Skip to main content

Cytokines and Signal Transduction in Multiple Myeloma

  • Chapter
  • First Online:
Neoplastic Diseases of the Blood

Abstract

Multiple Myeloma (MM) is diagnosed in 15,000 new individuals each year. The median survival has been prolonged from 3–4 to 7 years, especially in patients less than age 50 [1–3]. Despite recent advances including biological agents bortezomib, thalidomide, and lenalidomide, MM remains incurable due to the development of drug resistance, which manifests as relapsed/refractory disease [4, 5]. The molecular and cellular mechanisms whereby MM cells evade drug-induced cytotoxicity and acquire drug-resistant phenotypes include interaction of MM cells with cellular components within the bone marrow (BM) microenvironment [5]. MM cells predominantly reside in the BM and adhere both to the extracellular matrix (ECM) proteins and BM stromal cells (BMSCs) due to binding via adhesion molecules. This interaction between tumor cells and BMSCs not only localizes tumor cells in the BM, but also confers protection against apoptosis and triggers secretion of cytokines mediating autocrine [6, 7] and paracrine [8–11] growth of MM cells. Examples of cytokines include IL-6, IL-21, vascular endothelial growth factor (VEGF), insulin-like growth factor 1 (IGF-1), B-cell stimulating factor 3 (BSF-3), tumor necrosis factor-α (TNF-α), stromal cell-derived factor 1α (SDF-1α), and fibroblast growth factor (FGF). Importantly, new and effective therapeutic strategies have been derived based upon targeting these cytokines and their signaling cascades both in MM cells and in the BM microenvironment. This chapter reviews the role of various cytokines in the biology of MM, as well as novel therapies that overcome cytokine-mediated growth, survival, migration, and drug-resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111:2516–20.

    Article  PubMed  CAS  Google Scholar 

  2. Brenner H, Gondos A, Pulte D. Recent major improvement in long-term survival of younger patients with multiple myeloma. Blood. 2008;111:2521–6.

    Article  PubMed  CAS  Google Scholar 

  3. Ludwig H, Beksac M, Blade J, et al. Current multiple myeloma treatment strategies with novel agents: a European perspective. Oncologist. 2010;15:6–25.

    Article  PubMed  CAS  Google Scholar 

  4. Kyle RA, Rajkumar SV. Multiple myeloma. Blood. 2008;111:2962–72.

    Article  PubMed  CAS  Google Scholar 

  5. Anderson KC. Targeted therapy of multiple myeloma based upon tumor-microenvironmental interactions. Exp Hematol. 2007;35:155–62.

    Article  PubMed  CAS  Google Scholar 

  6. Kawano M, Hirano T, Matsuda T, et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature. 1988;332:83–5.

    Article  PubMed  CAS  Google Scholar 

  7. Anderson KC, Jones RM, Morimoto C, Leavitt P, Barut BA. Response patterns of purified myeloma cells to hematopoietic growth factors. Blood. 1989;73:1915–24.

    PubMed  CAS  Google Scholar 

  8. Klein B, Zhang XG, Jourdan M, et al. Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6. Blood. 1989;73:517–26.

    PubMed  CAS  Google Scholar 

  9. Uchiyama H, Barut BA, Mohrbacher AF, Chauhan D, Anderson KC. Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates interleukin-6 secretion. Blood. 1993;82:3712–20.

    PubMed  CAS  Google Scholar 

  10. Urashima M, Ogata A, Chauhan D, et al. Interleukin-6 promotes multiple myeloma cell growth via phosphorylation of retinoblastoma protein. Blood. 1996;88:2219–27.

    PubMed  CAS  Google Scholar 

  11. Chauhan D, Uchiyama H, Akbarali Y, et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood. 1996;87:1104–12.

    PubMed  CAS  Google Scholar 

  12. Barut BA, Zon LI, Cochran MK, et al. Role of interleukin 6 in the growth of myeloma-derived cell lines. Leuk Res. 1992;16:951–9.

    Article  PubMed  CAS  Google Scholar 

  13. Chauhan D, Pandey P, Ogata A, et al. Dexamethasone induces apoptosis of multiple myeloma cells in a JNK/SAP kinase independent mechanism. Oncogene. 1997;15:837–43.

    Article  PubMed  CAS  Google Scholar 

  14. Lichtenstein A, Tu Y, Fady C, Vescio R, Berenson J. Interleukin-6 inhibits apoptosis of malignant plasma cells. Cell Immunol. 1995;162:248–55.

    Article  PubMed  CAS  Google Scholar 

  15. Klein B, Wijdenes J, Zhang XG, et al. Murine anti-interleukin-6 monoclonal antibody therapy for a patient with plasma cell leukemia. Blood. 1991;78:1198–204.

    PubMed  CAS  Google Scholar 

  16. Bataille R, Barlogie B, Lu ZY, et al. Biologic effects of anti-interleukin-6 murine monoclonal antibody in advanced multiple myeloma. Blood. 1995;86:685–91.

    PubMed  CAS  Google Scholar 

  17. Sporeno E, Savino R, Ciapponi L, et al. Human interleukin-6 receptor super-antagonists with high potency and wide spectrum on multiple myeloma cells. Blood. 1996;87:4510–9.

    PubMed  CAS  Google Scholar 

  18. Suematsu S, Matsuda T, Aozasa K, et al. IgG1 plasmacytosis in interleukin 6 transgenic mice. Proc Natl Acad Sci USA. 1989;86:7547–51.

    Article  PubMed  CAS  Google Scholar 

  19. Lattanzio G, Libert C, Aquilina M, et al. Defective development of pristane-oil-induced plasmacytomas in interleukin-6-deficient BALB/c mice. Am J Pathol. 1997;151:689–96.

    PubMed  CAS  Google Scholar 

  20. Bataille R, Jourdan M, Zhang XG, et al. Serum levels of interleukin-6, a potent myeloma cell growth factor, as a reflection of ­disease severity in plasma cell dyscrasias. J Clin Invest. 1989;84:2008–11.

    Article  PubMed  CAS  Google Scholar 

  21. Barille S, Collette M, Bataille R, et al. Myeloma cells upregulate IL-6 but downregulate osteocalcin production by osteoblastic cells through cell to cell contact. Blood. 1995;86:3151–9.

    PubMed  CAS  Google Scholar 

  22. Wen XY, Stewart AK, Sooknanan RR, et al. Identification of c-myc promoter-binding protein and X-box binding protein 1 as interleukin-6 target genes in human multiple myeloma cells. Int J Oncol. 1999;15:173–8.

    PubMed  CAS  Google Scholar 

  23. Chauhan D, Li G, Auclair D, et al. Identification of genes regulated by 2-methoxyestradiol (2ME2) in multiple myeloma cells using oligonucleotide arrays. Blood. 2003;101:3606–14.

    Article  PubMed  CAS  Google Scholar 

  24. Bagratuni T, Wu P, Gonzalez de Castro D, et al. XBP1s levels are implicated in the biology and outcome of myeloma mediating differential clinical outcomes to thalidomide-based treatments. Blood. 2010;116(2):250–3.

    Article  PubMed  CAS  Google Scholar 

  25. Iwakoshi NN, Lee AH, Vallabhajosyula P, Otipoby KL, Rajewsky K, Glimcher LH. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol. 2003;4:321–9.

    Article  PubMed  CAS  Google Scholar 

  26. Klein B, Tarte K, Jourdan M, et al. Survival and proliferation factors of normal and malignant plasma cells. Int J Hematol. 2003;78:106–13.

    Article  PubMed  CAS  Google Scholar 

  27. Wu KD, Orme LM, Shaughnessy Jr J, Jacobson J, Barlogie B, Moore MA. Telomerase and telomere length in multiple myeloma: correlations with disease heterogeneity, cytogenetic status, and overall survival. Blood. 2003;101:4982–9.

    Article  PubMed  CAS  Google Scholar 

  28. Kishimoto T, Taga T, Akira S. Cytokine signal transduction. Cell. 1994;76:253.

    Article  PubMed  CAS  Google Scholar 

  29. Ogata A, Chauhan D, Teoh G, et al. Interleukin-6 triggers cell growth via the ras-dependent mitogen-activated protein kinase cascade. J Immunol. 1997;159(5):2212–21.

    PubMed  CAS  Google Scholar 

  30. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003;374:1–20.

    Article  PubMed  CAS  Google Scholar 

  31. Chauhan D, Anderson KC. Mechanisms of cell death and survival in multiple myeloma (MM): therapeutic implications. Apoptosis. 2003;8:337–43.

    Article  PubMed  CAS  Google Scholar 

  32. Li J, Favata M, Kelley JA, et al. INCB16562, a JAK1/2 selective inhibitor, is efficacious against multiple myeloma cells and reverses the protective effects of cytokine and stromal cell support. Neoplasia. 2010;12:28–38.

    PubMed  CAS  Google Scholar 

  33. Cirstea D, Hideshima T, Rodig S, et al. Dual inhibition of akt/mammalian target of rapamycin pathway by nanoparticle albumin-bound-rapamycin and perifosine induces antitumor ­activity in multiple myeloma. Mol Cancer Ther. 2010;9:963–75.

    Article  PubMed  CAS  Google Scholar 

  34. Kim K, Kong SY, Fulciniti M, et al. Blockade of the MEK/ERK signalling cascade by AS703026, a novel selective MEK1/2 inhibitor, induces pleiotropic anti-myeloma activity in vitro and in vivo. Br J Haematol. 2010;149(4):537–49.

    Article  PubMed  CAS  Google Scholar 

  35. Catlett-Falcone R, Landowski TH, Oshiro M, et al. Constitutive activation of STAT3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity. 1999;10:105–15.

    Article  PubMed  CAS  Google Scholar 

  36. Derenne S, Monia B, Dean NM, et al. Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells. Blood. 2002;100:194–9.

    Article  PubMed  CAS  Google Scholar 

  37. Neumann C, Zehentmaier G, Danhauser-Riedl S, Emmerich B, Hallek M. Interleukin-6 induces tyrosine phosphorylation of the Ras activating protein Shc, and its complex formation with Grb2 in the human multiple myeloma cell line LP-1. Eur J Immunol. 1996;26:379–84.

    Article  PubMed  CAS  Google Scholar 

  38. Hideshima T, Nakamura N, Chauhan D, Anderson KC. Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene. 2001;20:5991–6000.

    Article  PubMed  CAS  Google Scholar 

  39. Hsu JH, Shi Y, Hu L, Fisher M, Franke TF, Lichtenstein A. Role of the AKT kinase in expansion of multiple myeloma clones: effects on cytokine-dependent proliferative and survival responses. Oncogene. 2002;21:1391–400.

    Article  PubMed  CAS  Google Scholar 

  40. Podar K, Tai YT, Cole CE, et al. Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells. J Biol Chem. 2003;278:5794–801.

    Article  PubMed  CAS  Google Scholar 

  41. Ogata A, Chauhan D, Urashima M, Teoh G, Treon SP, Anderson KC. Blockade of mitogen-activated protein kinase cascade signaling in interleukin 6-independent multiple myeloma cells. Clin Cancer Res. 1997;3:1017–22.

    PubMed  CAS  Google Scholar 

  42. Dai Y, Pei XY, Rahmani M, Conrad DH, Dent P, Grant S. Interruption of the NF-{kappa}b pathway by Bay 11-7082 promotes UCN-01-mediated mitochondrial dysfunction and apoptosis in human multiple myeloma cells. Blood. 2003;103(7):2761–70.

    Article  PubMed  CAS  Google Scholar 

  43. Alas S, Bonavida B. Inhibition of constitutive STAT3 activity sensitizes resistant Non-Hodgkin’s lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis. Clin Cancer Res. 2003;9:316–26.

    PubMed  CAS  Google Scholar 

  44. Hu L, Shi Y, Hsu JH, Gera J, Van Ness B, Lichtenstein A. Downstream effectors of oncogenic ras in multiple myeloma cells. Blood. 2003;101:3126–35.

    Article  PubMed  CAS  Google Scholar 

  45. Chauhan D, Velankar M, Brahmandam M, et al. A novel Bcl-2/Bcl-X(L)/Bcl-w inhibitor ABT-737 as therapy in multiple myeloma. Oncogene. 2007;26:2374–80.

    Article  PubMed  CAS  Google Scholar 

  46. Fonseca R, Barlogie B, Bataille R, et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res. 2004;64:1546–58.

    Article  PubMed  CAS  Google Scholar 

  47. Chng WJ, Gonzalez-Paz N, Price-Troska T, et al. Clinical and biological significance of RAS mutations in multiple myeloma. Leukemia. 2008;22:2280–4.

    Article  PubMed  CAS  Google Scholar 

  48. Bezieau S, Devilder MC, Avet-Loiseau H, et al. High incidence of N and K-Ras activating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis. Hum Mutat. 2001;18:212–24.

    Article  PubMed  CAS  Google Scholar 

  49. Crowder C, Kopantzev E, Williams K, Lengel C, Miki T, Rudikoff S. An unusual H-Ras mutant isolated from a human multiple myeloma line leads to transformation and factor-independent cell growth. Oncogene. 2003;22:649–59.

    Article  PubMed  CAS  Google Scholar 

  50. Chesi M, Bergsagel PL, Kuehl WM. The enigma of ectopic expression of FGFR3 in multiple myeloma: a critical initiating event or just a target for mutational activation during tumor progression. Curr Opin Hematol. 2002;9:288–93.

    Article  PubMed  Google Scholar 

  51. Winkler JM, Greipp P, Fonseca R. t(4;14)(p16.3;q32) is strongly associated with a shorter survival in myeloma patients. Br J Haematol. 2003;120:170–1.

    Article  PubMed  Google Scholar 

  52. Kuehl WM, Brents LA, Chesi M, Huppi K, Bergsagel PL. Dysregulation of c-myc in multiple myeloma. Curr Top Microbiol Immunol. 1997;224:277–82.

    Article  PubMed  CAS  Google Scholar 

  53. Chesi M, Bergsagel PL, Shonukan OO, et al. Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood. 1998;91:4457–63.

    PubMed  CAS  Google Scholar 

  54. Bergsagel PL, Kuehl WM. Chromosome translocations in multiple myeloma. Oncogene. 2001;20:5611–22.

    Article  PubMed  CAS  Google Scholar 

  55. Shaughnessy Jr J, Gabrea A, Qi Y, et al. Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood. 2001;98:217–23.

    Article  PubMed  CAS  Google Scholar 

  56. Rasmussen T, Theilgaard-Monch K, Hudlebusch HR, Lodahl M, Johnsen HE, Dahl IM. Occurrence of dysregulated oncogenes in primary plasma cells representing consecutive stages of myeloma pathogenesis: indications for different disease entities. Br J Haematol. 2003;123:253–62.

    Article  PubMed  CAS  Google Scholar 

  57. Urashima M, Teoh G, Ogata A, et al. Role of CDK4 and p16INK4A in interleukin-6-mediated growth of multiple myeloma. Leukemia. 1997;11:1957–63.

    Article  PubMed  CAS  Google Scholar 

  58. Hardin J, MacLeod S, Grigorieva I, et al. Interleukin-6 prevents dexamethasone-induced myeloma cell death. Blood. 1994;84:3063–70.

    PubMed  CAS  Google Scholar 

  59. Chauhan D, Kharbanda S, Ogata A, et al. Interleukin-6 inhibits Fas-induced apoptosis and stress-activated protein kinase activation in multiple myeloma cells. Blood. 1997;89:227–34.

    PubMed  CAS  Google Scholar 

  60. Chauhan D, Pandey P, Ogata A, et al. Cytochrome-c dependent and independent induction of apoptosis in multiple myeloma cells. J Biol Chem. 1997;272:29995–7.

    Article  PubMed  CAS  Google Scholar 

  61. Xu F, Sharma S, Gardner S, et al. Interleukin-6 induced inhibition of multiple myeloma cell apoptosis: support for the hypothesis that protection is mediated via inhibition of the JNK/SAPK ­pathway. Blood. 1998;92:241–51.

    PubMed  CAS  Google Scholar 

  62. Chauhan D, Pandey P, Hideshima T, et al. SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells. J Biol Chem. 2000;275:27845–50.

    PubMed  CAS  Google Scholar 

  63. Bossy-Wetzel E, Green DR. Apoptosis: checkpoint at the mitochondrial frontier. Mutat Res. 1999;434:243–51.

    Article  PubMed  CAS  Google Scholar 

  64. Ferri KF, Kroemer G. Mitochondria–the suicide organelles. Bioessays. 2001;23:111–5.

    Article  PubMed  CAS  Google Scholar 

  65. Chauhan D, Hideshima T, Rosen S, Reed JC, Kharbanda S, Anderson KC. Apaf-1/cytochrome c-independent and Smac-dependent induction of apoptosis in multiple myeloma (MM) cells. J Biol Chem. 2001;276:24453–6.

    Article  PubMed  CAS  Google Scholar 

  66. Chauhan D, Li G, Sattler M, et al. Superoxide-dependent and -independent mitochondrial signaling during apoptosis in multiple myeloma cells. Oncogene. 2003;22:6296–300.

    Article  PubMed  CAS  Google Scholar 

  67. Ogata A, Nishimoto N, Shima Y, Yoshizaki K, Kishimoto T. Inhibitory effect of All-trans retinoic acid on the growth of freshly isolated myeloma cells via interference with interleukin-6 signal transduction. Blood. 1994;84:3040–6.

    PubMed  CAS  Google Scholar 

  68. Kreitman R, Siegall CB, Fitzgerald DJP, et al. Interleukin-6 fused to mutant form of pseudomonas exotoxin kills malignant cells form patients with multiple myeloma. Blood. 1992;79:1775–80.

    PubMed  CAS  Google Scholar 

  69. Jelinek DF, Witzig TE, Arendt BK. A role for insulin-like growth factor in the regulation of IL-6-responsive human myeloma cell line growth. J Immunol. 1997;159:487–96.

    PubMed  CAS  Google Scholar 

  70. Vanderkerken K, Asosingh K, Braet F, Van Riet I, Van Camp B. Insulin-like growth factor-1 acts as a chemoattractant factor for 5T2 multiple myeloma cells. Blood. 1999;93:235–41.

    PubMed  CAS  Google Scholar 

  71. Ge NL, Rudikoff S. Insulin-like growth factor I is a dual effector of multiple myeloma cell growth. Blood. 2000;96:2856–61.

    PubMed  CAS  Google Scholar 

  72. Xu F, Gardner A, Tu Y, Michl P, Prager D, Lichtenstein A. Multiple myeloma cells are protected against dexamethasone-induced apoptosis by insulin-like growth factors. Br J Haematol. 1997;97:429–40.

    Article  PubMed  CAS  Google Scholar 

  73. Descamps G, Gomez-Bougie P, Venot C, Moreau P, Bataille R, Amiot M. A humanised anti-IGF-1R monoclonal antibody (AVE1642) enhances Bortezomib-induced apoptosis in myeloma cells lacking CD45. Br J Cancer. 2009;100:366–9.

    Article  PubMed  CAS  Google Scholar 

  74. Menoret E, Maiga S, Descamps G, et al. IL-21 stimulates human myeloma cell growth through an autocrine IGF-1 loop. J Immunol. 2008;181:6837–42.

    PubMed  CAS  Google Scholar 

  75. Tai YT, Podar K, Catley L, et al. Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3′-kinase/AKT signaling. Cancer Res. 2003;63:5850–8.

    PubMed  CAS  Google Scholar 

  76. Mitsiades CS, Mitsiades NS, McMullan CJ, et al. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell. 2004;5:221–30.

    Article  PubMed  CAS  Google Scholar 

  77. Qiang YW, Kopantzev E, Rudikoff S. Insulinlike growth factor-I signaling in multiple myeloma: downstream elements, functional correlates, and pathway cross-talk. Blood. 2002;99:4138–46.

    Article  PubMed  CAS  Google Scholar 

  78. De Bruyne E, Bos TJ, Schuit F, et al. IGF-1 suppresses Bim expression in multiple myeloma via epigenetic and posttranslational mechanisms. Blood. 2010;115:2430–40.

    Article  PubMed  CAS  Google Scholar 

  79. Mitsiades CS, Mitsiades N, Poulaki V, et al. Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene. 2002;21:5673–83.

    Article  PubMed  CAS  Google Scholar 

  80. Tu Y, Gardner A, Lichtenstein A. The phosphatidylinositol 3-kinase/AKT kinase pathway in multiple myeloma plasma cells: roles in cytokine-dependent survival and proliferative responses. Cancer Res. 2000;60:6763–70.

    PubMed  CAS  Google Scholar 

  81. Abroun S, Ishikawa H, Tsuyama N, et al. Receptor synergy of interleukin-6 (IL-6) and insulin-like growth factor-I in myeloma cells that highly express IL-6 receptor alpha [corrected]. Blood. 2004;103:2291–8.

    Article  PubMed  CAS  Google Scholar 

  82. Akiyama M, Hideshima T, Hayashi T, et al. Nuclear factor-kappaB p65 mediates tumor necrosis factor alpha-induced nuclear translocation of telomerase reverse transcriptase protein. Cancer Res. 2003;63:18–21.

    PubMed  CAS  Google Scholar 

  83. Sprynski AC, Hose D, Caillot L, et al. The role of IGF-1 as a major growth factor for myeloma cell lines and the prognostic relevance of the expression of its receptor. Blood. 2009;113:4614–26.

    Article  PubMed  CAS  Google Scholar 

  84. Chng WJ, Gualberto A, Fonseca R. IGF-1R is overexpressed in poor-prognostic subtypes of multiple myeloma. Leukemia. 2006;20:174–6.

    Article  PubMed  CAS  Google Scholar 

  85. Di Raimondo F, Azzaro MP, Palumbo G, et al. Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood. Haematologica. 2000;85:800–5.

    PubMed  Google Scholar 

  86. Rajkumar SV, Witzig TE. A review of angiogenesis and antiangiogenic therapy with thalidomide in multiple myeloma. Cancer Treat Rev. 2000;26:351–62.

    Article  PubMed  CAS  Google Scholar 

  87. Xu JL, Lai R, Kinoshita T, Nakashima N, Nagasaka T. Proliferation, apoptosis, and intratumoral vascularity in multiple myeloma: correlation with the clinical stage and cytological grade. J Clin Pathol. 2002;55:530–4.

    Article  PubMed  CAS  Google Scholar 

  88. Podar K, Tai YT, Davies FE, et al. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood. 2001;98:428–35.

    Article  PubMed  CAS  Google Scholar 

  89. Podar K, Tai YT, Lin BK, et al. Vascular endothelial growth factor-induced migration of multiple myeloma cells is associated with beta 1 integrin- and phosphatidylinositol 3-kinase-dependent PKCalpha activation. J Biol Chem. 2002;277:7875–81.

    Article  PubMed  CAS  Google Scholar 

  90. Dankar B, Padro T, Leo R, et al. Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood. 2000;95:2630–336.

    Google Scholar 

  91. Giuliani N, Lunghi P, Morandi F, et al. Downmodulation of ERK protein kinase activity inhibits VEGF secretion by human myeloma cells and myeloma-induced angiogenesis. Leukemia. 2004;18:628–35.

    Article  PubMed  CAS  Google Scholar 

  92. Podar K, Anderson KC. Inhibition of VEGF signaling pathways in multiple myeloma and other malignancies. Cell Cycle. 2007;6:538–42.

    Article  PubMed  CAS  Google Scholar 

  93. Hurt EM, Wiestner A, Rosenwald A, et al. Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell. 2004;5:191–9.

    Article  PubMed  CAS  Google Scholar 

  94. Chauhan D, Singh AV, Brahmandam M, et al. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell. 2009;16:309–23.

    Article  PubMed  CAS  Google Scholar 

  95. Lin B, Podar K, Gupta D, et al. The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 inhibits growth and migration of multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 2002;62:5019–26.

    PubMed  CAS  Google Scholar 

  96. Yang DH, Park JS, Jin CJ, et al. The dysfunction and abnormal signaling pathway of dendritic cells loaded by tumor antigen can be overcome by neutralizing VEGF in multiple myeloma. Leuk Res. 2009;33:665–70.

    Article  PubMed  CAS  Google Scholar 

  97. Vacca A, Ribatti D, Presta M, et al. Bone marrow ­neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human ­multiple myeloma. Blood. 1999;93:3064–73.

    PubMed  CAS  Google Scholar 

  98. Bisping G, Wenning D, Kropff M, et al. Bortezomib, dexamethasone, and fibroblast growth factor receptor 3-specific tyrosine kinase inhibitor in t(4;14) myeloma. Clin Cancer Res. 2009;15:520–31.

    Article  PubMed  CAS  Google Scholar 

  99. Urashima M, Ogata A, Chauhan D, et al. Transforming growth factor-beta1: differential effects on multiple myeloma versus normal B cells. Blood. 1996;87:1928–38.

    PubMed  CAS  Google Scholar 

  100. Kyrtsonis MC, Repa C, Dedoussis GV, et al. Serum transforming growth factor-beta 1 is related to the degree of immunoparesis in patients with multiple myeloma. Med Oncol. 1998;15:124–8.

    Article  PubMed  CAS  Google Scholar 

  101. Urba ska-Rys H, Wierzbowska A, Robak T. Circulating angiogenic cytokines in multiple myeloma and related disorders. Eur Cytokine Netw. 2003;14:40–51.

    Google Scholar 

  102. Hayashi T, Hideshima T, Nguyen AN, et al. Transforming growth factor beta receptor I kinase inhibitor down-regulates cytokine secretion and multiple myeloma cell growth in the bone marrow microenvironment. Clin Cancer Res. 2004;10:7540–6.

    Article  PubMed  CAS  Google Scholar 

  103. Kawamura C, Kizaki M, Yamato K, et al. Bone morphogenetic protein-2 induces apoptosis in human myeloma cells with modulation of STAT3. Blood. 2000;96:2005–11.

    PubMed  CAS  Google Scholar 

  104. Thompson MA, Witzig TE, Kumar S, et al. Plasma levels of tumour necrosis factor alpha and interleukin-6 predict progression-free survival following thalidomide therapy in patients with previously untreated multiple myeloma. Br J Haematol. 2003;123:305–8.

    Article  PubMed  CAS  Google Scholar 

  105. Alexandrakis MG, Passam FH, Sfiridaki K, et al. Interleukin-18 in multiple myeloma patients: serum levels in relation to response to treatment and survival. Leuk Res. 2004;28:259–66.

    Article  PubMed  CAS  Google Scholar 

  106. Hideshima T, Chauhan D, Schlossman R, Richardson P, Anderson KC. The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene. 2001;20:4519–27.

    Article  PubMed  CAS  Google Scholar 

  107. Bharti AC, Donato N, Singh S, Aggarwal BB. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and Ikappa Balpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood. 2003;101:1053–62.

    Article  PubMed  CAS  Google Scholar 

  108. Kadar K, Kovacs M, Karadi I, et al. Polymorphisms of TNF-alpha and LT-alpha genes in multiple myeloma. Leuk Res. 2008;32:1499–504.

    Article  PubMed  CAS  Google Scholar 

  109. Johrer K, Janke K, Krugmann J, Fiegl M, Greil R. Transendothelial migration of myeloma cells is increased by tumor necrosis factor (TNF)-alpha via TNF receptor 2 and autocrine up-regulation of MCP-1. Clin Cancer Res. 2004;10:1901–10.

    Article  PubMed  Google Scholar 

  110. Tai YT, Podar K, Mitsiades N, et al. CD40 induces human multiple myeloma cell migration via phosphatidylinositol 3-kinase/AKT/NF-kappa B signaling. Blood. 2003;101:2762–9.

    Article  PubMed  CAS  Google Scholar 

  111. Hussein M, Berenson JR, Niesvizky R, et al. A phase 1 multidose study of dacetuzumab (SGN-40; humanized anti-CD40 mAb) in patients with multiple myeloma. Haematologica. 2010;95(5):845–8.

    Article  PubMed  CAS  Google Scholar 

  112. Tai YT, Li X, Tong X, et al. Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma. Cancer Res. 2005;65:5898–906.

    Article  PubMed  CAS  Google Scholar 

  113. Alsayed Y, Ngo H, Runnels J, et al. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood. 2007;109:2708–17.

    PubMed  CAS  Google Scholar 

  114. Mackay F, Schneider P, Rennert P, Browning J. BAFF AND APRIL: a tutorial on B cell survival. Annu Rev Immunol. 2003;21:231–64.

    Article  PubMed  CAS  Google Scholar 

  115. Novak AJ, Darce JR, Arendt BK, et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood. 2004;103:689–94.

    Article  PubMed  CAS  Google Scholar 

  116. Moreaux J, Hose D, Jourdan M, et al. TACI expression is associated with a mature bone marrow plasma cell signature and C-MAF overexpression in human myeloma cell lines. Haematologica. 2007;92:803–11.

    Article  PubMed  CAS  Google Scholar 

  117. Moreaux J, Sprynski AC, Dillon SR, et al. APRIL and TACI interact with syndecan-1 on the surface of multiple myeloma cells to form an essential survival loop. Eur J Haematol. 2009;83:119–29.

    Article  PubMed  CAS  Google Scholar 

  118. Kukreja A, Hutchinson A, Dhodapkar K, et al. Enhancement of clonogenicity of human multiple myeloma by dendritic cells. J Exp Med. 2006;203:1859–65.

    Article  PubMed  CAS  Google Scholar 

  119. Esteve FR, Roodman GD. Pathophysiology of myeloma bone disease. Best Pract Res Clin Haematol. 2007;20:613–24.

    Article  PubMed  CAS  Google Scholar 

  120. Vallet S, Mukherjee S, Vaghela N, et al. Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proc Natl Acad Sci USA. 2010;107:5124–9.

    Article  PubMed  CAS  Google Scholar 

  121. Vanderkerken K, De Leenheer E, Shipman C, et al. Recombinant osteoprotegerin decreases tumor burden and increases survival in a murine model of multiple myeloma. Cancer Res. 2003;63:287–9.

    PubMed  CAS  Google Scholar 

  122. Sordillo EM, Pearse RN. RANK-Fc: a therapeutic antagonist for RANK-L in myeloma. Cancer. 2003;97:802–12.

    Article  PubMed  Google Scholar 

  123. Terpos E, Efstathiou E, Christoulas D, Roussou M, Katodritou E, Dimopoulos MA. RANKL inhibition: clinical implications for the management of patients with multiple myeloma and solid tumors with bone metastases. Expert Opin Biol Ther. 2009;9:465–79.

    Article  PubMed  CAS  Google Scholar 

  124. Qiang YW, Chen Y, Stephens O, et al. Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood. 2008;112:196–207.

    Article  PubMed  CAS  Google Scholar 

  125. Vallet S, Raje N, Ishitsuka K, et al. MLN3897, a novel CCR1 inhibitor, impairs osteoclastogenesis and inhibits the interaction of multiple myeloma cells and osteoclasts. Blood. 2007;110(10):3744–52.

    Article  PubMed  CAS  Google Scholar 

  126. Drake MT, Rajkumar SV. Effects of bortezomib on bone disease in multiple myeloma. Am J Hematol. 2009;84:1–2.

    Article  PubMed  CAS  Google Scholar 

  127. Tian E, Zhan F, Walker R, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 2003;349:2483–94.

    Article  PubMed  CAS  Google Scholar 

  128. Qiang YW, Shaughnessy Jr JD, Yaccoby S. Wnt3a signaling within bone inhibits multiple myeloma bone disease and tumor growth. Blood. 2008;112:374–82.

    Article  PubMed  CAS  Google Scholar 

  129. Derksen PW, Tjin E, Meijer HP, et al. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells. Proc Natl Acad Sci USA. 2004;101(16):6122–7.

    Article  PubMed  CAS  Google Scholar 

  130. Niida A, Hiroko T, Kasai M, et al. DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene. 2004;23:8520–6.

    Article  PubMed  CAS  Google Scholar 

  131. Durie BG, Van Ness B, Ramos C, et al. Genetic polymorphisms of EPHX1, Gsk3beta, TNFSF8 and myeloma cell DKK-1 expression linked to bone disease in myeloma. Leukemia. 2009;23:1913–9.

    Article  PubMed  CAS  Google Scholar 

  132. Zimmermann P, David G. The syndecans, tuners of transmembrane signaling. FASEB J. 1999;13(Suppl):S91–S100.

    PubMed  CAS  Google Scholar 

  133. Wang YD, De Vos J, Jourdan M, et al. Cooperation between heparin-binding EGF-like growth factor and interleukin-6 in promoting the growth of human myeloma cells. Oncogene. 2002;21:2584–92.

    Article  PubMed  CAS  Google Scholar 

  134. Bergui L, Schena M, Gaidano G, et al. Interleukin 3 and interleukin 6 synergistically promote the proliferation and differentiation of malignant plasma cell precursors in multiple myeloma. J Exp Med. 1989;170:613–8.

    Article  PubMed  CAS  Google Scholar 

  135. Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer. 2007;7:585–98.

    Article  PubMed  CAS  Google Scholar 

  136. Lee JW, Chung HY, Ehrlich LA, et al. IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells. Blood. 2004;103:2308–15.

    Article  PubMed  CAS  Google Scholar 

  137. Grouard G, Rissoan MC, Filgueira L, Durand I, Banchereau J, Liu YJ. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J Exp Med. 1997;185:1101–11.

    Article  PubMed  CAS  Google Scholar 

  138. Chauhan D, Kharbanda SM, Ogata A, et al. Oncostatin M induces association of Grb2 with Janus kinase JAK2 in multiple myeloma cells. J Exp Med. 1995;182:1801–6.

    Article  PubMed  CAS  Google Scholar 

  139. Zhang XG, Bataille R, Jourdan M, et al. Granulocyte-macrophage colony-stimulating factor synergizes with interleukin-6 in supporting the proliferation of human myeloma cells. Blood. 1990;76:2599.

    PubMed  CAS  Google Scholar 

  140. Anderson KC, Morimoto C, Paul SR, et al. Interleukin-11 promotes accessory cell dependent B cell differentiation in man. Blood. 1992;80:2797–804.

    PubMed  CAS  Google Scholar 

  141. Paul SD, Barut BA, Cochran MA, Anderson KC. Lack of a role of interleukin-11 in the growth of multiple myeloma. Leuk Res. 1992;16:247–52.

    Article  PubMed  CAS  Google Scholar 

  142. Lu ZY, Zhang XG, Rodriguez C, et al. Interleukin-10 is a proliferation factor but not a differentiation factor for human myeloma cells. Blood. 1995;85:2521.

    PubMed  CAS  Google Scholar 

  143. Hjorth-Hansen H, Waage A, Borset M. Interleukin-15 blocks apoptosis and induces proliferation of the human myeloma cell line OH-2 and freshly isolated myeloma cells. Br J Haematol. 1999;106:28–34.

    Article  PubMed  CAS  Google Scholar 

  144. Brenne AT, Baade Ro T, Waage A, Sundan A, Borset M, Hjorth-Hansen H. Interleukin-21 is a growth and survival factor for human myeloma cells. Blood. 2002;99:3756–62.

    Article  PubMed  CAS  Google Scholar 

  145. Tinhofer I, Marschitz I, Henn T, Egle A, Greil R. Expression of functional interleukin-15 receptor and autocrine production of interleukin-15 as mechanisms of tumor propagation in multiple myeloma. Blood. 2000;95:610–8.

    PubMed  CAS  Google Scholar 

  146. Anargyrou K, Terpos E, Vassilakopoulos TP, et al. Normalization of the serum angiopoietin-1 to angiopoietin-2 ratio reflects response in refractory/resistant multiple myeloma patients treated with bortezomib. Haematologica. 2008;93:451–4.

    Article  PubMed  CAS  Google Scholar 

  147. Prabhala RH, Pelluru D, Fulciniti M, et al. Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood. 2010;115(26):5385–92.

    Article  PubMed  CAS  Google Scholar 

  148. Martin SK, Diamond P, Williams SA, et al. Hypoxia-inducible factor-2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells. Haematologica. 2010;95:776–84.

    Article  PubMed  CAS  Google Scholar 

  149. Hideshima T, Neri P, Tassone P, et al. MLN120B, a novel IkappaB kinase beta inhibitor, blocks multiple myeloma cell growth in vitro and in vivo. Clin Cancer Res. 2006;12:5887–94.

    Article  PubMed  CAS  Google Scholar 

  150. Chauhan D, Li G, Shringarpure R, et al. Blockade of Hsp27 overcomes Bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Res. 2003;63:6174–7.

    PubMed  CAS  Google Scholar 

  151. Hideshima T, Mitsiades C, Ikeda H, et al. A proto-oncogene Bcl-6 is upregulated in the bone marrow microenvironment in multiple myeloma cells. Blood. 2010;115(18):3772–5.

    Article  PubMed  CAS  Google Scholar 

  152. Chauhan D, Li G, Podar K, et al. A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells. Cancer Res. 2005;65:8350–8.

    Article  PubMed  CAS  Google Scholar 

  153. Chauhan D, Li G, Hideshima T, et al. Blockade of ubiquitin-­conjugating enzyme CDC34 enhances anti-myeloma activity of Bortezomib/Proteasome inhibitor PS-341. Oncogene. 2004;23:3597–602.

    Article  PubMed  CAS  Google Scholar 

  154. Chauhan D, Li G, Hideshima T, et al. JNK-dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells. J Biol Chem. 2003;278:17593–6.

    Article  PubMed  CAS  Google Scholar 

  155. Podar K, Gouill SL, Zhang J, et al. A pivotal role for Mcl-1 in Bortezomib-induced apoptosis. Oncogene. 2007;27(6):721–31.

    Article  PubMed  Google Scholar 

  156. Podar K, Raab MS, Zhang J, et al. Targeting PKC in multiple myeloma: in vitro and in vivo effects of the novel, orally available small-molecule inhibitor enzastaurin (LY317615.HCl). Blood. 2007;109:1669–77.

    Article  PubMed  CAS  Google Scholar 

  157. Chauhan D, Neri P, Velankar M, et al. Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood. 2007;109:1220–7.

    Article  PubMed  CAS  Google Scholar 

  158. Hideshima T, Catley L, Yasui H, et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood. 2006;107:4053–62.

    Article  PubMed  CAS  Google Scholar 

  159. Tong WG, Chen R, Plunkett W, et al. Phase I and pharmacologic study of SNS-032, a potent and selective Cdk2, 7, and 9 inhibitor, in patients with advanced chronic lymphocytic leukemia and ­multiple myeloma. J Clin Oncol. 2010;28(18):3015–22.

    Article  PubMed  CAS  Google Scholar 

  160. Mitsiades N, Mitsiades CS, Poulaki V, et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA. 2002;99:14374–9.

    Article  PubMed  CAS  Google Scholar 

  161. Chauhan D, Catley L, Hideshima T, et al. 2-Methoxyestradiol overcomes drug resistance in multiple myeloma cells. Blood. 2002;100:2187–94.

    Article  PubMed  CAS  Google Scholar 

  162. Chauhan D, Li G, Auclair D, et al. 2-Methoxyestardiol and bortezomib/proteasome-inhibitor overcome dexamethasone-resistance in multiple myeloma cells by modulating Heat Shock Protein-27. Apoptosis. 2004;9:149–55.

    Article  PubMed  CAS  Google Scholar 

  163. Mitsiades CS, Mitsiades NS, McMullan CJ, et al. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA. 2004;101:540–5.

    Article  PubMed  CAS  Google Scholar 

  164. Chauhan D, Auclair D, Robinson EK, et al. Identification of genes regulated by dexamethasone in multiple myeloma cells using oligonucleotide arrays. Oncogene. 2002;21:1346–58.

    Article  PubMed  CAS  Google Scholar 

  165. Hideshima T, Bradner JE, Wong J, et al. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci USA. 2005;102:8567–72.

    Article  PubMed  CAS  Google Scholar 

  166. Catley L, Weisberg E, Kiziltepe T, et al. Aggresome induction by proteasome inhibitor bortezomib and {alpha}-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are ­synergistic in myeloma cells. Blood. 2006;108:3441–49.

    Article  PubMed  CAS  Google Scholar 

  167. Jagannath S, Dimopoulos MA, Lonial S. Combined proteasome and histone deacetylase inhibition: a promising synergy for patients with relapsed/refractory multiple myeloma. Leuk Res. 2010;34(9):1111–8.

    Article  PubMed  CAS  Google Scholar 

  168. Raje N, Kumar S, Hideshima T, et al. Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in ­multiple myeloma. Blood. 2004;104:4188–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by NIH Grants SPORE-P50100707, PO1-CA078378, and RO1CA050947; and MRF funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharminder Chauhan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chauhan, D., Anderson, K.C. (2013). Cytokines and Signal Transduction in Multiple Myeloma. In: Wiernik, P., Goldman, J., Dutcher, J., Kyle, R. (eds) Neoplastic Diseases of the Blood. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3764-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3764-2_27

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3763-5

  • Online ISBN: 978-1-4614-3764-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics