esophageal sphincter. Gastroenterology. 1993;104(5):1439–44.

    PubMed  CAS  Google Scholar 

  102. Murray J, Du C, Ledlow A, et al. Nitric oxide: mediator of nonadrenergic noncholinergic responses of opossum esophageal muscle. Am J Physiol. 1991;261(3 Pt 1):G401–6.

    PubMed  CAS  Google Scholar 

  103. Crist J, Gidda JS, Goyal RK. Characteristics of “on” and “off” contractions in esophageal circular muscle in vitro. Am J Physiol. 1984;246(2 Pt 1):G137–44.

    PubMed  CAS  Google Scholar 

  104. Preiksaitis HG, Tremblay L, Diamant NE. Nitric oxide mediates inhibitory nerve effects in human esophagus and lower esophageal sphincter. Dig Dis Sci. 1994;39(4):770–5.

    Article  PubMed  CAS  Google Scholar 

  105. Blank EL, Greenwood B, Dodds WJ. Cholinergic control of smooth muscle peristalsis in the cat esophagus. Am J Physiol. 1989;257(4 Pt 1):G517–23.

    PubMed  CAS  Google Scholar 

  106. Krysiak PS, Preiksaitis HG. Tachykinins contribute to nerve-mediated contractions in the human esophagus. Gastroenterology. 2001;120(1):39–48.

    Article  PubMed  CAS  Google Scholar 

  107. Stacher G, Bauer P, Steinringer H, et al. Dose-related effects of the synthetic met-enkephalin analogue FK 33-824 on esophageal motor activity in healthy humans. Gastroenterology. 1982;83(5):1057–61.

    PubMed  CAS  Google Scholar 

  108. Uddman R, Alumets J, Hakanson R, et al. Peptidergic (enkephalin) innervation of the mammalian esophagus. Gastroenterology. 1980;78(4):732–7.

    PubMed  CAS  Google Scholar 

  109. Cohen S, Green F. Force-velocity characteristics of esophageal muscle: effect of acetylcholine and norepinephrine. Am J Physiol. 1974;226(5):1250–6.

    PubMed  CAS  Google Scholar 

  110. Rattan S, Gonnella P, Goyal RK. Inhibitory effect of calcitonin gene-related peptide and calcitonin on opossum esophageal smooth muscle. Gastroenterology. 1988;94(2):284–93.

    PubMed  CAS  Google Scholar 

  111. Sugarbaker DJ, Rattan S, Goyal RK. Swallowing induces sequential activation of esophageal longitudinal smooth muscle. Am J Physiol. 1984;247(5 Pt 1):G515–9.

    PubMed  CAS  Google Scholar 

  112. Paterson WG. Studies on opossum esophageal longitudinal muscle function. Can J Physiol Pharmacol. 1997;75(1):65–73.

    Article  PubMed  CAS  Google Scholar 

  113. Crist J, Gidda J, Goyal RK. Role of substance P nerves in longitudinal smooth muscle contractions of the esophagus. Am J Physiol. 1986;250(3 Pt 1):G336–43.

    PubMed  CAS  Google Scholar 

  114. Daya F, Miller D, Paterson W. Studies on the neural mechanisms underlying opossum esophageal longitudinal muscle contraction. Neurogastroenterol Motil. 2004;16:674.

    Google Scholar 

  115. Paterson WG, Miller DV, Dilworth N, et al. Intraluminal acid induces oesophageal shortening via capsaicin-sensitive neurokinin neurons. Gut. 2007;55:1347–52.

    Article  Google Scholar 

  116. Balaban DH, Yamamoto Y, Liu J, et al. Sustained esophageal contraction: a marker of esophageal chest pain identified by intraluminal ultrasonography. Gastroenterology. 1999;116(1):29–37.

    Article  PubMed  CAS  Google Scholar 

  117. Shi G, Pandolfino JE, Zhang Q, et al. Deglutitive inhibition affects both esophageal peristaltic amplitude and shortening. Am J Physiol Gastrointest Liver Physiol. 2003;284(4):G575–82.

    PubMed  CAS  Google Scholar 

  118. Sugarbaker DJ, Rattan S, Goyal RK. Mechanical and electrical activity of esophageal smooth muscle during peristalsis. Am J Physiol. 1984;246(2 Pt 1):G145–50.

    PubMed  CAS  Google Scholar 

  119. Hirano I, Kakkar R, Saha JK, et al. Tyrosine phosphorylation in contraction of opossum esophageal longitudinal muscle in response to SNP. Am J Physiol. 1997;273(1 Pt 1):G247–52.

    PubMed  CAS  Google Scholar 

  120. Sifrim D, Lefebvre R. Role of nitric oxide during swallow-induced esophageal shortening in cats. Dig Dis Sci. 2001;46(4):822–30.

    Article  PubMed  CAS  Google Scholar 

  121. Bieger D, Triggle C. Pharmacological properties of mechanical responses of the rat oesophageal muscularis mucosae to vagal and field stimulation. Br J Pharmacol. 1985;84(1):93–106.

    PubMed  CAS  Google Scholar 

  122. Christensen J, Percy WH. A pharmacological study of oesophageal muscularis mucosae from the cat, dog and American opossum (Didelphis virginiana). Br J Pharmacol. 1984;83(2):329–36.

    Article  PubMed  CAS  Google Scholar 

  123. Ohkawa H. Mechanical activity of the smooth muscle of the muscularis mucosa of the guinea pig esophagus and drug actions. Jpn J Physiol. 1980;30(2):161–77.

    Article  PubMed  CAS  Google Scholar 

  124. Percy WH, Miller AJ, Brunz JT. Pharmacologic characteristics of rabbit esophageal muscularis mucosae in vitro. Dig Dis Sci. 1997;42(12): 2537–46.

    Article  PubMed  CAS  Google Scholar 

  125. Robotham H, Jury J, Daniel EE. Capsaicin effects on muscularis mucosa of opossum esophagus: substance P release from afferent nerves? Am J Physiol. 1985;248(6 Pt 1):G655–62.

    PubMed  CAS  Google Scholar 

  126. Domoto T, Jury J, Berezin I, et al. Does substance P comediate with acetylcholine in nerves of opossum esophageal muscularis mucosa? Am J Physiol. 1983;245(1):G19–28.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William G. Paterson MD, FRCPC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Paterson, W.G., Diamant, N.E. (2013). Esophageal Motor Physiology. In: Shaker, R., Belafsky, P., Postma, G., Easterling, C. (eds) Principles of Deglutition. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3794-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3794-9_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3793-2

  • Online ISBN: 978-1-4614-3794-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics