Skip to main content

Pathology of Non-Hodgkin’s and Hodgkin’s Lymphomas

  • Chapter
  • First Online:
Neoplastic Diseases of the Blood
  • 2858 Accesses

Abstract

Non-Hodgkin lymphomas (NHLs) are neoplasms that arise from lymphocytes of either B- or T-cell lineage or rarely from histiocytes. The anatomic location and many of the biologic features of various NHL types can be related to their normal counterparts. Normal B-cells are concentrated in the follicles and medullary cords of lymph nodes and in the follicles of the spleen [1]. The lymphoid follicles represent the proliferative site of the B-cell system. Upon antigen stimulation, secondary germinal centers develop in which rapid cell division of B-cells takes place. The medullary cord region of the lymph node represents the secretory component of the B-cell system. By contrast, T-cells are selectively concentrated in the paracortical regions of lymph nodes and within the periarterial lymphoid sheaths of the spleen. In addition, small numbers of T-cells are found within follicles where they help in the induction of B-cell differentiation [2, 3]. Histiocytes are preferentially found in the subcapsular and medullary sinuses of lymph nodes and the cords of Billroth in the splenic red pulp. Histiocytes are also a part of the reticuloendothelial system of the liver and lung. Tissue histiocytes have two broad categories of function. Most histiocytes are phagocytic, whereas a minority of specialized cells is involved in antigen processing and presentation to B- and T-cells [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weissman IL, Warnke R, Butcher EC, et al. The lymphoid system: its normal architecture and the potential for understanding the system through the study of lymphoproliferative diseases. Hum Pathol. 1978;9:25–45.

    Article  PubMed  CAS  Google Scholar 

  2. Picker LJ, Weiss LM, Medeiros LJ, et al. Immunophenotypic criteria for the diagnosis of non-Hodgkin’s lymphoma. Am J Pathol. 1987;128:181–201.

    PubMed  CAS  Google Scholar 

  3. Medeiros LJ, Carr J. Overview of the role of molecular methods in the diagnosis of malignant lymphomas. Arch Pathol Lab Med. 1999;123:1189–207.

    PubMed  CAS  Google Scholar 

  4. Vega F, Medeiros LJ. Chromosomal translocations involved in non-Hodgkin’s lymphomas. Arch Pathol Lab Med. 2003;127:1148–60.

    PubMed  CAS  Google Scholar 

  5. Tsai AG, Lieber MR. Mechanisms of chromosomal rearrangement in the human genome. BMC Genomics. 2010;11 Suppl 1:S1.

    Article  PubMed  CAS  Google Scholar 

  6. Kuppers R. The biology of Hodgkin’s lymphoma. Nat Rev Cancer. 2009;9:15–27.

    Article  PubMed  CAS  Google Scholar 

  7. Rappaport H, Winter WJ, Hicks EB. Follicular lymphoma: a reevaluation of its position in the scheme of malignant lymphoma, based on a survey of 253 cases. Cancer. 1956;9:792–821.

    Article  PubMed  Google Scholar 

  8. Lukes RJ, Collins RD. Immunological characterization of human malignant lymphomas. Cancer. 1974;34:1488–503.

    Article  PubMed  Google Scholar 

  9. Gerard-Marchant R, Hamlin I, Lennert K, et al. Classification of non-Hodgkin’s lymphomas. Lancet. 1974;II:406–8.

    Google Scholar 

  10. Rosenberg SA, Berard CW, Brown BW, et al. National Cancer Institute sponsored study of classifications of non-Hodgkin’s ­lymphomas: summary and description of a working formulation for clinical usage. Cancer. 1982;49:2112–35.

    Article  Google Scholar 

  11. Stansfeld AG, Diebold J, Kapanci Y, et al. Updated Kiel classification for lymphomas. Lancet. 1988;I:292–3.

    Article  Google Scholar 

  12. Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994;84:1361–92.

    PubMed  CAS  Google Scholar 

  13. The non-Hodgkin’s Lymphoma Classification Project. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. Blood. 1997;89:3909–18.

    Google Scholar 

  14. Swerdlow SH, Campo E, Harris NL, et al. WHO classifications of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008.

    Google Scholar 

  15. Borowitz MJ, Chan JKC. B lymphoblastic leukemia/lymphoma, no otherwise specified. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. IARC: Lyon; 2008. p. 168–9.

    Google Scholar 

  16. Lin P, Jones D, Dorfman DM, Medeiros LJ. Precursor B-cell lymphoblastic lymphoma: a predominantly extranodal tumor with low propensity for leukemic involvement. Am J Pathol. 2000;24:1480–90.

    Article  CAS  Google Scholar 

  17. Maitra A, McKenna RW, Weinberg AG, et al. Precursor B-cell lymphoblastic lymphoma: a study of nine cases lacking blood and bone marrow involvement and review of the literature. Am J Clin Pathol. 2001;115:868–75.

    Article  PubMed  CAS  Google Scholar 

  18. Iravani S, Singleton TP, Ross CW, Schnitzer B. Precursor B lymphoblastic lymphoma presenting as lytic bone lesions. Am J Clin Pathol. 1999;112:836–43.

    PubMed  CAS  Google Scholar 

  19. Muljono A, Graf NS, Arbuckle S. Primary cutaneous lymphoblastic lymphoma in children: series of eight cases with review of the literature. Pathology. 2009;41:223–8.

    Article  PubMed  Google Scholar 

  20. Gokbuget N, Hoelzer D. Treatment of adult acute lymphoblastic leukemia. Semin Hematol. 2009;46:64–75.

    Article  PubMed  Google Scholar 

  21. Nathwani BN, Kim H, Rappaport H. Malignant lymphoma, lymphoblastic. Cancer. 1976;38:964–83.

    Article  PubMed  CAS  Google Scholar 

  22. Kung PC, Long JC, McCaffrey RP, et al. Terminal deoxynucleotidyl transferase in the diagnosis of leukemia and malignant lymphoma. Am J Med. 1978;64:788–94.

    Article  PubMed  CAS  Google Scholar 

  23. Korsmeyer SJ, Hieter PA, Ravetch JV, et al. Developmental hierarchy of immunoglobulin gene rearrangements in human leukemic pre-B-cells. Proc Natl Acad Sci USA. 1981;78:7096–100.

    Article  PubMed  CAS  Google Scholar 

  24. Felix CA, Poplack DG, Reaman GH, et al. Characterization of immunoglobulin and T-cell receptor gene patterns in B-cell precursor acute lymphoblastic leukemia of childhood. J Clin Oncol. 1990;8:431–42.

    PubMed  CAS  Google Scholar 

  25. Borowitz MJ, Chan JKC. B lymphoblastic leukemia/lymphoma with recurrent genetic abnormalities. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO Classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 171–5.

    Google Scholar 

  26. Ravandi F, Kebriaei P. Philadelphia chromosome-positive acute lymphoblastic leukemia. Hematol Oncol Clin North Am. 2009;23:1043–63.

    Article  PubMed  Google Scholar 

  27. Pui CH, Chessells JM, Camitta B, et al. Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia. 2003;17:700–6.

    Article  PubMed  CAS  Google Scholar 

  28. Pais AP, Amare Kadam PS, Raje GC, et al. RUNX1 aberrations in ETV6/RUNX1-positive and ETV6/RUNX1-negative patients: its hemato-pathological and prognostic significance in a large cohort (619 cases) of ALL. Pediatr Hematol Oncol. 2008;25:582–97.

    Article  PubMed  CAS  Google Scholar 

  29. Paulsson K, Johansson B. High hyperdiploid childhood acute lymphoblastic leukemia. NIH. 2009;48:637–60.

    CAS  Google Scholar 

  30. Harrison CJ, Moorman AV, Broadfield ZJ, et al. Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. Br J Haematol. 2004;125:552–9.

    Article  PubMed  Google Scholar 

  31. Grimaldi JC, Meeker TC. The t 5;14) chromosomal translocation in a case of acute lymphocytic leukemia joins the interleukin-3 gene to the immunoglobulin heavy chain gene. Blood. 1989;73:2081–5.

    PubMed  CAS  Google Scholar 

  32. Foa R, Vitale A, Mancini M, et al. E2A-PBX1 fusion in adult acute lymphoblastic leukaemia: biological and clinical features. Br J Haematol. 2003;120:484–7.

    Article  PubMed  CAS  Google Scholar 

  33. Muller-Hermelinke HR, Montgerrat E, Catorsky D, et al. Chronic lymphocytic leukemia/small lymphocytic lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classifications of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 180–2.

    Google Scholar 

  34. Tsimberidou AM, Wen S, O’Brien S, et al. Assessment of chronic lymphocytic leukemia and small lymphocytic lymphoma by absolute lymphocyte counts in 2,126 patients: 20 years of experience at The University of Texas M.D. Anderson Cancer Center. J Clin Oncol. 2007;25:4648–56.

    Article  PubMed  Google Scholar 

  35. Dick FR, Maca RD. The lymph node in chronic lymphocytic leukemia. Cancer. 1978;41:283–92.

    Article  PubMed  CAS  Google Scholar 

  36. Asplund SL, McKenna RW, Howard MS, et al. Immunophenotype does not correlate with lymph node histology in chronic lymphocytic leukemia/small lymphocytic lymphoma. Am J Surg Pathol. 2002;26:624–9.

    Article  PubMed  Google Scholar 

  37. Inamdar KV, Bueso-Ramos CE. Pathology of chronic lymphocytic leukemia: an update. Ann Diagn Pathol. 2007;11:363–89.

    Article  PubMed  Google Scholar 

  38. Bonato M, Pittaluga S, Tierens A, et al. Lymph node histology in typical and atypical chronic lymphocytic leukemia. Am J Surg Pathol. 1998;22:49–56.

    Article  PubMed  CAS  Google Scholar 

  39. Gupta D, Lim MS, Medeiros LJ, et al. Small lymphocytic lymphoma with perifollicular, marginal zone, and interfollicular distribution. Mod Pathol. 2000;13:1161–6.

    Article  PubMed  CAS  Google Scholar 

  40. Cossman J, Neckers LM, Braziel RM, et al. In vitro enhancement of immunoglobulin gene expression in chronic lymphocytic leukemia. J Clin Invest. 1984;73:587–92.

    Article  PubMed  CAS  Google Scholar 

  41. Yin CC, Lin P, Carney DA, et al. Chronic lymphocytic leukemia/small lymphocytic lymphoma associated with IgM paraprotein. Am J Clin Pathol. 2005;123:594–602.

    Article  PubMed  Google Scholar 

  42. Medeiros LJ, Strickler JG, Picker LJ, et al. “Well differentiated” lymphocytic neoplasms: immunologic findings correlated with clinical presentation and morphological features. Am J Pathol. 1987;128:523–35.

    Google Scholar 

  43. Habb LK, Finn WG. Unsupervised immunophenotypic profiling of chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2006;70:124–35.

    Google Scholar 

  44. Hamblin TJ, Davis Z, Gardiner A, et al. Unmutated Ig VH genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94:1848–54.

    PubMed  CAS  Google Scholar 

  45. Damle RN, Wasil T, Fais F, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94:1840–7.

    PubMed  CAS  Google Scholar 

  46. Morilla A, Gonzalez de Castro D, Del Giudice I, et al. Combinations of ZAP-70, CD38 and IGHV mutational status as predictors of time to first treatment in CLL. Leuk Lymphoma. 2008;49:2108–15.

    Article  PubMed  CAS  Google Scholar 

  47. Zenz T, Metens D, Dohner H, et al. Molecular diagnostics in chronic lymphocytic leukemia—pathogenetic and clinical implications. Leuk Lymphoma. 2008;49:864–73.

    Article  PubMed  CAS  Google Scholar 

  48. Haferlach C, Kicker F, Schnittger S, et al. Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgVH status and Immunophenotyping. Leukemia. 2007;21:2442–51.

    Article  PubMed  CAS  Google Scholar 

  49. Adachi M, Teffrei A, Greipp PR, et al. Preferential linkage of bcl-2 to immunoglobulin light chain in chronic lymphocytic leukemia. J Exp Med. 1990;171:559–64.

    Article  PubMed  CAS  Google Scholar 

  50. Huh YO, Abruzzo LV, Rassidakis GZ, et al. The t(14;19)(q32;q13)-positive small B-cell leukaemia: a clinicopathologic and cytogenetic study of seven cases. Br J Haematol. 2007;136:220–8.

    Article  PubMed  CAS  Google Scholar 

  51. Yin CC, Lin KI, Ketterlin RP, et al. Chronic lymphocytic leukemia with t(2;14)(p16;q32) involves the BCL11A and IgH genes and is associated with atypical morphologic features and unmutated IgVH genes. Am J Clin Pathol. 2009;131:663–70.

    Article  PubMed  Google Scholar 

  52. Huh YO, Lin KI, Vega F, et al. MYC translocation in chronic lymphocytic leukaemia is associated with increased prolymphocytes and a poor prognosis. Br J Haematol. 2008;142:36–44.

    Article  PubMed  Google Scholar 

  53. Thornton PD, Gruszk-Westwood AM, Hamoudi RA, et al. Characterisation of TP53 abnormalities in chronic lymphocytic leukaemia. Hematol J. 2004;5:47–54.

    Article  PubMed  CAS  Google Scholar 

  54. Tsimberidou AM, Keating MJ. Rickter syndrome: biology, incidence, and therapeutic strategies. Cancer. 2005;103:216–28.

    Article  PubMed  CAS  Google Scholar 

  55. Tsimberidou AM, O’Brien S, Kantarjian HM, et al. Hodgkin’s transformation of chronic lymphocytic leukemia: the M.D. Anderson Cancer Center experience. Cancer. 2006;107:1294–302.

    Article  PubMed  CAS  Google Scholar 

  56. Lee A, Skelly ME, Kingma DW, et al. B-cell chronic lymphocytic leukemia followed by high grade T-cell lymphoma. An unusual variant of Richter’s syndrome. Am J Clin Pathol. 1995;103:348–52.

    PubMed  CAS  Google Scholar 

  57. Schlette E, Bueso-Ramos C, Giles F, et al. Mature B-cell leukemias with more than 55 % prolymphocytes: a heterogeneous group that includes an unusual variant of mantle lymphoma. Am J Clin Pathol. 2001;11:571–81.

    Google Scholar 

  58. Harris NL, Isaacson PG, Grogan TM, et al. Heavy chain diseases. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 196–9.

    Google Scholar 

  59. Swerdlow SH, Berger F, Pileri SA, et al. Lymphoplasmacytic lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 194–5.

    Google Scholar 

  60. Morice WG, Chen D, Kurtin PJ, et al. Novel immunophenotypic features of marrow lymphoplasmacytic lymphoma and correlation with Walderstrom’s macroglobulinemia. Mod Pathol. 2009;22:807–16.

    PubMed  CAS  Google Scholar 

  61. Lin P, Wilson C, Mansoor A, et al. Waldenstrom’s macroglobulinemia involving extramedullary sites: morphologic and immunophenotypic findings in 57 cases. Mod Pathol. 2001;14:170A.

    Google Scholar 

  62. Treon SP. How I treat Waldenstrom macroglobulinemia. Blood. 2009;114:2375–83.

    Article  PubMed  CAS  Google Scholar 

  63. Lin P, Medeiros LJ. Lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia: an evolving concept. Adv Anat Pathol. 2005;12:246–55.

    Article  PubMed  Google Scholar 

  64. Won YW, Kim SJ, Kim K, et al. Clinical features and treatment outcomes of lymphoplasmacytic lymphoma: a single center experience in Korea. Ann Hematol. 2010;89:1011–8.

    Article  PubMed  CAS  Google Scholar 

  65. Morel P, Duhamel A, Gobbi P, et al. International prognostic scoring system for Waldenstrom macroglobulinemia. Blood. 2009;113:4163–70.

    Article  PubMed  CAS  Google Scholar 

  66. Harrison CV. The morphology of the lymph node in the macroglobulinemia of Waldenstrom. J Clin Pathol. 1972;25:12–6.

    Article  PubMed  CAS  Google Scholar 

  67. Bartl R, Frisch B, Mahl G, et al. Bone marrow histology in Waldenstrom’s macroglobulinemia. Scand J Hematol. 1983;31:359–75.

    Article  CAS  Google Scholar 

  68. Konoplev S, Medeiros LJ, Bueso-Ramos CE, et al. Immunophe­notypic profile of lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia. Am J Clin Pathol. 2005;124:414–20.

    Article  PubMed  Google Scholar 

  69. Barakat FH, Medeiros LJ, Wei ER, et al. Residual monotypic plasma cells in patient with Waldenstrom macroglobulinemia after therapy. Am J Clin Pathol. 2011;135(3):365–73.

    Article  PubMed  Google Scholar 

  70. Mansoor A, Medeiros LJ, Weber D, et al. Cytogenetic findings in lymphoplasmacytic lymphoma/Waldenstrom’s macroglobulinemia. Am J Clin Pathol. 2001;116:543–49.

    Article  PubMed  CAS  Google Scholar 

  71. Schop RF, Kuehl WM, Van Wier SA, et al. Waldenstrom macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood. 2002;100:2996–3001.

    Article  PubMed  CAS  Google Scholar 

  72. Buckley PG, Walsh SH, Laurell A, et al. Genome-wide microarray-based comparative genomic hybridization analysis of lymphoplasmacytic lymphomas reveals heterogeneous aberrations. Leuk Lymphoma. 2009;50:1528–34.

    Article  PubMed  CAS  Google Scholar 

  73. Lin P, Mansoor A, Bueso-Ramos C, et al. Diffuse large B-cell lymphoma occurring in patients with lymphoplasmacytic ­lymphoma/Waldenstrom Macroglobulinemia. Clinicopathologic features of 12 cases. Am J Clin Pathol. 2003;120:246–53.

    Article  PubMed  Google Scholar 

  74. Rosales CM, Lin P, Mansoor A, et al. Lymphoplasmacytic ­lymphoma/Waldenstrom macroglobulinemia associated with Hodgkin’s disease. A report of two cases. Am J Clin Pathol. 2001;116:34–40.

    Article  PubMed  CAS  Google Scholar 

  75. Harris NL, Nathwani BN, Swerdlow SH, et al. Follicular ­lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 220–6.

    Google Scholar 

  76. Melo JV, Robinson DS, de Oliveira MP, et al. Morphology and immunology of circulating cells in leukaemic phase of follicular lymphoma. J Clin Pathol. 1988;41:951–9.

    Article  PubMed  CAS  Google Scholar 

  77. Oschiles I, Salaverria I, Mahn F, et al. Pediatric follicular lymphoma—a clinico-pathological study of a population-based series of patients treated within the Non-Hodgkin’s Lymphoma—Berlin-Frankfurt-Munster (NHL-BFM) multicenter trials. Haematologica. 2010;95:253–9.

    Article  Google Scholar 

  78. Nathwani BN, Winberg CD, Diamond LW, et al. Morphologic criteria for the differentiation of follicular lymphoma from florid reactive follicular hyperplasia: a study of 80 cases. Cancer. 1981;48:1974–180.

    Google Scholar 

  79. Gradowski JF, Jaffe ES, Warnke RA, et al. Follicular lymphomas with plasmacytic differentiation include two subtypes. Mod Pathol. 2010;23:71–9.

    Article  PubMed  Google Scholar 

  80. Goodlad JR, Batstone PJ, Hamilton D, et al. Follicular lymphoma with marginal zone differentiation: cytogenetic findings of a high-risk variant of follicular lymphoma. Histopathology. 2003;42:292–8.

    Article  PubMed  CAS  Google Scholar 

  81. Mann RB, Berard CW. Criteria for the cytologic subclassification of follicular lymphomas: a proposed alternative method. Hematol Oncol. 1983;3:187–92.

    Google Scholar 

  82. Ott G, Katzenberger T, Lohr A, et al. Cytomorphologic, immunohistochemical, and cytogenetic profiles of follicular lymphoma: 2 types of follicular lymphoma grade 3. Blood. 2002;99:3806–12.

    Article  PubMed  CAS  Google Scholar 

  83. Warnke RA, Kim H, Fuks Z, Dorfman RF. The coexistence of nodular and diffuse patterns in nodular non-Hodgkin’s lymphomas: significance and clinicopathologic correlation. Cancer. 1977;40:1229–33.

    Article  PubMed  CAS  Google Scholar 

  84. Chabner BA, Fisher RI, Young RC, et al. Staging of non-Hodgkin’s lymphoma. Semin Oncol. 1980;7:285–91.

    PubMed  CAS  Google Scholar 

  85. Conlan MG, Bast M, Armitage JO, et al. Bone marrow involvement by non-Hodgkin’s lymphoma: the clinical significance of morphologic discordance between the lymph node and bone marrow. Nebraska Lymphoma Study Group. J Clin Oncol. 1990;8:1163–72.

    PubMed  CAS  Google Scholar 

  86. Montes-Moreno S, Castro Y, Rodriguez-Pinilla SM, et al. Intrafollicular neoplasia/in situ follicular lymphoma: review of a series of 13 cases. Histopathology. 2010;56:658–62.

    Article  PubMed  Google Scholar 

  87. Cong P, Raffeld M, Teruya-Feldstein J, Sorbara L, et al. In situ localization of follicular lymphoma: description and analysis by laser capture microdissection. Blood. 2002;99:3376–82.

    Article  PubMed  CAS  Google Scholar 

  88. Mantei K, Wood BL. Flow cytometric evaluation of CD38 expression assists in distinguishing follicular hyperplasia from follicular lymphoma. Cytometry B Clin Cytom. 2009;76:315–20.

    PubMed  Google Scholar 

  89. Zutter M, Hockenbery D, Silverman GA, et al. Immunolocalization of the bcl-2 protein within hematopoietic neoplasms. Blood. 1992;78:1062–8.

    Google Scholar 

  90. Koster A, Tromp HA, Raemaekers JM, et al. The prognostic significance of the intra-follicular tumor cell proliferative rate in follicular lymphoma. Haematologica. 2007;92:184–90.

    Article  PubMed  Google Scholar 

  91. Yunis JJ, Oken MM, Kaplan ME, et al. Distinctive chromosomal abnormalities in histologic subtypes of non-Hodgkin’s lymphoma. N Engl J Med. 1982;307:1231–6.

    Article  PubMed  CAS  Google Scholar 

  92. Aster JC, Kobyashi Y, Shiota M, et al. Detection of the t(14;18) at similar frequencies in hyperplastic lymphoid tissues from American and Japanese patients. Am J Pathol. 1992;141:291–9.

    PubMed  CAS  Google Scholar 

  93. Dave SS, Wright G, Tan B, et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 2004;351:2159–69.

    Article  PubMed  CAS  Google Scholar 

  94. Wahlin BE, Aggarwal M, Montes-Moreno S, et al. A unifying microenvironment model in follicular lymphoma: outcome is predicted by programmed death-1—positive, regulatory, cytotoxic, and helper T cells and macrophages. Clin Cancer Res. 2010;16:637–50.

    Article  PubMed  CAS  Google Scholar 

  95. Leich E, Salaverria I, Bea S, et al. Follicular lymphomas with and without translocation t(14;18) differ in gene expression profiles and genetic alterations. Blood. 2009;114:826–34.

    Article  PubMed  CAS  Google Scholar 

  96. Davies AJ, Rosenwald A, Wright G, et al. Transformation of follicular lymphoma to diffuse large B-cell lymphoma proceeds by distinct oncogenic mechanisms. Br J Haematol. 2007;136:286–93.

    Article  PubMed  CAS  Google Scholar 

  97. Glas AM, Knoops L, Delahaye L, et al. Gene-expression and immunohistochemical study of specific T-cell subsets and accessory cell types in the transformation and prognosis of follicular lymphoma. J Clin Oncol. 2007;25:390–8.

    Article  PubMed  CAS  Google Scholar 

  98. Medeiros LJ, Harmon DC, Linggood RM, et al. Immunohistologic features predict clinical behavior of orbital and conjunctival lymphoid infiltrates. Blood. 1989;74:2121–9.

    PubMed  CAS  Google Scholar 

  99. Knowles DM, Athan E, Ubriaco A, et al. Extranodal noncutaneous lymphoid hyperplasias represent a continuous spectrum of B-cell neoplasia: demonstration by molecular genetic analysis. Blood. 1989;73:1635–45.

    PubMed  CAS  Google Scholar 

  100. Isaacson P, Wright DH. Malignant lymphoma of mucosa-associated lymphoid tissue: a distinctive type of B-cell lymphoma. Cancer. 1983;52:1410–6.

    Article  PubMed  CAS  Google Scholar 

  101. Isaacson PG, Spencer J. Malignant lymphoma of mucosa-associated lymphoid tissue. Histopathology. 1987;11:445–62.

    Article  PubMed  CAS  Google Scholar 

  102. Isaacson PG, Cholt A, Nakamura S, et al. Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue MALT lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 214–7.

    Google Scholar 

  103. Thieblemont C, Berger F, Dumontet C, et al. Mucosa-associated lymphoid tissue lymphoma is a disseminated disease in one third of 158 patients analyzed. Blood. 2000;85:802–6.

    Google Scholar 

  104. Raderer M, Wohrer S, Streubel B, et al. Assessment of disease dissemination in gastric compared with extragastric mucosa-­associated lymphoid tissue lymphoma using extensive staging: a single-center experience. J Clin Oncol. 2006;24:3136–41.

    Article  PubMed  Google Scholar 

  105. de Boer JP, Hiddink RF, Raderer M, et al. Dissemination patterns in non-gastric MALT lymphoma. Haematologica. 2008;93:201–6.

    Article  PubMed  Google Scholar 

  106. Suh C, Huh J, Roh JL. Extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue arising in the extracranial head and neck region: a high rate of dissemination and disease recurrence. Oral Oncol. 2008;44:949–55.

    Article  PubMed  Google Scholar 

  107. Mazloom A, Medeiros LJ, McLaughlin PW, et al. Marginal zone lymphomas: factors that affect the final outcome. Cancer. 2010;116:4291–8.

    Article  PubMed  Google Scholar 

  108. Isaacson PG, Wotherspoon AC, Diss T, Pan L. Follicular colonization in B-cell lymphoma of mucosa-associated lymphoid tissue. Am J Surg Pathol. 1990;15:819–28.

    Article  Google Scholar 

  109. Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, Isaacson PG. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet. 1991;2:1175–6.

    Article  Google Scholar 

  110. Genta RM, Hamner HW, Graham DY. Gastric lymphoid follicles in Helicobacter pylori infection: frequency, distribution, and response to triple antibiotic therapy. Hum Pathol. 1993;24:577–83.

    Article  PubMed  CAS  Google Scholar 

  111. Wotherspoon AC, Doglioni C, Diss T, et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet. 1993;342:575–7.

    Article  PubMed  CAS  Google Scholar 

  112. Ferreri AJ, Dolcetti R, Magnino S, et al. Chlamydial infection: the link with ocular adnexal lymphomas. Nat Rev Clin Oncol. 2009;6:658–69.

    Article  PubMed  Google Scholar 

  113. Cho-Vega JH, Vega F, Rassidakis G, et al. Primary cutaneous marginal zone B-cell lymphoma. Am J Clin Pathol. 2006;125(Suppl):S38–49.

    PubMed  Google Scholar 

  114. Lecuit M, Abachin E, Martin A, et al. Immunoproliferative small intestinal disease associated with Campylobacter jejuni. N Engl J Med. 2004;350:239–48.

    Article  PubMed  CAS  Google Scholar 

  115. Kassan SS, Thomas TL, Moutsopoulos HM, et al. Increased risk of lymphoma in sicca syndrome. Ann Intern Med. 1978;89:888–92.

    PubMed  CAS  Google Scholar 

  116. Holm LE, Blogren H, Lowhagen T. Cancer risks in patients with chronic lymphocytic thyroiditis. N Engl J Med. 1985;312:601–4.

    Article  PubMed  CAS  Google Scholar 

  117. Garcia M, Konoplev S, Morosan C, et al. MALT lymphoma involving the kidney: a report of 10 cases and review of the literature. Am J Clin Pathol. 2007;128:464–73.

    Article  PubMed  Google Scholar 

  118. Talwalkar SS, Valbuena JR, Abruzzo LV, et al. MALT1 gene rearrangements and NF-kappaB activation involving p65 and p50 are absent or rare in primary MALT lymphomas of the breast. Mod Pathol. 2006;19:1402–8.

    PubMed  CAS  Google Scholar 

  119. Ye H, Gong L, Liu H, et al. MALT lymphoma with t(14;18)(q32;q21)/IGH-MALT1 is characterized by strong cytoplasmic MALT1 and BCL10 expression. J Pathol. 2005;205:293–301.

    Article  PubMed  CAS  Google Scholar 

  120. Konoplev S, Lin P, Qiu X, et al. Clonal relationship of extranodal marginal zone lymphomas of mucosa-associated lymphoid tissue involving different sites. Am J Clin Pathol. 2010;134:112–8.

    Article  PubMed  CAS  Google Scholar 

  121. Vinatzer U, Gollinger M, Mullauer L, et al. Mucosa-associated lymphoid tissue lymphoma: novel translocations including rearrangements of ODZ2, JMJD2C, and CNN3. Clin Cancer Res. 2008;14:6426–31.

    Article  PubMed  CAS  Google Scholar 

  122. Dierlamm J, Baens M, Wlodarska I, et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood. 1999;93:3601–9.

    PubMed  CAS  Google Scholar 

  123. Akagi T, Motegi M, Tamura A, et al. A novel gene, MALT1 at 18q21, is involved in t(11;18)(q21;q21) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Oncogene. 1999;18:5785–94.

    Article  PubMed  CAS  Google Scholar 

  124. Lucas PC, Yonezumi M, Inohara N, et al. Bcl10 and MALT1, independent targets of chromosomal translocation in MALT lymphoma, cooperate in a novel NF-κB signaling pathway. J Biol Chem. 2001;276:19012–9.

    Article  PubMed  CAS  Google Scholar 

  125. Streubel B, Simonitsch-Klupp I, Mullauer L, et al. Variable frequencies of MALT lymphoma-associated genetic aberrations in MALT lymphomas of different sites. Leukemia. 2004;18:1722–6.

    Article  PubMed  CAS  Google Scholar 

  126. Streubel B, Lamprecht A, Dierlamm J, et al. T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood. 2003;101:2335–9.

    Article  PubMed  CAS  Google Scholar 

  127. Streubel B, Vinatzer U, Lamprecht A, et al. T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia. 2005;19:652–8.

    PubMed  CAS  Google Scholar 

  128. Willis TG, Jadayel DM, Du MQ, et al. Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell. 1999;96:35–45.

    Article  PubMed  CAS  Google Scholar 

  129. Zhang Q, Siebert R, Yan M, et al. Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32). Nat Genet. 1999;22:63–8.

    Article  PubMed  CAS  Google Scholar 

  130. Hamoudi RA, Appert A, Ye H, et al. Differential expression of NF-kappaB target genes in MALT lymphoma with and without chromosome translocation: insights into molecular mechanism. Leukemia. 2010;24:1487–97.

    Article  PubMed  CAS  Google Scholar 

  131. Brynes RK, Almaguer PD, Leathery KE, et al. Numerical cytogenetic abnormalities of chromosomes 3, 7, and 12 in marginal zone B-cell lymphomas. Mod Pathol. 1996;9:995–1000.

    PubMed  CAS  Google Scholar 

  132. Ott G, Kalla J, Steinhoff A, et al. Trisomy 3 is not a common feature in malignant lymphomas of mucosa-associated lymphoid tissue type. Am J Pathol. 1998;153:689–94.

    Article  PubMed  CAS  Google Scholar 

  133. Sheibani K, Sohn CC, Burke JS, et al. Monocytoid B-cell lymphoma. A novel B-cell neoplasm. Am J Pathol. 1986;124:310–8.

    PubMed  CAS  Google Scholar 

  134. Campo E, Pileri SA, Jaffe ES. Nodal marginal zone lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 218–9.

    Google Scholar 

  135. Arcaini L, Lucioni M, Boveri E, et al. Nodal marginal zone lymphoma: current knowledge and future directions of a heterogeneous disease. Eur J Haematol. 2009;83:165–74.

    Article  PubMed  Google Scholar 

  136. Kojima M, Inagaki H, Motoori T, et al. Clinical implications of nodal marginal zone B-cell lymphoma among Japanese: study of 65 cases. Cancer Sci. 2007;98:44–9.

    Article  PubMed  CAS  Google Scholar 

  137. Traverse-Glehen A, Felman P, Callet-Bauchu E, et al. A clinicopathological study of nodal marginal zone B-cell lymphoma. A report on 21 cases. Histopathology. 2006;48:162–73.

    Article  PubMed  CAS  Google Scholar 

  138. Salama ME, Lossos IS, Warnke RA, et al. Immunoarchitectural patterns in nodal marginal zone B-cell lymphoma: a study of 51 cases. Am J Clin Pathol. 2009;132:39–49.

    Article  PubMed  Google Scholar 

  139. Nathwani BN, Anderson JR, Armitage JO, et al. Marginal zone B-cell lymphoma: a clinical comparison of nodal and mucosa-associated lymphoid tissue types. Non-Hodgkin’s Lymphoma Classification Project. J Clin Oncol. 1999;17:2486–92.

    PubMed  CAS  Google Scholar 

  140. Camacho FI, Algara P, Mollejo M, Garcia JF, et al. Nodal marginal zone lymphoma: a heterogeneous tumor: a comprehensive analysis of a series of 27 cases. Am J Surg Pathol. 2003;27:762–71.

    Article  PubMed  Google Scholar 

  141. Dierlamm J, Michaux L, Wlodarska I, et al. Trisomy 3 in marginal zone B-cell lymphoma: a study based on cytogenetic analysis and fluorescence in situ hybridization. Br J Haematol. 1996;93:242–9.

    Article  PubMed  CAS  Google Scholar 

  142. Remstein ED, James CD, Kurtin PJ. Incidence and subtype specificity of API2-MALT1 fusion translocations in extranodal, nodal, and splenic marginal zone lymphomas. Am J Pathol. 2000;156:1183–8.

    Article  PubMed  CAS  Google Scholar 

  143. Schmid C, Kirkham N, Diss T, et al. Splenic marginal zone cell lymphoma. Am J Surg Pathol. 1992;16:455–66.

    Article  PubMed  CAS  Google Scholar 

  144. Isaascon PG, Piris MA, Berger F, et al. Splenic B-cell marginal zone lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. IARC: Lyon; 2008. p. 185–7.

    Google Scholar 

  145. Isaacson PG, Matutes E, Burke M, et al. The histopathology of splenic lymphoma with villous lymphocytes. Blood. 1994;84:3828–34.

    PubMed  CAS  Google Scholar 

  146. Matuetes E, Oscier D, Montalban C, et al. Splenic marginal zone lymphoma proposal for a revision of diagnostic, staging and therapeutic criteria. Leukemia. 2008;22:487–95.

    Article  Google Scholar 

  147. Van Huyen JP, Molina T, Delmer A, et al. Splenic marginal zone lymphoma with or without plasmacytic differentiation. Am J Surg Pathol. 2000;24:1581–92.

    Article  Google Scholar 

  148. Wu CD, Jackson CL, Medeiros LJ. Splenic marginal zone cell lymphoma. An immunophenotypic and molecular study of five cases. Am J Clin Pathol. 1996;105:277–85.

    PubMed  CAS  Google Scholar 

  149. Baseggio L, Traverse-Glehen A, Petinataud F, et al. CD5 expression identifies a subset of splenic marginal zone lymphomas with higher lymphocytosis: a clinico-pathological, cytogenetic and molecular study of 24 cases. Haematologica. 2010;95:604–12.

    Article  PubMed  CAS  Google Scholar 

  150. Salido M, Baro C, Oscier D, et al. Cytogenetic aberrations and their prognostic value in a series of 330 splenic marginal zone B-cell lymphomas: a multicenter study of the Splenic B-Cell Lymphoma Group. Blood. 2010;116:1479–88.

    Article  PubMed  CAS  Google Scholar 

  151. Corcoran MM, Mould SJ, Orchard JA, et al. Dysregulation of cyclin dependent kinase 6 expression in splenic marginal zone lymphoma through chromosome 7q translocations. Oncogene. 1999;18:6271–7.

    Article  PubMed  CAS  Google Scholar 

  152. Traverse-Glehen A, Davi F, Ben Simon E, et al. Analysis of VH genes in marginal zone lymphoma reveals marked heterogeneity between splenic and nodal tumors and suggests the existence of clonal selection. Haematologica. 2005;90:470–8.

    PubMed  CAS  Google Scholar 

  153. Zibellini S, Capello D, Forconi F, et al. Sterotyped patterns of B-cell receptor in splenic marginal zone lymphoma. Haematologica. 2010;95:1792–6.

    Article  PubMed  CAS  Google Scholar 

  154. Gruszka-Westwood AM, Hamoudi RA, Matutes E, et al. p53 abnormalities in splenic lymphoma with villous lymphocytes. Blood. 2001;97:3552–8.

    Article  PubMed  CAS  Google Scholar 

  155. Mateo MS, Mollejo M, Villuendas R, et al. Molecular heterogeneity of splenic marginal zone lymphomas: analysis of mutations in the 5′ non-coding region of the bcl-6 gene. Leukemia. 2001;15:628–34.

    Article  PubMed  CAS  Google Scholar 

  156. Thieblemont C, Nasser V, Felman P, et al. Small lymphocytic ­lymphoma, marginal zone B-cell lymphoma, and mantle cell ­lymphoma exhibit distinct gene-expression profiles allowing molecular diagnosis. Blood. 2004;103:2727–37.

    Article  PubMed  CAS  Google Scholar 

  157. Piris MA, Foucar K, Mollejo M, et al. Splenic B-cell lymphoma/leukemia, unclassifiable. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 191–3.

    Google Scholar 

  158. Swerdlow SH, Campo E, Seto M, et al. Mantle cell lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 229–32.

    Google Scholar 

  159. Samaha H, Dumontet C, Ketterer N, et al. Mantle cell lymphoma: a retrospective study of 121 cases. Leukemia. 1998;12:1281–7.

    Article  PubMed  CAS  Google Scholar 

  160. Oinonen R, Franssila K, Teerenhovi L, et al. Mantle cell lymphoma: clinical features, treatment and prognosis of 94 patients. Eur J Cancer. 1998;34:329–36.

    Article  PubMed  CAS  Google Scholar 

  161. Tiemann M, Schrader C, Klapper W, et al. Histopathology, cell proliferation indices and clinical outcome in 304 patients with mantle cell lymphoma (MCL): a clinicopathological study from the European MCL Network. Br J Haematol. 2005;131:29–38.

    Article  PubMed  Google Scholar 

  162. Cohen PL, Kurtin PJ, Donovan KA, et al. Bone marrow and peripheral blood involvement in mantle cell lymphoma. Br J Haematol. 1998;101:302–10.

    Article  PubMed  CAS  Google Scholar 

  163. Ferrer A, Salaverria I, Bosch F, et al. Leukemic involvement is a common feature in mantle cell lymphoma. Cancer. 2007;109:2473–80.

    Article  PubMed  CAS  Google Scholar 

  164. Ruskone-Foumestraux A, Audouin J. Primary gastrointestinal tract mantle cell lymphoma as multiple lymphomatous polyposis. Best Pract Res Clin Gastroenterol. 2010;24:35–42.

    Article  CAS  Google Scholar 

  165. Fisher RI, Dahlberg S, Nathwani BN, et al. A clinical analysis of two indolent lymphoma entities: mantle cell lymphoma and marginal zone lymphoma (including the mucosa-associated lympoid tissue and monocytoid B-cell subcategories): a Southwest Oncology Group Study. Blood. 1995;85:1075–82.

    PubMed  CAS  Google Scholar 

  166. Majlis A, Pugh WC, Rodriguez MA, et al. Mantle cell lymphoma: correlation of clinical outcome and biologic features with three histologic variants. J Clin Oncol. 1997;15:1664–71.

    PubMed  CAS  Google Scholar 

  167. Weisenburger DD, Vose JM, Greiner TC, et al. Mantle cell lymphoma. A clinicopathologic study of 68 cases from the Nebraska Lymphoma Study Group. Am J Hematol. 2000;64:190–6.

    Article  PubMed  CAS  Google Scholar 

  168. Young KH, Chan WC, Fu K, et al. Mantle cell lymphoma with plasma cell differentiation. Am J Surg Pathol. 2006;30:954–61.

    Article  PubMed  Google Scholar 

  169. Laszlo T, Matolesy A. Blastic transformation of mantle cell ­lymphoma: genetic evidence for a clonal link between the two stages of the tumour. Histopathology. 1999;35:355–9.

    Article  PubMed  CAS  Google Scholar 

  170. Yin CC, Medeiros LJ, Cromwell CC, et al. Sequence analysis proves clonal identity in five patients with typical and blastoid mantle cell lymphoma. Mod Pathol. 2007;20:1–7.

    Article  PubMed  CAS  Google Scholar 

  171. Mozos A, Royo C, Hartmann E, et al. SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype. Haematologica. 2009;94:1555–62.

    Article  PubMed  CAS  Google Scholar 

  172. Schlette E, Fu K, Medeiros LJ. CD23 expression in mantle cell lymphoma: clinicopathologic features of 18 cases. Am J Clin Pathol. 2003;120:760–6.

    Article  PubMed  CAS  Google Scholar 

  173. Onciu M, Schlette E, Medeiros LJ, et al. Cytogenetic findings in mantle cell lymphoma cases with a high level of peripheral blood involvement have a distinct pattern of abnormalities. Am J Clin Pathol. 2001;116:886–92.

    Article  PubMed  CAS  Google Scholar 

  174. Hao S, Sanger W, Onciu M, et al. Mantle cell lymphoma with 8q24 chromosomal abnormalities: a report of 5 cases with blastoid features. Mod Pathol. 2002;15:1266–72.

    Article  PubMed  Google Scholar 

  175. Remstein E, Kurtin PJ, Buno J, et al. Diagnostic utility of fluorescence in situ hybridization in mantle-cell lymphoma. Br J Haematol. 2000;110:856–62.

    Article  PubMed  CAS  Google Scholar 

  176. Rosenwald A, Wright G, Wiestner A, et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell. 2003;3:185–97.

    Article  PubMed  CAS  Google Scholar 

  177. Martinez N, Camacho FI, Algara P, et al. The molecular signature of mantle cell lymphoma reveals multiple signals favoring cell survival. Cancer Res. 2003;63:8226–32.

    PubMed  CAS  Google Scholar 

  178. Schraders M, Pfundt R, Straatman HM, et al. Novel chromosomal imbalances in mantle cell lymphoma detected by genome-wide array-bases comparative genomic hybridization. Blood. 2005;105:1686–93.

    Article  PubMed  CAS  Google Scholar 

  179. Hartmann EM, Campo E, Wright G, et al. Pathway discovery in mantle cell lymphoma by integrated analysis of high resolution gene expression and copy number profiling. Blood. 2010;116:953–61.

    Article  PubMed  CAS  Google Scholar 

  180. Di Lisio L, Gomez-Lopez G, Sanchez-Beato M, et al. Mantle cell lymphoma: transcriptional regulation by microRNAs. Leukemia. 2010;24:1335–42.

    Article  PubMed  CAS  Google Scholar 

  181. Determann O, Hoster E, Ott G, et al. Ki-67 predicts outcome in advanced-stage mantle cell lymphoma patients treated with anti-CD20 immunochemotherapy: results from randomized trials of the European MCL Network and the German Low Grade Lymphoma Study Group. Blood. 2008;111:2385–7.

    Article  PubMed  CAS  Google Scholar 

  182. Garcia M, Romaguera JE, Inamdar KV, et al. Proliferation predicts failure-free survival in mantle cell lymphoma patients treated with rituximab plus hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone alternating with rituximab plus high-dose methotrexate and cytarabine. Cancer. 2009;115:1041–8.

    Article  PubMed  CAS  Google Scholar 

  183. Schrader C, Janssen D, Meusers P, et al. Repp 86: a new prognostic marker in mantle cell lymphoma. Eur J Haematol. 2005;75:498–504.

    Article  PubMed  CAS  Google Scholar 

  184. Jares P, Campo E. Advances in the understanding of mantle cell lymphoma. Br J Haematol. 2008;142:149–65.

    Article  PubMed  CAS  Google Scholar 

  185. Rummel MJ, de Vos S, Hoelzer D, et al. Altered apoptosis pathways in mantle cell lymphoma. Leuk Lymphoma. 2004;45:49–54.

    Article  PubMed  CAS  Google Scholar 

  186. Fu K, Weisenburger DD, Greiner TC, et al. Cyclin D1-negative mantle cell lymphoma: a clinicopathologic study based on gene expression profiling. Blood. 2005;106:4315–21.

    Article  PubMed  CAS  Google Scholar 

  187. Metcalf RA, Zhao S, Anderson MW, et al. Characterization of D-cyclin proteins in hematolymphoid neoplasms: lack of specificity of cyclin-D2 and D3 expression in lymphoma subtypes. Mod Pathol. 2010;23:420–33.

    Article  PubMed  CAS  Google Scholar 

  188. Stein H, Warnke RA, Chan WC, et al. Diffuse large B-cell ­lymphoma, not otherwise specified. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 233–7.

    Google Scholar 

  189. de Leval L, Hasserjian RP. Diffuse large B-cell lymphomas and Burkitt lymphoma. Hematol Oncol Clin North Am. 2009;23:781–827.

    Google Scholar 

  190. Pileri SA, Dimhofer S, Went P, et al. Diffuse large B-cell ­lymphoma: one or more entities? Present controversies and possible tools for its sub classification. Histopathology. 2002;41:482–509.

    Article  PubMed  CAS  Google Scholar 

  191. Lopez-Guillermo A, Colomo L, Jimenez M, et al. Diffuse large B-cell lymphoma: clinical and biological characterization and outcome according to the nodal or extranodal primary origin. J Clin Oncol. 2005;23:2797–804.

    Article  PubMed  Google Scholar 

  192. Talaulikar D, Shadbolt B, Bell J, et al. Clinical role of flow cytometry in redefining bone marrow involvement in diffuse large B-cell lymphoma (DLBCL) – a new perspective. Histopathology. 2008;52:340–7.

    Article  PubMed  CAS  Google Scholar 

  193. Coiffier B, Thieblemont C, Van Den Neste E, et al. Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d’Etudes des Lymphomes de l’Adulte. Blood. 2010;116:2040–5.

    Article  PubMed  CAS  Google Scholar 

  194. Anonymous. A predictive model for aggressive non-Hodgkin’s lymphoma. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. N Engl J Med. 1993;329:987–94.

    Article  Google Scholar 

  195. Nathwani BN, Dixon DO, Jones SE, et al. The clinical significance of the morphological subdivision of diffuse “histiocytic” lymphoma: a study of 162 patients treated by the Southwest Oncology Group. Blood. 1982;60:1068–74.

    PubMed  CAS  Google Scholar 

  196. Engelherd M, Brittinger G, Huhn D, et al. Subclassification of diffuse large B-cell lymphomas according to the Kiel classification: distinction of centroblastic and immunoblastic lymphomas is a significant prognostic factor. Blood. 1997;89:2291–7.

    Google Scholar 

  197. Li T, Medeiros LJ, Lin P, et al. Immunohistochemical profile and fluorescence in situ hybridization analysis of diffuse large B-cell lymphoma in northern China. Arch Pathol Lab Med. 2010;134:759–65.

    PubMed  Google Scholar 

  198. Yamaguchi M, Nakamura N, Suzuki R, et al. De novo CD5+ diffuse large B-cell lymphoma: results of a detailed clinicopathological review in 120 patients. Haematologica. 2008;93:1195–202.

    Article  PubMed  Google Scholar 

  199. Jacobson JO, Wilkes BM, Kwiatkowski DJ, et al. bcl-2 rearrangements in de novo diffuse large cell lymphoma: association with distinctive clinical features. Cancer. 1993;72:231–6.

    Article  PubMed  CAS  Google Scholar 

  200. Bea S, Zette A, Wright G, et al. Diffuse large B-cell lymphoma subgroups have distinct genetic profiles that influence tumor biology and improve gene-expression-based survival prediction. Blood. 2005;106:3183–90.

    Article  PubMed  CAS  Google Scholar 

  201. Lenz G, Wright GW, Emre NC, et al. Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci USA. 2008;105:13520–5.

    Article  PubMed  CAS  Google Scholar 

  202. Young KH, Leroy K, Moller MB, et al. Structural profiles of TP53 gene mutations predict clinical outcome in diffuse large B-cell lymphoma: an international collaborative study. Blood. 2008;112:3088–98.

    Article  PubMed  CAS  Google Scholar 

  203. Pasqualucci L, Neumeister P, Goossens T, et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphoma. Nature. 2001;412:341–6.

    Article  PubMed  CAS  Google Scholar 

  204. Shipp MA, Ross KN, Tamayo P, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med. 2002;8:68–74.

    Article  PubMed  CAS  Google Scholar 

  205. Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large B-cell lymphoma. N Engl J Med. 2002;346:1937–47.

    Article  PubMed  Google Scholar 

  206. Huang JZ, Sanger WG, Greiner TC, et al. The t(14;18) defines a unique subset of diffuse large B-cell lymphoma with a germinal center B-cell gene expression profile. Blood. 2002;99:2285–90.

    Article  PubMed  CAS  Google Scholar 

  207. Compagno M, Lim WK, Grunn A, et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature. 2009;459:717–21.

    Article  PubMed  CAS  Google Scholar 

  208. Davis RE, Ngo VN, Lenz G, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463:88–92.

    Article  PubMed  CAS  Google Scholar 

  209. Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103:275–82.

    Article  PubMed  CAS  Google Scholar 

  210. Choi WW, Weisenburger DD, Greiner TC, et al. A new immunostain algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy. Clin Cancer Res. 2009;15:5494–502.

    Article  PubMed  CAS  Google Scholar 

  211. Lenz G, Wright G, Dave SS, et al. Stromal gene signatures in large B-cell lymphomas. N Engl J Med. 2008;359:2313–23.

    Article  PubMed  CAS  Google Scholar 

  212. Monti S, Savage KJ, Kutok JL, et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood. 2005;105:1851–61.

    Article  PubMed  CAS  Google Scholar 

  213. Lin P, Medeiros LJ. High-grade B-cell lymphoma/leukemia ­associated with t(14;18) and 8q24/MYC rearrangement: a neoplasm of germinal center immunophenotype with poor prognosis. Haematologica. 2007;92:1297–301.

    Article  PubMed  CAS  Google Scholar 

  214. Niitsu N, Okamoto M, Miura I, et al. Clinical features and prognosis of de novo diffuse large B-cell lymphoma with t(14;18) and 8q24/c-MYC translocations. Leukemia. 2009;23:777–83.

    Article  PubMed  CAS  Google Scholar 

  215. Kanungo A, Medeiros LJ, Abruzzo LV, et al. Lymphoid neoplasms associated with concurrent t(14;18) and 8q24/c-MYC translocation generally have a poor prognosis. Mod Pathol. 2006;19:25–33.

    Article  PubMed  CAS  Google Scholar 

  216. De Wolf-Peeters C, Delabie J, Campo E, et al. T-cell/histiocyte-rich large B-cell lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 238–9.

    Google Scholar 

  217. Achten R, Verhoef G, Vanuytsel L, et al. T-cell/histiocyte-rich large B-cell lymphoma: a distinct clinicopathologic entity. J Clin Oncol. 2002;20:1269–77.

    Article  PubMed  CAS  Google Scholar 

  218. Abramson JS. T-cell/histiocyte-rich B-cell lymphoma: biology, diagnosis, and management. Oncologist. 2006;11:384–92.

    Article  PubMed  Google Scholar 

  219. El Weshi A, Akhtar S, Mourad WA, et al. T-cell/histiocyte-rich B-cell lymphoma: clinical presentation, management and prognostic factors: report on 61 patients and review of literature. Leuk Lymphoma. 2007;48:1764–73.

    Article  PubMed  Google Scholar 

  220. Franke S, Wlodarska I, Maes B, et al. Comparative genomic hybridization pattern distinguishes T-cell/histiocyte-rich B-cell lymphoma from nodular lymphocyte predominance Hodgkin’s lymphoma. Am J Pathol. 2002;161:1861–7.

    Article  PubMed  CAS  Google Scholar 

  221. Van Loo P, Tousseyn T, Vanhentenrijk V, et al. T-cell/histiocyte-rich large B-cell lymphoma shows transcriptional features suggestive of a tolerogenic host immune response. Haematologica. 2010;95:440–8.

    Article  PubMed  CAS  Google Scholar 

  222. Katzenstein ALA, Carrington CB, Liebow AA. Lymphomatoid granulomatosis: a clinicopathologic study of 152 cases. Cancer. 1979;43:360–73.

    Article  PubMed  CAS  Google Scholar 

  223. Pittaluga S, Wilson WH, Jaffe ES, et al. Lymphomatoid granulomatotsis. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 247–9.

    Google Scholar 

  224. Myers JL, Kurtin PJ, Katzenstein AL, et al. Lymphomatoid granulomatosis. Evidence for immunophenotypic diversity and relationship to Epstein-Barr virus infection. Am J Surg Pathol. 1995;19:1300–12.

    Article  PubMed  CAS  Google Scholar 

  225. Nicholson AG, Wotherspoon AC, Diss TC, et al. Lymphomatoid granulomatosis: evidence that some cases represent Epstein-Barr virus-associated B-cell lymphoma. Histopathology. 1996;29:317–24.

    Article  PubMed  CAS  Google Scholar 

  226. Gaulard P, Harris NL, Pileri S, et al. Primary mediastinal (thymic) large B-cell lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 250–1.

    Google Scholar 

  227. Savage KJ. Primary mediastinal large B-cell lymphoma. Oncologist. 2006;11:488–95.

    Article  PubMed  CAS  Google Scholar 

  228. Todeschini G, Secchi S, Morra E, et al. Primary mediastinal large B-cell lymphoma (PMLBCL): long-term results from a retrospective multicentre Italian experience in 138 patients treated with CHOP or MACOP-B/VACOP-B. Br J Cancer. 2004;90:372–6.

    Article  PubMed  CAS  Google Scholar 

  229. Hamlin PA, Portlock CS, Straus DJ, et al. Primary mediastinal large B-cell lymphoma: optimal therapy and prognostic factor analysis in 141 consecutive patients treated at Memorial Sloan Kettering from 1980 to 1999. Br J Haematol. 2005;130:691–9.

    Article  PubMed  Google Scholar 

  230. Lamarre L, Jacobson JO, Aisenberg AC, et al. Primary large cell lymphoma of the mediastinum. A histologic and immunophenotypic study of 29 cases. Am J Surg Pathol. 1989;13:730–9.

    Article  PubMed  CAS  Google Scholar 

  231. Cazals-Hatem D, Lepage E, Brice P, et al. Primary mediastinal large B-cell lymphoma. A clinicopathologic study of 144 cases compared with 916 nonmediastinal large B-cell lymphomas, a GELA (“Groupe d’Etude des Lymphomas de l’Adulte”) Study. Am J Surg Pathol. 1996;20:877–88.

    Article  PubMed  CAS  Google Scholar 

  232. Pileri SA, Gaidano G, Zinzani PL, et al. Primary mediastinal B-cell lymophoma: high frequency of BCL-6 mutations and consistent expression of the transcription factors OCT-2, BOB.1, and PU.1 in the absence of immunoglobulins. Am J Pathol. 2003;162:243–53.

    Article  PubMed  CAS  Google Scholar 

  233. Hoeller S, Zihler D, Zlobec I, et al. BOB.1, CD79a and cyclin E are the most appropriate markers to discriminate classical Hodgkin’s lymphoma from primary mediastinal large B-cell lymphoma. Histopathology. 2010;56:217–28.

    Article  PubMed  Google Scholar 

  234. Copie-Bergman C, Plonquet A, Alonso MA, et al. MAL expression in lymphoid cells: further evidence for MAL as a distinct molecular marker of primary mediastinal large B-cell lymphomas. Mod Pathol. 2002;15:1172–80.

    Article  PubMed  Google Scholar 

  235. Kimm LR, deLeeuw RJ, Savage KJ, et al. Frequent occurrence of deletions in primary mediastinal B-cell lymphoma. Genes Chromosomes Cancer. 2007;46:1090–7.

    Article  PubMed  CAS  Google Scholar 

  236. Mottok A, Renne C, Seifert M, et al. Inactivating SOCS1 mutations are caused by aberrant somatic hypermutation and restricted to a subset of B-cell lymphoma entities. Blood. 2009;114:4503–6.

    Article  PubMed  CAS  Google Scholar 

  237. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin’s lymphoma. J Exp Med. 2003;198:851–62.

    Article  PubMed  CAS  Google Scholar 

  238. Feuerhake F, Kutok JL, Monti S, et al. NFkappaB activity, function, and target-gene signatures in primary mediastinal large B-cell lymphoma and diffuse large B-cell lymphoma subtypes. Blood. 2005;106:1392–9.

    Article  PubMed  CAS  Google Scholar 

  239. Nakamara S, Ponzoni M, Campo E. Intravascular large B-cell lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 252–3.

    Google Scholar 

  240. Nakajima S, Ohshima K, Kyogoku M, et al. A Case of intravascular large B-cell lymphoma with atypical clinical manifestations and analysis of CXCL12 and CXCR4 expression. Arch Dermatol. 2010;146:686–7.

    Article  PubMed  Google Scholar 

  241. Shimada K, Kinoshita T, Naoe T, et al. Presentation and management of intravascular large B-cell lymphoma. Lancet Oncol. 2009;10:895–902.

    Article  PubMed  Google Scholar 

  242. Ferreri AJ, Dognini GP, Campo E, et al. Variations in clinical ­presentation, frequency of hemophagocytosis and clinical behavior of intravascular lymphoma diagnosed in different geographical regions. Haematologica. 2007;92:486–92.

    Article  PubMed  Google Scholar 

  243. Balkema C, Meersseman W, Hermans G, et al. Usefulness of FDG-PET to diagnose intravascular lymphoma with encephalopathy and renal involvement. Acta Clin Belg. 2008;63:185–9.

    PubMed  CAS  Google Scholar 

  244. Estalilla OC, Koo CH, Brynes RK, et al. Intravascular large B-cell lymphoma. A report of five cases initially diagnosed by bone marrow biopsy. Am J Clin Pathol. 1999;112:248–55.

    PubMed  CAS  Google Scholar 

  245. DiGiuseppe JA, Hartmann DP, Freter C, et al. Molecular detection of bone marrow involvement in intravascular lymphomatosis. Mod Pathol. 1997;10:33–7.

    PubMed  CAS  Google Scholar 

  246. Ferry JA, Sohani AR, Longtine JA, et al. HHV8-positive, EBV-positive Hodgkin’s lymphoma-like large B-cell lymphoma and HHV8-positive intravascular large B-cell lymphoma. Mod Pathol. 2009;22:618–26.

    Article  PubMed  Google Scholar 

  247. Delsol G, Campo E, Gascoyne RD. ALK-positive large B-cell lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 254–5.

    Google Scholar 

  248. Laurent C, Do C, Gascoyne RD, et al. Anaplastic lymphoma kinase-positive diffuse large B-cell lymphoma: a rare clinicopathologic entity with poor prognosis. J Clin Oncol. 2009;27:4211–6.

    Article  PubMed  Google Scholar 

  249. Stachurski D, Miron PM, Al-Homsi S, et al. Anaplastic lymphoma kinase-positive diffuse large B-cell lymphoma with a complex karyotypes and cryptic 3′ ALK gene insertion to chromosome 4q22-24. Hum Pathol. 2007;38:940–5.

    Article  PubMed  CAS  Google Scholar 

  250. Van Roosbroeck K, Cools J, Dierickx D, et al. ALK-positive large B-cell lymphomas with cryptic SEC31A-ALK and NPM1-ALK fusions. Haematologica. 2010;95:509–13.

    Article  PubMed  CAS  Google Scholar 

  251. Stein H, Harris NL, Campo E. Plasmablastic lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 256–7.

    Google Scholar 

  252. Vega F, Chang CC, Mederios LJ, et al. Plasmablastic lymphomas and plasmablastic plasma cell myelomas have nearly identical immunophenotypic profiles. Mod Pathol. 2005;18:806–15.

    Article  PubMed  Google Scholar 

  253. Delecluse HJ, Anagnostopoulos I, Dallenbach F, et al. Plasmablastic lymphomas of the oral cavity: a new entity associated with the human immunodeficiency virus infection. Blood. 1997;89:1413–20.

    PubMed  CAS  Google Scholar 

  254. Castillo JJ, Winer ES, Stachurski D, et al. Prognostic factors in chemotherapy-treated patients with HIV-associated plasmablastic lymphoma. Oncologist. 2010;15:293–9.

    Article  PubMed  CAS  Google Scholar 

  255. Montes-Moreno S, Gonzalez-Medina AR, Rodriguez Pinilla SM, et al. Aggressive large B-cell lymphoma with plasma cell differentiation: immunohistochemical characterization of plasmablastic lymphoma and diffuse large B cell lymphoma with partial plasmablastic phenotype. Haematologica. 2010;95:1342–9.

    Article  PubMed  Google Scholar 

  256. Bogusz AM, Seegmiller AC, Garcia R, et al. Plasmablastic lymphomas with MYC/IgH rearrangement: report of three cases and review of the literature. Am J Clin Pathol. 2009;132:597–605.

    Article  PubMed  CAS  Google Scholar 

  257. Chang CC, Zhou X, Taylor JJ, et al. Genomic profiling of ­plasmablastic lymphoma using array comparative genomic hybridization (aCGH): revealing significant overlapping genomic lesions with diffuse large B-cell lymphoma. J Hematol Oncol. 2009;12:47.

    Article  CAS  Google Scholar 

  258. Said J, Cesarman E. Primary effusion lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 260–1.

    Google Scholar 

  259. Horenstein MG, Nador RG, Chadburn A, et al. Epstein-Barr virus latent gene expression in primary effusion lymphomas containing Kaposi’s sarcoma-associated herpes virus/human herpes virus-8. Blood. 1997;90:1186–91.

    PubMed  CAS  Google Scholar 

  260. Lambe JS, Oble DA, Nandula SV, et al. KSHV (−) post transplant effusion lymphoma with plasmablastic features: variant of primary effusion lymphoma? Hematol Oncol. 2009;27:203–10.

    Article  PubMed  Google Scholar 

  261. Mullaney BP, Ng VL, Herndier BG, et al. Comparative genomic analyses of primary effusion lymphoma. Arch Pathol Lab Med. 2000;124:824–6.

    PubMed  CAS  Google Scholar 

  262. Klein U, Gloghini A, Chadburn A, et al. Gene expression profile analysis of AIDS-related primary effusion lymphoma (PEL) suggests a plasmablastic derivation and identifies PEL-specific transcripts. Blood. 2003;101:4115–21.

    Article  PubMed  CAS  Google Scholar 

  263. Magrath IT. African Burkitt’s lymphoma: history, biology, clinical features, and treatment. Am J Pediatr Hematol Oncol. 1991;13:222–46.

    Article  PubMed  CAS  Google Scholar 

  264. Rochford R, Cannon MJ, Moormann AM. Endemic Burkitt’s lymphoma: a polymicrobial disease? Nat Rev Microbiol. 2005;3:182–7.

    Article  PubMed  CAS  Google Scholar 

  265. Leoncini L, Raphael M, Stein H, et al. Burkitt lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 262–4.

    Google Scholar 

  266. Cristiana B, Lazzi S, De Falco G, et al. Burkitt lymphoma versus diffuse large B-cell lymphoma: a practical approach. Hamatol Oncol. 2009;27:182–5.

    Article  Google Scholar 

  267. Ioachim HL, Dorsett B, Cronin W, et al. Acquired immunodeficiency syndrome-associated lymphomas: clinical, pathologic, immunologic, and viral characteristics of 111 cases. Hum Pathol. 1991;22:659–73.

    Article  PubMed  CAS  Google Scholar 

  268. Murphy SB, Magrath IT. Workshop on pediatric lyphomas: current results and prospects. Ann Oncol. 1991;2:219–23.

    PubMed  Google Scholar 

  269. Perkins AS, Friedberg JW. Burkitt lymphoma in adults. Hematology Am Soc Hematol Educ Program 2008:341–347

    Google Scholar 

  270. Dictor M, Ek S, Sundberg M, et al. Strong lymphoid nuclear expression of SOX11 transcription factor defines lymphoblastic neoplasms, mantle cell lymphoma and Burkitt’s lymphoma. Haematologica. 2009;94:1563–8.

    Article  PubMed  CAS  Google Scholar 

  271. Chuang SS, Huang WT, Hsieh PP, et al. Sporadic paediatric and adult Burkitt lymphomas share similar phenotypic and genotypic features. Histopathology. 2008;52:427–35.

    Article  PubMed  Google Scholar 

  272. Kelemen K, Braziel RM, Gatter K, et al. Immunophenotypic variations of Burkitt lymphoma. Am J Clin Pathol. 2010;134:127–38.

    Article  PubMed  Google Scholar 

  273. Hecht JL, Aster JC. Molecular biology of Burkitt’s lymphoma. J Clin Oncol. 2000;18:3707–21.

    PubMed  CAS  Google Scholar 

  274. Klapproth K, Wirth T. Advances in the understanding of MYC-induced lymphomagenesis. Br J Haematol. 2010;149:484–97.

    Article  PubMed  CAS  Google Scholar 

  275. Onciu M, Schlette E, Zhou Y, et al. Secondary chromosomal abnormalities predict outcome in pediatric and adult high-stage Burkitt lymphoma. Cancer. 2006;107:1084–92.

    Article  PubMed  Google Scholar 

  276. Boerma EG, Siebert R, Kluin PM, et al. Translocations involving 8q24 in Burkitt lymphoma and other malignant lymphomas: a historical review of cytogenetics in the light of todays knowledge. Leukemia. 2009;23:225–34.

    Article  PubMed  CAS  Google Scholar 

  277. Hummel M, Bentink S, Berger H, et al. A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med. 2006;354:2419–30.

    Article  PubMed  CAS  Google Scholar 

  278. Dave SS, Fu K, Wright GW, et al. Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med. 2006;354:2431–42.

    Article  PubMed  CAS  Google Scholar 

  279. Kluin PM, Harris NL, Stein H, et al. B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 265–6.

    Google Scholar 

  280. Carbone A, Gloghini A, Aiello A, et al. B-cell lymphomas with features intermediate between distinct pathologic entities. From pathogenesis to pathology. Hum Pathol. 2010;41:621–31.

    Article  PubMed  CAS  Google Scholar 

  281. Seegmiller AC, Garcia R, Huang R, et al. Simple karyotypes and bcl-6 expression predict a diagnosis of Burkitt lymphoma and better survival in IG-MYC rearranged high grade B-cell lymphomas. Mod Pathol. 2010;23:909–20.

    Article  PubMed  CAS  Google Scholar 

  282. Jaffe ES, Stein H, Swerdlow SH, et al. B-cell lymphoma, unclassificable, with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin’s lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 267–8.

    Google Scholar 

  283. Borowitz MJ, Chan JKC. T lymphoblastic leukemia/lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 176–8.

    Google Scholar 

  284. Burkhardt B. Paediatric lymphoblastic T-cell leukaemia and lymphoma: one or two diseases? Br J Haematol. 2010;149:653–68.

    Article  PubMed  CAS  Google Scholar 

  285. Nathwani BN, Diamond LW, Winberg CD, et al. Lymphoblastic lymphoma: a clinicopathologic study of 95 patients. Cancer. 1981;48:2347–57.

    Article  PubMed  CAS  Google Scholar 

  286. Schwartz JE, Grogan TM, Hick MJ, et al. Pseudonodular T cell lymphoblastic lymphoma. Am J Med. 1984;77:947–9.

    Article  PubMed  CAS  Google Scholar 

  287. Han X, Bueso-Ramos CE. Precursor T-cell lymphoblastic leukemia/lymphoblastic lymphoma and acute biphenotypic leukemias. Am J Clin Pathol. 2007;127:528–44.

    Article  PubMed  CAS  Google Scholar 

  288. Soslow RA, Bhargava V, Warnke RA. MIC2, TdT, bcl-2, and CD34 expression in paraffin-embedded high-grade lymphoma/acute lymphoblastic leukemia distinguishes between distinct clinicopathologic entities. Hum Pathol. 1997;28:1158–65.

    Article  PubMed  CAS  Google Scholar 

  289. Hashimoto M, Yamashita Y, Mori N. Immunohistochemical ­detection of CD79a expression in precursor T cell lymphoblastic lymphoma/leukaemias. J Pathol. 2002;197:341–7.

    Article  PubMed  CAS  Google Scholar 

  290. de Villartay JP, Pullman A, Andrade R, et al. γ/δ lineage relationship within a consecutive series of human precursor T-cell neoplasms. Blood. 1989;74:2508–18.

    PubMed  Google Scholar 

  291. Pilozzi E, Muller-Hermelink HK, Falini B, et al. Gene rearrangements in T-cell lymphoblastic lymphoma. J Pathol. 1999;188:267–70.

    Article  PubMed  CAS  Google Scholar 

  292. Graux C, Cools J, Michaux L, et al. Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia. 2006;20:1496–510.

    Article  PubMed  CAS  Google Scholar 

  293. Ferrando AA. The role of NOTCH1 signaling in T-ALL. Hematology Am Soc Hematol Educ Program 2009; 353–61.

    Google Scholar 

  294. Marks DI, Paietta EM, Moorman AV, et al. T-cell acute lymphoblastic leukemia in adults: clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trail UKALL XII/ECOG 2993. Blood. 2009;114:5136–45.

    Article  PubMed  CAS  Google Scholar 

  295. Tosello V, Mansour MR, Barnes K, et al. WT1 mutations in T-ALL. Blood. 2009;114:1038–45.

    Article  PubMed  CAS  Google Scholar 

  296. Lahortiga I, De Keersmaecker K, Van Vilerberghe P, et al. Duplication of the MYB Oncogene in T cell acute lymphoblastic leukemia. Nat Genet. 2007;39:593–5.

    Article  PubMed  CAS  Google Scholar 

  297. Hagemeijer A, Graux C. ABL1 rearrangements in T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2010;49:299–308.

    PubMed  CAS  Google Scholar 

  298. Kleppe M, Lahortiga I, El Chaar T, et al. Deletion of the protein tyrosine phospatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Nat Genet. 2010;42:530–5.

    Article  PubMed  CAS  Google Scholar 

  299. Ferrando AA, Neuberg DS, Staunton J, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 2002;1:75–87.

    Article  PubMed  CAS  Google Scholar 

  300. Raetz EA, Perkins SL, Bhojwani D, et al. Gene expression profiling reveals intrinsic differences between T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Pediatr Blood Cancer. 2006;47:130–40.

    Article  PubMed  Google Scholar 

  301. Ohshima K, Jaffe ES, Kikuchi M. Adult T-cell leukemia/­lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 281–4.

    Google Scholar 

  302. Yamaguchi K. Human T-lymphotropic virus type I in Japan. Lancet. 1994;343:213–6.

    Article  PubMed  CAS  Google Scholar 

  303. Phillips AA, Shapira I, Willim RD, et al. A critical analysis of prognostic factors in North America patients with human T-cell lymphotropic virus type-1-assocaited adult T-cell leukemia/lymphoma: a multicenter clinicopathologic experience and new prognostic score. Cancer. 2010;116:3438–46.

    Article  PubMed  Google Scholar 

  304. Franchini G. Molecular mechanisms of human T-cell leukemia/lymphotropic virus type I infection. Blood. 1995;86:3619–39.

    PubMed  CAS  Google Scholar 

  305. Suzumiya J, Ohshima K, Tamura K, et al. The International Prognostic Index predicts outcome in aggressive adult T-cell leukemia/lymphoma: analysis of 126 patient from the International Peripheral T-Cell Lymphoma Project. Ann Oncol. 2009;20:715–21.

    Article  PubMed  CAS  Google Scholar 

  306. Shimoyama M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukemia-lymphoma. A report from the Lymphoma Study Group 1984–1987. Br J Haematol. 1991;79:428–37.

    Article  PubMed  CAS  Google Scholar 

  307. Tobinai K. Current management of adult T-cell leukemia/lymphoma. Oncology. 2009;23:1250–6.

    PubMed  Google Scholar 

  308. Ohshima K. Pathological features of diseases associated with human T-cell leukemia virus type I. Cancer Sci. 2007;98:772–8.

    Article  PubMed  CAS  Google Scholar 

  309. Karube K, Aoki R, Sugita Y, et al. The relationship of FOXP3 expression and clinicopathological characteristics in adult T-cell leukemia/lymphoma. Mod Pathol. 2008;21:617–25.

    Article  PubMed  CAS  Google Scholar 

  310. Itoyama T, Chaganti RS, Yamada Y, et al. Cytogenetic analysis and clinical significance in adult T-cell leukemia/lymphoma: a study of 50 cases from the human T-cell leukemia virus type-1 endemic area, Nagasaki. Blood. 2001;97:3612–20.

    Article  PubMed  CAS  Google Scholar 

  311. Shimamoto Y, Suga K, Shibata K, et al. Clinical importance of extraordinary integration patterns of human T-cell lymphotrophic virus type I proviral DNA in adult T-cell leukemia/lymphoma. Blood. 1994;84:853–8.

    PubMed  CAS  Google Scholar 

  312. Ohshima K, Suzumiya J, Sato K, et al. Nodal T-cell lymphoma in a HTLV-I-endemic area: p1998; roviral HTLV-I DNA, histological classification and clinical evaluation. Br J Haematol. 1998;101:703–11.

    Article  PubMed  CAS  Google Scholar 

  313. Choi YL, Tsukasaki K, O’Neill MC, et al. A genomic analysis of adult T-cell leukemia. Oncogene. 2007;26:1245–55.

    Article  PubMed  CAS  Google Scholar 

  314. Chan JKC, Quintanilla-Martinez K, Ferry JA, et al. Extranodal NK/T-cell lymphoma, nasal type. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 285–8.

    Google Scholar 

  315. Suzuki R, Takeuchi K, Ohshima K, et al. Extranodal NK/T-cell lymphoma: diagnosis and treatment cues. Hematol Oncol. 2008;26:66–72.

    Article  PubMed  Google Scholar 

  316. Au WY, Weisenburger DD, Intragumtornchai T, et al. Clinical differences between nasal and extranasal natural killer/T-cell lymphoma: a study of 136 cases from the International Peripheral T-Cell Lymphoma Project. Blood. 2009;113:3931–7.

    Article  PubMed  CAS  Google Scholar 

  317. Kim TM, Heo DS. Extranodal NK/T-cell lymphoma, nasal type: new staging system and treatment strategies. Cancer Sci. 2009;100:2242–8.

    Article  PubMed  CAS  Google Scholar 

  318. Kim TM, Lee SY, Jeon YK, et al. Clinical heterogeneity of extranodal NK/T-cell lymphoma, nasal type: a national survey of the Korean Cancer Study Group. Ann Oncol. 2008;19:1477–84.

    Article  PubMed  CAS  Google Scholar 

  319. Liang R. Advances in the management and monitoring of extranodal NK/T-cell lymphoma, nasal type. Br J Haematol. 2009;147:13–21.

    Article  PubMed  CAS  Google Scholar 

  320. Wang ZY, Li YX, Wang WH, et al. Primary radiotherapy showed favorable outcome in treating extranodal nasal-type NK/T-cell lymphoma in children and adolescents. Blood. 2009;114:4771–6.

    Article  PubMed  CAS  Google Scholar 

  321. Hasserjian RP, Harris NL. NK-cell lymphomas and leukemias: a spectrum of tumors with variable manifestations and immunophenotype. Am J Clin Pathol. 2007;127:860–8.

    Article  PubMed  CAS  Google Scholar 

  322. Quintanilla-Martinez L, Franklin JL, Guerrero I, et al. Histological and immunophenotypic profile of nasal NK/T cell lymphomas from Peru: high prevalence of p53 overexpression. Hum Pathol. 1999;30:849–55.

    Article  PubMed  CAS  Google Scholar 

  323. Medeiros LJ, Jaffe ES, Chen Y-Y, et al. Localization of Epstein-Barr viral genomes in angiocentric immunoproliferative lesions. Am J Surg Pathol. 1992;16:439–47.

    Article  PubMed  CAS  Google Scholar 

  324. Oshima K, Suzumiya J, Shimazaki K, et al. Nasal T/NK cell lymphomas commonly express perforin and Fas ligand: important mediators of tissue damage. Histopathology. 1997;31:444–50.

    Article  Google Scholar 

  325. Kim SJ, Kim BS, Choi CW, et al. Ki-67 expression is predictive of prognosis in patients with stage I/II extranodal NK/T-cell lymphoma, nasal type. Ann Oncol. 2007;18:1382–7.

    Article  PubMed  CAS  Google Scholar 

  326. Ko YH, Choi KE, Han JH, et al. Comparative genomic hybridization study of nasal-type NK/T-cell lymphoma. Cytometry. 2001;46:85–91.

    Article  PubMed  CAS  Google Scholar 

  327. Huang Y, de Reynies A, de Leval L, et al. Gene expresión profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood. 2010;115:1226–37.

    Article  PubMed  CAS  Google Scholar 

  328. Isaascon PG, Chott A, Oh G, et al. Enteropathy-associated T-cell lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 289–91.

    Google Scholar 

  329. Ko YH, Karnan S, Kim KM, et al. Enteropathy-associated T-cell lymphoma-a clinicopathologic and array comparative genomic hybridization study. Hum Pathol. 2010;41:1231–7.

    Article  PubMed  CAS  Google Scholar 

  330. Gale J, Simmonds PD, Mead GM, et al. Enteropathy-type intestinal T-cell lymphoma: clinical features and treatment of 31 patients in a single center. J Clin Oncol. 2000;18:795–803.

    PubMed  CAS  Google Scholar 

  331. van de Water JM, Cillessen SA, Visser OJ, et al. Enteropathy associated T-cell lymphoma and its precursor lesions. Best Pract Res Clin Gastroenterol. 2010;24:43–56.

    Article  PubMed  Google Scholar 

  332. Zettl A, deLeeuw R, Haralambieva E, et al. Enteropathy-type T-cell lymphoma. Am J Clin Pathol. 2007;127:701–6.

    Article  PubMed  Google Scholar 

  333. Bagdi E, Diss TC, Munson P, et al. Mucosal intra-epithelial lymphocytes in enteropathy-associated T-cell lymphoma, ulcerative jejunitis, and refractory celiac disease constitute a neoplastic population. Blood. 1999;94:260–4.

    PubMed  CAS  Google Scholar 

  334. Smedby KE, Akeman M, Hildebrand H, et al. Malignant lymphomas in celiac disease: evidence of increased risks for lymphoma types other than enteropathy-type T cell lymphoma. Gut. 2005;54:54–9.

    Article  PubMed  CAS  Google Scholar 

  335. Gaulard P, Jaffe ES, Krenais L, et al. Hepatosplenic T-cell lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 292–3.

    Google Scholar 

  336. Belhadj K, Reyes F, Farcet JP, et al. Hepatosplenic gammadelta T-cell lymphoma is a rare clinicopathologic entity with poor outcome: report on a series of 21 patients. Blood. 2003;102:4261–9.

    Article  PubMed  CAS  Google Scholar 

  337. Tripodo C, Iannitto E, Florena AM, et al. Gamma-delta T-cell lymphomas. Nat Rev Clin Oncol. 2009;6:707–17.

    Article  PubMed  Google Scholar 

  338. Vega F, Medeiros LJ, Gaulard P. Hepatosplenic and other gammadelta T-cell lymphomas. Am J Clin Pathol. 2007;127:869–80.

    Article  PubMed  CAS  Google Scholar 

  339. Vega F, Medeiros LJ, Bueso-Ramos C, et al. Hepatosplenic gamma/delta T-cell lymphoma in bone marrow: a sinusoidal neoplasm with blastic cytologic features. Am J Clin Pathol. 2001;116:410–9.

    Article  PubMed  CAS  Google Scholar 

  340. Macon WR, Levy NB, Kurtin PJ, et al. Hepatosplenic alphabeta T-cell lymphomas: a report of 14 cases and comparison with hepatosplenic gammadelta T-cell lymphoma. Am J Surg Pathol. 2001;25:285–96.

    Article  PubMed  CAS  Google Scholar 

  341. Alonsozana EL, Stamberg J, Kumar D, et al. Isochromosome 7q: the primary cytogenetic abnormality in hepatosplenic gammadelta T cell lymphoma. Leukemia. 1997;11:1367–72.

    Article  PubMed  CAS  Google Scholar 

  342. Pileri SA, Weisenberger DD, Sng I, et al. Peripheral T-cell ­lymphoma, not otherwise specified. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 306–8.

    Google Scholar 

  343. Agostinelli C, Piccaluga PP, Went P, et al. Peripheral T cell lymphoma, not otherwise specified: the stuff of genes, dreams and therapies. J Clin Pathol. 2008;61:1160–7.

    Article  PubMed  CAS  Google Scholar 

  344. Gallamini A, Stelitano C, Calvi R, et al. Peripheral T-cell lymphoma unspecified (PTCL-U): a new prognostic model from a retrospective multicentric clinical study. Blood. 2004;103:2474–9.

    Article  PubMed  CAS  Google Scholar 

  345. Kojima H, Hasegawa Y, Suzukawa K, et al. Clinicopathological features and prognostic factors of Japanese patients with “peripheral T-cell lymphoma, unspecified” diagnosed according to the WHO classification. Leuk Res. 2004;28:1287–92.

    Article  PubMed  Google Scholar 

  346. Warnke RA, Jones D, Hsi ED. Morphologic and immunophenotypic variants of nodal T-cell lymphomas and T-cell lymphoma mimics. Am J Clin Pathol. 2007;127:511–27.

    Article  PubMed  CAS  Google Scholar 

  347. Geissinger E, Odenwald T, Lee SS, et al. Nodal peripheral T-cell lymphomas and, in particular, their lymphoepithelioid (Lennert’s) variant are often derived from CD8(+) cytotoxic T-cells. Virchows Arch. 2004;445:334–43.

    Article  PubMed  Google Scholar 

  348. Rudiger T, Ichinohasama R, Ott MM, et al. Peripheral T-cell lymphoma with distinct perifollicular growth pattern: a distinct subtype of T-cell lymphoma? Am J Surg Pathol. 2000;24:117–22.

    Article  PubMed  CAS  Google Scholar 

  349. Jiang L, Jones D, Medeiros LJ, et al. Peripheral T-cell lymphoma with a “follicular” pattern and the perifollicular sinus phenotype. Am J Clin Pathol. 2005;123:448–55.

    Article  PubMed  Google Scholar 

  350. Asano N, Suzuki R, Kagami Y, et al. Clinicopathologic and prognostic significance of cytotoxic molecule expression in nodal peripheral T-cell lymphoma, unspecified. Am J Surg Pathol. 2005;29:1284–93.

    Article  PubMed  Google Scholar 

  351. Assano N, Suzuki R, Ohshima K, et al. Linkage of expression of chemokine receptors (CXCR3 and CCR4) and cytotoxic molecules in peripheral T cell lymphoma, not otherwise specified and ALK-negative anaplastic large cell lymphoma. Int J Hematol. 2010;91:426–35.

    Article  CAS  Google Scholar 

  352. Lepretre S, Buchonnet G, Stamatoullas A, et al. Chromosome abnormalities in peripheral T-cell lymphoma. Cancer Genet Cytogenet. 2000;117:71–9.

    Article  PubMed  CAS  Google Scholar 

  353. Streubel B, Vinatzer U, Willheim M, et al. Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia. 2006;20:313–8.

    Article  PubMed  CAS  Google Scholar 

  354. Thoms C, Bastian B, Pinkel D, et al. Chromosomal aberrations in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma unspecified: a matrix-based CGH approach. Genes Chromosomes Cancer. 2007;46:37–44.

    Article  CAS  Google Scholar 

  355. Nelson M, Horsman DE, Weisenburger DD, et al. Cytogenetic abnormalities and clinical correlations in peripheral T-cell lymphoma. Br J Haematol. 2008;141:461–9.

    Article  PubMed  CAS  Google Scholar 

  356. Hartmann S, Gesk S, Scholtysik R, et al. High resolution SNP array genomic profiling of peripheral T cell lymphomas, not otherwise specified, identifies a subgroup with chromosomal aberrations affecting the REL locus. Br J Haematol. 2010;148:402–12.

    Article  PubMed  Google Scholar 

  357. Iqbal J, Weisenburger DD, Greiner TC, et al. Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood. 2010;115:1026–36.

    Article  PubMed  CAS  Google Scholar 

  358. Piccaluga PP, Agostinelli C, Zinani PL, et al. Expression of platelet-derived growth factor receptor alpha in peripheral T-cell lymphoma not otherwise specified. Lancet Oncol. 2005;6:440.

    Article  PubMed  Google Scholar 

  359. Frizzera G, Moran EM, Rappaport H. Angioimmunoblastic lymphadenopathy with dysproteinemia. Lancet. 1974;I:1070–3.

    Article  Google Scholar 

  360. Dogan A, Gaulard P, Jaffe ES, et al. Angioimmunoblastic T-cell lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 309–11.

    Google Scholar 

  361. Mourad N, Mounier N, Briere J, et al. Clinical, biologic, and pathologic features in 157 patients with angioimmunoblastic T-cell lymphoma treated within the Groupe d’Etude des Lymphomes de l’Adulte (GELA) trials. Blood. 2008;111:4463–70.

    Article  PubMed  CAS  Google Scholar 

  362. Lachenal F, Berger F, Ghesquieres H, et al. Angioimmunoblastic T-cell lymphoma: clinical and laboratory features at diagnosis in 77 patients. Medicine. 2007;86:282–92.

    Article  PubMed  Google Scholar 

  363. Khokhar FA, Payne WD, Talwalkar SS, et al. Angioimmunoblastic T-cell lymphoma in bone marrow: a morphologic and immunophenotypic study. Hum Pathol. 2010;41:79–87.

    Article  PubMed  CAS  Google Scholar 

  364. Dogan A, Ngu LS, Ng SH, et al. Pathology and clinical features of angioimmunoblastic T-cell lymphoma after successful treatment with thalidomide. Leukemia. 2005;19:873–5.

    Article  PubMed  CAS  Google Scholar 

  365. Bruns I, Fox F, Reinecke P, et al. Complete remission in a patient with relapsed angioimmunoblastic T-cell lymphoma following treatment with bevacizumab. Leukemia. 2005;19:1993–5.

    Article  PubMed  CAS  Google Scholar 

  366. Attygalle AD, Kyriakou C, Dupuis J, et al. Histologic evolution of angioimmunoblastic T-cell lymphoma in consecutive biopsies: clinical correlation and insights into natural history and disease progression. Am J Surg Pathol. 2007;31:1077–88.

    Article  PubMed  Google Scholar 

  367. de Leval L, Gisselbrecht C, Gaulard P. Advances in the understanding and management of angioimmunoblastic T-cell lymphoma. Br J Haematol. 2010;148:673–89.

    Article  PubMed  CAS  Google Scholar 

  368. Attygalle A, Al-Jehani R, Diss TC, et al. Neoplastic T cells ­angioimmunoblastic T-cell lymphoma express CD10. Blood. 2002;99:627–33.

    Article  PubMed  CAS  Google Scholar 

  369. Grogg KL, Attygalle AD, Macon WR, et al. Expression of CXCL13, a chemokine highly upregulated in germinal center T-helper cells, distinguishes angioimmunoblastic T-cell lymphoma from peripheral T-cell lymphoma, unspecified. Mod Pathol. 2006;19:1101–7.

    PubMed  CAS  Google Scholar 

  370. Zhou Y, Attygalle AD, Chuang SS, et al. Angioimmunoblastic T-cell lymphoma: histological progression associates with EBV and HHV6B viral load. Br J Haematol. 2007;138:44–53.

    Article  PubMed  CAS  Google Scholar 

  371. Schlegelberger B, Zhang Y, Weber-Matthiesen K, et al. Detection of aberrant clones in nearly all cases of angioimmunoblastic lymphadenopathy with dysproteinemia-type T-cell lymphoma by combined interphase and metaphase cytogenetics. Blood. 1994;84:2640–8.

    PubMed  CAS  Google Scholar 

  372. Weiss LM, Jaffe E, Liu X, et al. Detection and localization of Epstein-Barr viral genomes in angioimmunoblastic lymphadenopathy and angioimmunoblastic lymphadenopathy type. Blood. 1992;79:1789–95.

    PubMed  CAS  Google Scholar 

  373. de Leval L, Rickman DS, Thielen C, et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood. 2007;109:4952–63.

    Article  PubMed  CAS  Google Scholar 

  374. Willenbrock K, Brauninger A, Hansmann ML. Frequent occurrence of B-cell lymphomas in angioimmunoblastic T-cell lymphoma and proliferation of Epstein-Barr virus-infected cells in early cases. Br J Haematol. 2007;138:733–9.

    Article  PubMed  Google Scholar 

  375. Stein H, Mason DY, Gerdes J, et al. The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood. 1985;66:848–58.

    PubMed  CAS  Google Scholar 

  376. Delsol G, Falini B, Muller-Hermelink HK, et al. Anaplastic large cell lymphoma (ALCL), ALK-positive. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 312–6.

    Google Scholar 

  377. Stein H, Foss HD, Durkop H, et al. CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood. 2000;96:3681–95.

    PubMed  CAS  Google Scholar 

  378. Medeiros LJ, Elenitoba-Johnson KS. Anaplastic large cell ­lymphoma. Am J Clin Pathol. 2007;127:707–22.

    Article  PubMed  Google Scholar 

  379. Nguyen JT, Condron MR, Nguyen ND, et al. Anaplastic large cell lymphoma in leukemic phase: extraordinarily high white blood cell count. Pathol Int. 2009;59:345–53.

    Article  PubMed  Google Scholar 

  380. Vassallo J, Lamant L, Brugieres L, et al. ALK-positive anaplastic large cell lymphoma mimicking nodular sclerosis Hodgkin’s lymphoma: report of 10 cases. Am J Surg Pathol. 2006;30:223–9.

    Article  PubMed  Google Scholar 

  381. Muzzafar T, Wei EX, Lin P, et al. Flow cytometric immunophenotyping of anaplastic large cell lymphoma. Arch Pathol Lab Med. 2009;133:49–56.

    PubMed  Google Scholar 

  382. Drakos E, Leventaki V, Schlette EJ, et al. c-Jun expression and activation are restricted to CD30+ lymphoproliferative disorders. Am J Surg Pathol. 2007;31:447–53.

    Article  PubMed  Google Scholar 

  383. Khoury JD, Medeiros LJ, Rassidakis GZ, et al. Differential expression and clinical significance of tyrosine-phosphorylated STAT3 in ALK  +  and ALK- anaplastic large cell lymphoma. Clin Cancer Res. 2003;9:3692–9.

    PubMed  CAS  Google Scholar 

  384. Saffer H, Wahed A, Rassidakis GZ, et al. Clusterin expression in malignant lymphomas: a survey of 266 cases. Mod Pathol. 2002;15:1221–6.

    Article  PubMed  Google Scholar 

  385. Duplantier MM, Lamant L, Sabourdy F, et al. Serpin A1 is overexpressed in ALK  +  anaplastic large cell lymphoma and its expression correlates with extranodal dissemination. Leukemia. 2006;20:1848–54.

    Article  PubMed  CAS  Google Scholar 

  386. Rassidakis GZ, Sarris AH, Herling M, et al. Differential expression of BCL-2 family proteins in ALK-positive and ALK-negative anaplastic large cell lymphoma of T/null-cell lineage. Am J Pathol. 2001;159:527–35.

    Article  PubMed  CAS  Google Scholar 

  387. Schlette EJ, Medeiros LJ, Goy A, et al. Survivin expression predicts poorer prognosis in anaplastic large-cell lymphoma. J Clin Oncol. 2004;22:1682–8.

    Article  PubMed  CAS  Google Scholar 

  388. Rassidakis GZ, Thomaides A, Wang S, et al. p53 gene mutations are uncommon but p53 is commonly expressed in anaplastic large-cell lymphoma. Leukemia. 2005;19:1663–9.

    Article  PubMed  CAS  Google Scholar 

  389. Herling M, Rassidakis GZ, Jones D, et al. Absence of Epstein-Barr virus in anaplastic large cell lymphoma: a study of 64 cases classified according to World Health Organization criteria. Hum Pathol. 2004;35:455–9.

    Article  PubMed  CAS  Google Scholar 

  390. Kaneko Y, Frizzera G, Edamura S, et al. A novel translocation, t(2;5)(p23;q35), in childhood phagocytic large T-cell lymphoma mimicking malignant histiocytosis. Blood. 1989;73:806–13.

    PubMed  CAS  Google Scholar 

  391. Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM non-Hodgkin’s lymphoma. Science. 1994;263:1281–4.

    Article  PubMed  CAS  Google Scholar 

  392. Cannella S, Santoro A, Bruno G, et al. Germline mutations of the perforin gene are a frequent occurrence in childhood anaplastic large cell lyphoma. Cancer. 2007;109:2566–71.

    Article  PubMed  CAS  Google Scholar 

  393. Rassidakis GZ, Lai R, Herling M, et al. Retinoblastoma protein is frequently absent of phosphorylated in anaplastic large-cell lymphoma. Am J Pathol. 2004;164:2259–67.

    Article  PubMed  CAS  Google Scholar 

  394. Salaverria I, Bea S, Lopez-Guillermo A, et al. Genomic profliling reveals different genetic aberrations in systemic ALK-positive and ALK-negative anaplastic large cell lymphomas. Br J Haematol. 2008;140:516–26.

    Article  PubMed  Google Scholar 

  395. Lamant L, de Reynies A, Duplantier MM, et al. Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK  +  subtypes. Blood. 2007;109:2156–64.

    Article  PubMed  CAS  Google Scholar 

  396. Lim MS, Carlson ML, Crockett DK, et al. The proteomic signature of NPM/ALK reveals deregulation of multiple cellular pathways. Blood. 2009;114:1585–95.

    Article  PubMed  CAS  Google Scholar 

  397. Mason DY, Harris NL, Delsol G, et al. Anaplastic large cell lymphoma, ALK-negative. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 317–9.

    Google Scholar 

  398. Savage KJ, Harris NL, Vose JM, et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK  +  ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood. 2008;111:5496–504.

    Article  PubMed  CAS  Google Scholar 

  399. Roden AC, Macon WR, Keeney GL, et al. Seroma-associated primary anaplastic large-cell lymphoma adjacent to breat implants: an indolent T-cell lymphoproliferative disorder. Mod Pathol. 2008;21:455–63.

    Article  PubMed  CAS  Google Scholar 

  400. Miranda RN, Lin L, Talwalkar SS, et al. Anaplastic large cell lymphoma involving the breast: a clinicopathologic study of 6 cases and review of the literature. Arch Pathol Lab Med. 2009;133:1383–90.

    PubMed  Google Scholar 

  401. Willemze R, Jaffe ES, Burg G, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105:3768–85.

    Article  PubMed  CAS  Google Scholar 

  402. Jackson H, Parker F. Hodgkin’s disease. II. Pathology. N Engl J Med. 1944;231:35–44.

    Article  Google Scholar 

  403. Lukes RJ, Butler JJ. The pathology and nomenclature of Hodgkin’s disease. Cancer Res. 1968;26:1063–83.

    Google Scholar 

  404. Rappaport H, Berard CW, Butler JJ, et al. Report of the committee on histopathological criteria contributing to staging of Hodgkin’s disease. Cancer Res. 1971;31:1864–5.

    PubMed  CAS  Google Scholar 

  405. Evens AM, Hutchings M, Diehl V. Treatment of Hodgkin’s lymphoma: the past, present, and future. Nat Clin Pract Oncol. 2008;5:543–56.

    Article  PubMed  CAS  Google Scholar 

  406. Fanale MA, Younes A. Nodular lymphocyte predominant Hodgkin’s lymphoma. Cancer Treat Res. 2008;142:367–81.

    PubMed  Google Scholar 

  407. Berard CW, Thomas LB, Axtell LM, et al. The relationship of histopathological subtype to clinical stage of Hodgkin’s disease at diagnosis. Cancer Res. 1971;31:1776–85.

    Google Scholar 

  408. Poppema S, Delsol G, Pileri SA, et al. Nodular lymphocyte predominant Hodgkin’s lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 323–5.

    Google Scholar 

  409. Medeiros LJ, Greiner TC. Hodgkin’s disease. Cancer. 1995;75(Suppl):357–69.

    Article  PubMed  CAS  Google Scholar 

  410. Al L, LaCasce AS. Nodular lymphocyte predominant Hodgkin’s lymphoma. Oncologist. 2009;14:739–51.

    Article  Google Scholar 

  411. Khoury JD, Jones D, Yared MA, et al. Bone marrow involvement in patients with nodular lymphocyte predominant Hodgkin’s lymphoma. Am J Surg Pathol. 2004;28:489–95.

    Article  PubMed  Google Scholar 

  412. Fan Z, Natkunam Y, Bair E, et al. Characterization of variant patterns of nodular lymphocyte predominant Hodgkin’s lymphoma with immunohistologic and clinical correlation. Am J Surg Pathol. 2003;27:1346–56.

    Article  PubMed  Google Scholar 

  413. Marafioti T, Hummel M, Anagnostopoulos I, et al. Origin of nodular lymphocyte-predominant Hodgkin’s disease from a clonal expansion of highly mutated germinal-center B cells. N Engl J Med. 1997;337:453–8.

    Article  PubMed  CAS  Google Scholar 

  414. Ohno T, Stribley JA, Wu G, et al. Clonality in nodular lymphocyte-predominant Hodgkin’s disease. N Engl J Med. 1997;337:459–65.

    Article  PubMed  CAS  Google Scholar 

  415. Wlodarska I, Stul M, De Wolf-Peeters C, et al. Heterogeneity of BCL6 rearrangements in nodular lymphocyte predominant Hodgkin’s lymphoma. Haematologica. 2004;89:965–72.

    PubMed  CAS  Google Scholar 

  416. Franke S, Wlodarska I, Maes B, et al. Lymphocyte predominance Hodgkin’s disease is characterized by recurrent genomic imbalances. Blood. 2001;97:1845–53.

    Article  PubMed  CAS  Google Scholar 

  417. Brune V, Tiacci E, Pfeil I, et al. Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin’s lymphoma as revealed by global gene expression analysis. J Exp Med. 2008;205:2251–68.

    Article  PubMed  CAS  Google Scholar 

  418. Anagnostopoulos I, Hansmann M-L, Franssila K, et al. European Task Force of Lymphoma project on lymphocyte predominance Hodgkin’s disease: histologic and immunohistologic analysis of submitted cases reveals 2 types of Hodgkin’s disease with a nodular pattern and abundant lymphocytes. Blood. 2000;96:1889–99.

    PubMed  CAS  Google Scholar 

  419. Anagnostopoulos I, Isaacson PG, Stein H. Lymphocyte-rich classical Hodgkin’s lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 332–3.

    Google Scholar 

  420. de Jong D, Bosq J, MacLennan KA, et al. Lymphocyte-rich classical Hodgkin’s lymphoma (LRCHL): clinicopathological characteristics and outcome of a rare entity. Ann Oncol. 2006;17:141–5.

    Article  PubMed  Google Scholar 

  421. Shimbukuro-Vornhagen A, Haverkamp H, Engert A, et al. Lymphocyte-rich classical Hodgkin’s lymphoma: clinical presentation and treatment outcome in 100 patients treated within German Hodgkin’s Study Group trials. J Clin Oncol. 2005;23:5739–45.

    Article  Google Scholar 

  422. Quinones-Avila Mdel P, Gonzalez-Longoria AA, Admirand JH, et al. Hodgkin’s lymphoma involving Waldeyer ring: a clinicopathologic study of 22 cases. Am J Clin Pathol. 2005;123:651–6.

    Article  PubMed  Google Scholar 

  423. Nam-Cha SH, Montes-Moreno S, Salcedo MT, et al. Lymphocyte-rich classical Hodgkin’s lymphoma: distinctive tumor and microenvironment markers. Mod Pathol. 2009;22:1006–15.

    Article  PubMed  CAS  Google Scholar 

  424. Brauninger A, Wacker HH, Rajewsky K, et al. Typing the histogenetic origin of the tumor cells of lymphocyte-rich classical Hodgkin’s lymphoma in relation to tumor cells of classical and lymphocyte-predominance Hodgkin’s lymphoma. Cancer Res. 2003;63:1644–51.

    PubMed  Google Scholar 

  425. Stein H, Von Wasielewski R, Poppera S, et al. Nodular selerosis classical Hodgkin’s lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 330.

    Google Scholar 

  426. MacLennan KA, Bennett MH, Tu A, et al. Relationship of histopathologic features to survival and relapse in nodular sclerosing Hodgkin’s disease: a study of 1659 patients. Cancer. 1989;64:1686–93.

    Article  PubMed  CAS  Google Scholar 

  427. Strickler JG, Michie SA, Warnke RA, et al. The syncytial variant of nodular sclerosing Hodgkin’s disease. Am J Surg Pathol. 1986;10:470–7.

    Article  PubMed  CAS  Google Scholar 

  428. Benharroch D, Stein H, Peh SC. Lymphocyte-depleted classical Hodgkin’s lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 334.

    Google Scholar 

  429. Greer JP, Kinney MC, Cousar JT, et al. Lymphocyte-depleted Hodgkin’s disease: clinicopathologic review of 25 patients. Am J Med. 1986;81:208–14.

    Article  PubMed  CAS  Google Scholar 

  430. Neiman RS, Rosen PJ, Lukes RJ. Lymphocyte-depletion Hodgkin’s disease: a clinicopathologic entity. N Engl J Med. 1973;288:751–5.

    Article  PubMed  CAS  Google Scholar 

  431. Glaser SL, Swartz WG. Time trends in Hodgkin’s disease incidence: the role of diagnostic accuracy. Cancer. 1990;66:2196–24.

    Article  PubMed  CAS  Google Scholar 

  432. Stein H, Delsol G, Pileri SA, et al. Classical Hodgkin’s lymphoma, introduction. In: Swerdlow SH, Campo E, Harris NL, et al., ­editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 326–9.

    Google Scholar 

  433. Aldinucci D, Gloghini A, Pinto A, et al. The classical Hodgkin’s lymphoma microenvironment and its role in promoting tumour growth and immune escape. J Pathol. 2010;221:248–63.

    Article  PubMed  CAS  Google Scholar 

  434. Rassidakis GZ, Medeiros LJ, Viviani S, et al. CD20 expression in Hodgkin’s and Reed-Sternberg cells of classical Hodgkin’s disease: clinical associations and prognostic significance. J Clin Oncol. 2002;20:1278–87.

    Article  PubMed  CAS  Google Scholar 

  435. Rassidakis GZ, Medeiros LJ, Vassilakopoulos TP, et al. BCL-2 expression in Hodgkin’s and Reed-Sternberg cells of classical Hodgkin’s disease predicts a poorer prognosis in patients treated with ABVF or equivalent regimens. Blood. 2002;100:3935–41.

    Article  PubMed  CAS  Google Scholar 

  436. Seitz V, Hummel M, Marafioti T, et al. Detection of clonal T-cell receptor gamma chain gene rearrangements in Reed-Sternberg cells of classic Hodkin’s disease. Blood. 2000;95:3020–4.

    PubMed  CAS  Google Scholar 

  437. Kapatai G, Murray P. Contribution of the Epstein-Barr virus to the molecular pathogenesis of Hodgkin’s lymphoma. J Clin Pathol. 2007;60:1342–9.

    Article  PubMed  CAS  Google Scholar 

  438. Cabanillas F. A review and interpretation of cytogenetic abnormalities identified in Hodgkin’s disease. Hematol Oncol. 1988;6:271–4.

    Article  PubMed  CAS  Google Scholar 

  439. Tilly H, Bastard C, Delastre T, et al. Cytogenetic studies in untreated Hodgkin’s disease. Blood. 1991;77:1298–304.

    PubMed  CAS  Google Scholar 

  440. Steidl C, Telenius A, Shah SP, et al. Genome-wide copy number analysis of Hodgkin’s Reed-Sternberg cells identifies recurrent imbalances with correlations to treatment outcome. Blood. 2010;116:418–27.

    Article  PubMed  CAS  Google Scholar 

  441. Devilard R, Bertucci F, Trempat P, et al. Gene expression profiling defines molecular subtypes of classical Hodgkin’s disease. Oncogene. 2002;21:3095–102.

    Article  PubMed  CAS  Google Scholar 

  442. Steidl C, Lee T, Shah SP, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010;362:875–85.

    Article  PubMed  CAS  Google Scholar 

  443. MacMahon B. Epidemiology of Hodgkin’s disease. Cancer Res. 1966;26:1189–201.

    PubMed  CAS  Google Scholar 

  444. Gutensohn N, Cole P. Childhood social environment and Hodgkin’s disease. N Engl J Med. 1982;304:135–40.

    Article  Google Scholar 

  445. Gutensohn NM. Social class and age at diagnosis of Hodgkin’s disease: new epidemiologic evidence for the two disease hypothesis. Cancer Treat Rep. 1982;66:689–95.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Jeffrey Medeiros M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Medeiros, L.J. (2013). Pathology of Non-Hodgkin’s and Hodgkin’s Lymphomas. In: Wiernik, P., Goldman, J., Dutcher, J., Kyle, R. (eds) Neoplastic Diseases of the Blood. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3764-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3764-2_42

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3763-5

  • Online ISBN: 978-1-4614-3764-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics